Easy DOE - New in JMP 17

Tom Donnelly, PhD, CAP

Principal Systems Engineer JMP Defense & Aerospace Team tom.donnelly@jmp.com

Outline

- Why Easy DOE? Key Features
- Why DOE?
- 1st example use of Guided Easy DOE
- Review important concepts in the Guided Easy DOE process
- 2nd example use of Guided Easy DOE

Why Easy DOE? - Key Features

JMP 17 makes it easier for everyone to experiment

- End-to-end coverage of every step of experimentation.
- Streamlined experience through tailored elements in a new user interface.
- Guided mode for novice experimenters (default) and Flexible mode for more demanding situations.
- Comprehensive summary report is automatically written based on the current state of the experiment.
- Save your work at any time and return to the same point.
- Easily share experiments with others.

Developer Tutorial: Easy DOE - Expertly Guiding Users Through Designing an Experiment

Why use DOE?

QUICKER ANSWERS, LOWER COSTS, SOLVE BIGGER PROBLEMS, MAKE BETTER INFORMED DECISIONS

- More rapidly answer "what if?" questions
- Identify important factors when faced with many
- Do sensitivity and trade-space analysis
- *Optimize* across multiple responses
- By running efficient subsets of all possible combinations, one can – for the same resources and constraints – solve bigger problems
- By running sequences of designs one can be as cost effective as possible and run no more trials than needed to get a useful answer

Use Easy DOE

3-response, 4-factor, trade-space analysis and optimization example

		Response Table				
Add Response Number of Resp	oonses 1	F	Remove Selected			
Response Name	Goal	Lower Limit	Upper Limit	Importance		
Speed	Maximize	5.3		1		
Contrast	Maximize	0.7		1		
Cost	Minimize		0.28	1		
•		Factor Table				
Add Factor Number of Factors	1	Remov	e Selected			
Name	Role	Changes	Values			
Sensitizer 1	Continuous	Easy	50		90	
Sensitizer 2	Continuous	Easy	50		90	
⊿ Dye	Continuous	Easy	200		300	
Reaction Time	Continuous	Easy	120		180	

All Main Effects, Two-Factor Interactions, and Quadratics (Response Surface Design)
 Show Hint

21

Last page of Report shows Prediction Profiler after pressing Optimize button & meeting all requirements

 Aperil
 Denses
 Care

 1.417
 3.410.0
 3.420.0

 1.417
 3.400.0
 3.420.0

 1.417
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.420.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.410
 3.400.0
 3.400.0

 1.

 Sequence level

 3649xx1
 20000 EFF

 3.495x2
 3.4252

 3.495x2
 3.4252

 0.000
 0.001

 0.000
 0.001

 0.000
 0.001

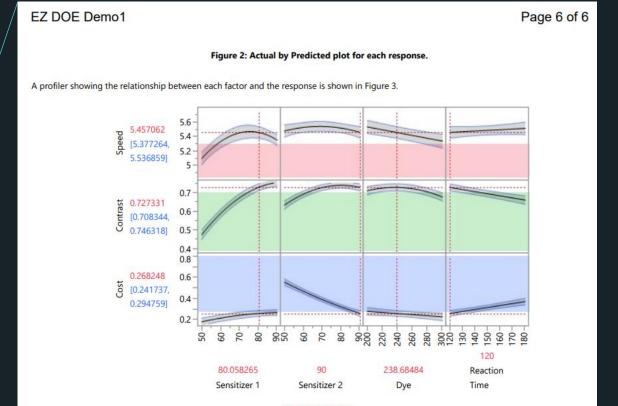
 0.000
 0.001

 0.000
 0.001

 0.000
 0.001

 0.000
 0.001

 0.000
 0.002


 0.000
 0.000

 0.000
 0.000

 0.000
 0.000

 0.000
 0.0000

 0.000
 0.0000

EZ DOE Demo1

Onlyn and Routjuik Page

 Anima
 Fach
 Damps
 Texms

 Sector
 Contract
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Sector
 Se

 Sector
 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector
 Sector
 Sector

 Sector
 Sector

 Pagement/set
 Different
 <thDifferent</th>
 <thDifferent</th>
 <

 Number of particular set of particular set

Market and a second sec

Figure 1. Budgetland Ratified Pict and Root Rear Spore line: for each response.

PLANES IN COLORIN RANDON Section 1 Section 1 Sec. Sec.

Sport I. Pullie Pet

Anne Maan Opposite Street Constants

Red Theo Base for Start Theo Base for Start Theo

 Description
 Database
 Description
 Database
 Description

 Term
 Memory etc.
 Database
 Longent etc.
 Longent etc.

 Term
 Memory etc.
 Database
 Longent etc.
 Longent etc.

 Memory etc.
 Database
 Longent etc.
 Longent etc.
 Longent etc.
 Longent etc.

 Memory etc.
 Database
 Database
 Database
 Longent etc.
 Longent etc.
 Longent etc.

 Machine Heat
 Database
 Database
 Database
 Longent etc.
 Longent etc.
 Longent etc.

 Machine Heat
 Database
 Database
 Longent etc.
 Longent etc.
 Longent etc.
 Longent etc.

 Machine Heat
 Database
 Database
 Longent etc.
 Longent etc.

Design and Analysis Report

Tables 1a and 1b summarize the factors and responses studied.

Factor info

Respo

Factors	Role	Changes	Values		
Sensitizer 1	Continuous	Easy to change	50,	90	
Sensitizer 2	Continuous	Easy to change	50,	90	
Dye	Continuous	Easy to change	200,	300	
Reaction Time	Continuous	Easy to change	120,	180	

Table 1a: Factors

					Detection
nse	Response(s)	Goal	Limits	Importance	Limits
HSC .	Speed	Maximize	5.3 ≤ Speed	NA	NA
info	Contrast	Maximize	$0.7 \leq Contrast$	NA	NA
info	Cost	Minimize	Cost ≤ 0.28	NA	NA

Table 1b: Responses

The initial model used in designing the experiment included the following model terms:

Sensitizer 1, Sensitizer 2, Dye, Reaction Time, Sensitizer 1*Sensitizer 1, Sensitizer 1*Sensitizer 2, Sensitizer 2*Sensitizer 2, Sensitizer 1*Dye, Sensitizer 2*Dye, Dye*Dye, Sensitizer 1*Reaction Time, Sensitizer 2*Reaction Time, Dye*Reaction Time, Reaction Time*Reaction Time

The experimental results are presented in Table 2.

Initial

model

	Speed	Contrast	Cost	Sensitizer 1	Sensitizer 2	Dye	Reaction Time
	5.15713	0.60593	0.63069	90	50	250	120
	5.48609	0.66502	0.28351	70	90	250	150
Design w/	5.1418	0.55475	0.21768	50	50	250	180
	5.35109	0.62474	0.43136	90	70	300	150
rochonco	5.32482	0.61388	0.35897	70	70	300	150
response	5.26233	0.4977	0.28658	50	50	300	120
	5.48096	0.57987	0.48687	70	50	250	150
values &	5.32276	0.55825	0.19443	50	70	250	150
	5.62716	0.65885	0.37984	70	70	200	150
factor	5.24128	0.65595	0.53621	90	70	239.5	150
Ideloi	5.4453	0.64582	0.40168	90	90	250	180
	4.97074	0.42973	0.76926	90	50	200	180
settings	4.90489	0.40726	0.68841	90	50	300	180
0000000	5.56164	0.69304	0.34158	70	70	250	120
	5.48392	0.66032	0.36881	70	70	250	180
	5.22102	0.70109	0.22896	90	90	300	120
	5.72394	0.57081	0.20437	50	50	200	120
	5.48135	0.73496	0.30199	90	90	200	120
	4.87735	0.44996	0.22075	50	90	300	180
	5.32221	0.49857	0.21115	50	90	200	180
	5.08427	0.47809	0.1952	50	90	250	120

EZ DOE Demo1

Final parameter estimates for the remaining terms after model selection are presented in Table 3.

Response Speed								
Term	Estimate	Lower 95%	Upper 95%					
Intercept	5.51806	5.45723	5.57889					
Dye(200,300)	-0.1411	-0.1828	-0.0995					
Reaction Time(120,180)	-0.0547	-0.0932	-0.0162					
Sensitizer 1*Sensitizer 1	-0.2239	-0.2983	-0.1495					
Sensitizer 1*Sensitizer 2	0.14504	0.10345	0.18663					
Sensitizer 2*Sensitizer 2	-0.0719	-0.1435	-0.0003					
Sensitizer 1*Dye	0.08798	0.04184	0.13412					
Sensitizer 2*Reaction Time	0.08201	0.04245	0.12158					

RSquare 0.9506 Root Mean Square Error 0.0634

Final model parameter estimates

Response Contrast									
Term	Estimate	Lower 95%	Upper 95%						
Intercept	0.671	0.65776	0.68425						
Sensitizer 1(50,90)	0.04489	0.03712	0.05265						
Sensitizer 2(50,90)	0.02807	0.0201	0.03604						
Dye(200,300)	-0.0213	-0.0299	-0.0126						
Reaction Time(120,180)	-0.0282	-0.0361	-0.0202						
Sensitizer 1*Sensitizer 1	-0.0568	-0.0725	-0.041						
Sensitizer 1*Sensitizer 2	0.06024	0.05164	0.06885						
Sensitizer 2*Sensitizer 2	-0.0456	-0.0605	-0.0306						
Sensitizer 1*Dye	0.00946	-0.0001	0.01904						
Dye*Dye	-0.032	-0.0449	-0.019						
Sensitizer 1*Reaction Time	-0.0336	-0.0422	-0.025						
Sensitizer 2*Reaction Time	0.01187	0.00329	0.02046						

RSquare 0.9921 Root Mean Square Error 0.0125

Response Cost								
Term	Estimate	Lower 95%	Upper 95%					
Intercept	0.36448	0.34659	0.38237					
Sensitizer 1(50,90)	0.14615	0.13513	0.15717					
Sensitizer 2(50,90)	-0.0944	-0.1057	-0.0831					
Dye(200,300)	-0.0108	-0.023	0.0015					
Reaction Time(120,180)	0.02608	0.01476	0.03739					
Sensitizer 1*Sensitizer 1	-0.017	-0.039	0.00489					
Sensitizer 1*Sensitizer 2	-0.0808	-0.093	-0.0686					
Sensitizer 2*Sensitizer 2	0.01634	-0.0048	0.0375					
Sensitizer 1*Dye	-0.0338	-0.0474	-0.0202					
Sensitizer 2*Dye	-0.0081	-0.0223	0.00614					
Sensitizer 1*Reaction Time	0.02972	0.0175	0.04194					
Sensitizer 2*Reaction Time	0.01153	-0.0007	0.02372					
Dye*Reaction Time	-0.0101	-0.0243	0.00418					

RSquare 0.9958 Root Mean Square Error 0.0175

LC. All r

Table 3: Parameter Estimates

The following terms were excluded from the final model:

Excluded terms

 No.1011
 State
 Game
 Game

Term TermSpit Servicipar 1,50,000 Servicipar 2,50,000 Servicipar 2,50,000 Servicipar 2,50,000 Servicipar 2,50,000 Servicipar 2,70,00 Servi

Farm Internation International (2014) International (2014) Type(2012.000)

 Faquence local
 Server 5
 Server 5

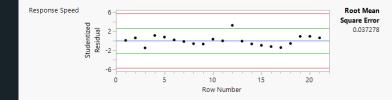
 Faquest lefter
 Litizat

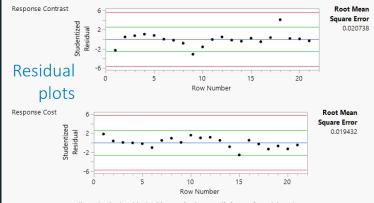
 Britistis (Josef XV), Higger IM, Britter JV, Higger IM, Britistis (Josef XV), Higger IM, Britistis

Response (part Infinite Lance With Upper Hith United Data (Constraints)

> 1001 0000 0000 00000 00107 0000

in in in in the tarber


Anne Mann Opporte Deser


Real Dise

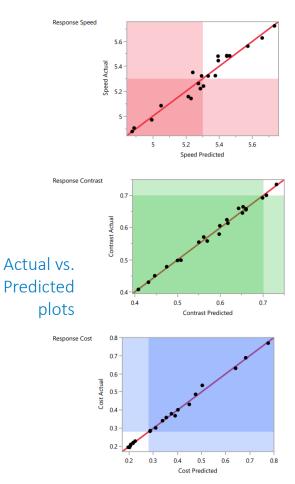
Fact Name

Response Speed: Sensitizer 1*Reaction Time, Dye*Reaction Time, Reaction Time*Reaction Time; Response Contrast: Sensitizer 1*Dye, Sensitizer 2*Dye, Dye*Reaction Time, Reaction Time*Reaction Time; Response Cost: Sensitizer 2*Dye, Dye*Dye, Dye*Reaction Time;

The residual plot from the final model, along with an estimate of residual standard error, is shown in Figure 1.

Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual limits in green.

Figure 1: Studentized Residual Plot and Root Mean Square Error for each response.


A plot of the actual responses against the predicted responses for the final model is shown in Figure

EZ DOE Demo1

Page 5 of 6

Figure 1: Studentized Residual Plot and Root Mean Square Error for each response.

A plot of the actual responses against the predicted responses for the final model is shown in Figure 2.

Use Easy DOE

3-response, 4-factor, trade-space analysis and optimization example

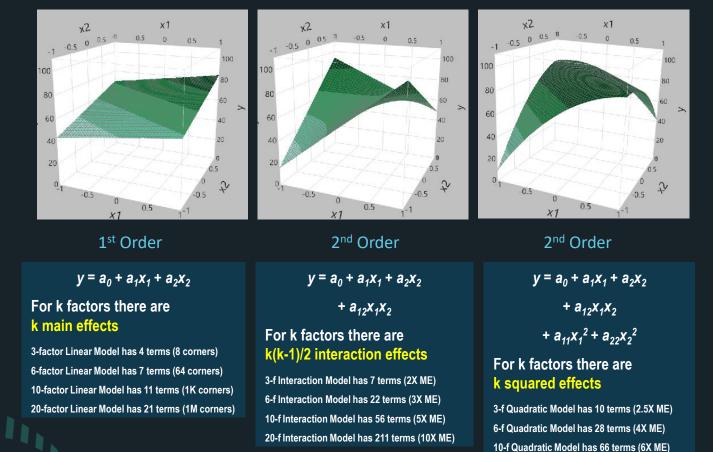
		Response Table				
Add Response Number of Resp	oonses 1	F	Remove Selected			
Response Name	Goal	Lower Limit	Upper Limit	Importance		
Speed	Maximize	5.3		1		
Contrast	Maximize	0.7		1		
Cost	Minimize		0.28	1		
•		Factor Table				
Add Factor Number of Factors	1	Remov	e Selected			
Name	Role	Changes	Values			
Sensitizer 1	Continuous	Easy	50		90	
Sensitizer 2	Continuous	Easy	50		90	
⊿ Dye	Continuous	Easy	200		300	
Reaction Time	Continuous	Easy	120		180	

All Main Effects, Two-Factor Interactions, and Quadratics (Response Surface Design)
 Show Hint

21

Easy DOE Demo

- ✓ Start with the end...presenting DOE results *interactively* to decision makers
- ✓ Recreate the "Why DOE?" example using Easy DOE platform
- Introduce the 6-step DOE Process implemented in the Easy DOE interface
- Review factor types supported and model choices
- Again, use Guided Easy DOE process for slightly more complex 3-response,
 4-factor, trade-space/optimization example using new .jmpdoe file.
 - 1. Define
 - 2. Specify
 - 3. Design
 - 4. Data Entry
 - 5. Analyze
 - 6. Predict
 - Report



6-Step	Describe	Sp	ecify	Design	ollect	Fit	Predict
DOE Process	Identify goal, responses, and factors. Ranges & specs require SME*	Identify effe for an assur model. Propose 1 ^s 2 nd order	ned design a evaluate ^t or suitabili	and design settin e it for Measure res	ngs. model tha ponse fits experi	at best optimi imental setting predic	te model to ze factor gs or to t process mance.
—							
Two Modes	Guide	ed Mode	O Flexi	ble Mode			
	Define	Model	Design	Data Entry	Analyze	Predict	Report
Same 6 Steps plus a <i>Report</i>	▷ Resp ▷ Facto	onses					

*Subject Matter Expert

Quadratic model is not much bigger than *Interaction* model. If you have continuous factors, choose full 2nd order, *Quadratic*

If no squared terms, then optimum can ONLY be a corner by Statistical Discovery LLC. All rights reserved.

20-f Quadratic Model has 231 terms (11X ME)

THE R. LEWIS Factors Choices Role The factor can take any numeric value between a low and high level. (Continuous) 0 Metric Hex Bolt Diameters and Thread Pitche Show Hint takes numeric values set by user-defined levels. (Discrete Numeric) 0 How many levels do you have? 2 Show Hint ь. takes values from a set of categories, groups, or kinds. (Categorical) How many levels do you have? 2 NCHOR Show Hint

Fasteners, Inc.

CHAMPIØ N

Continuous Factors are infinitesimally adjustable over a range. One can finely turn a control knob to adjust the setting.

Examples (Clockwise) are *Time, Temperature, Speed, RPM*, and *Pressure*

L3

L1

L3

Categorical Factor: *Grade of Stainless Steel* Order potentially matters Ordinal Ranking makes sense

L1 304 Stainless Steel Pros and Cons

The main benefit is that 304 stainless steel is usually considered to be one of the strongest of the mild steels available on the market. It boasts a respectable level of resistance to corrosion and is much easier to mold than its 316 stainless steel alternative. However, like 18-8 grade stainless steel it is vulnerable to corrosion when exposed to salt water.

L2 18-8 Stainless Steel Pros and Cons

As already mentioned, 18-8 grade stainless steel is celebrated for its superior corrosion resistance. However, it is known to show signs of corrosion when exposed to chlorides, such as salt. Therefore, it is not the ideal stainless steel to use for marine applications. On the upside, 18-8 grade stainless steel properties include the fact that it can be bent and molded without it having an effect on its overall strength and durability. This type of stainless steel is also not only extremely budget-friendly, but it also requires little to no maintenance. 18-8 stainless steel yield strength is also impressive.

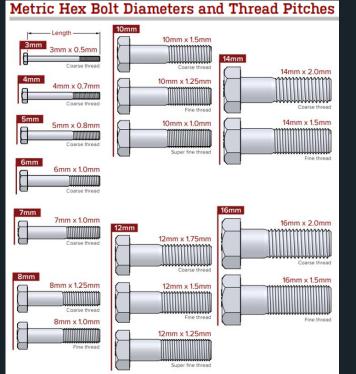
L3 316 Stainless Steel Pros and Cons

316 stainless steel boasts a higher strength and durability than 304 stainless steel. It also has a higher level of corrosion resistance, including when exposed to salt water. It performs well against pitting and is also resistant to caustic chemicals. As mentioned above, however, 316 stainless steel is less malleable than 304 stainless steel. It is also

substantially more expensive

L2

L1


L1

L2

L3

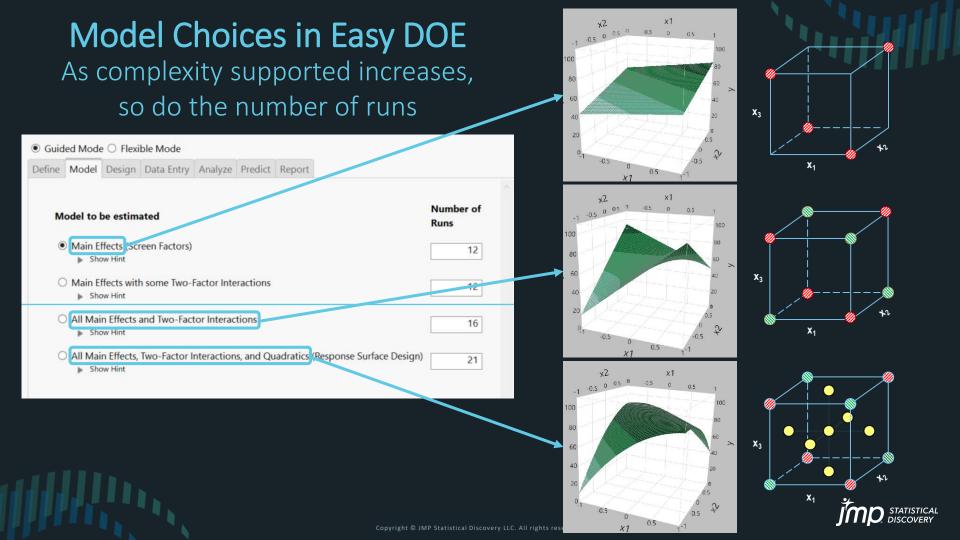
Discrete Numeric Factor: Diameter Order does matter. Interpolation makes sense.

Designs like a categorical factor, but models as continuous

Bolt diameters are only available in whole millimeters between 3 & 16, with no option for 9, 11, 13, & 15 mm.

For range of 7 to 10, mid point is 8.5. Only "mid" level is 8 mm which is unevenly spaced between ends.

For range of 10 to 16, mid point is 13. Only "mid" levels are evenly spaced, 12 & 14 mm.



Model Choices in Easy DOE

As complexity supported increases, so do the number of runs

● Guided Mode ○ Flexible Mode		<u>SCREENING</u>
Define Model Design Data Entry Analyze Predict Report		Less complex (fewer runs)
Model to be estimated	Number of Runs	More robust (usually ≈1.5X runs)
 Main Effects (Screen Factors) Show Hint Main Effects with some Two-Factor Interactions Show Hint 	12	 When conditions are appropriate – designs for this choice include mid- levels for continuous factors
 All Main Effects and Two-Factor Interactions Show Hint 	16	PREDICTION
 All Main Effects, Two-Factor Interactions, and Quadratics (Response Surface Design) Show Hint 	21	Less complex (fewer runs)
		More robust (1.3X or fewer runs)
		 Design will have mid-levels for

Model Choices in Easy DOE

Number of runs for increasing numbers of continuous factors

	Number of corners in design space						
16	64	256	1024	4096	•••	1M+	
4f	6f	8f	10f	12f		20f	
Number of Runs	Number of Runs	Number of Runs	Number of Runs	Number of Runs		Number of Runs	
12	12	16	16	20		28	
12	17	21	25	29	•••	45	
16	28	44	60	84		216	
21	34	51	72	97		237	
	4f Jumber of Juns 12 12 12	4f6fNumber of tunsNumber of Runs121212171628	4f6f8fNumber of tunsNumber of RunsNumber of Runs121216121721162844	4f6f8f10fNumber of RunsNumber of RunsNumber of RunsNumber of Runs121216161217212516284460	4f6f8f10f12fNumber of RunsNumber of RunsNumber of RunsNumber of RunsNumber of Runs121216162012172125291628446084	4f 6f 8f 10f 12f Number of uns Number of Runs Image: Numer of Runs <td< th=""></td<>	

NOTE: Number of factors need not be even

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Use Easy DOE Second Time with a few Changes 3-response, 4-factor, trade-space analysis and optimization example

					Respo	onse Table
Add Response Number	nses 1	Remove Selected				
Response Name	0	Goal	Lower Limit	Upper L	imit	Importance
MoP 1	1	Maximize	3700			1
MoP 2	n n	Match Target	700	900		1
MoP 3	Ī	Minimize		0.28		1
			Factor Table			
Add Factor Number of Factor	s 1	Remov	ve Selected			
Name	Role	Changes	Values			
Load	Continuous	Easy	200		800	
Temperature	Continuous	Easy	-40		150	
Bolt Diameter	Discrete Nu	meric Easy	7	8		10
✓ Grade of Stainless Steel	Categorical	Easy	18-8	304		316

Ill Main Effects, Two-Factor Interactions, and Quadratics (Response Surface Design)

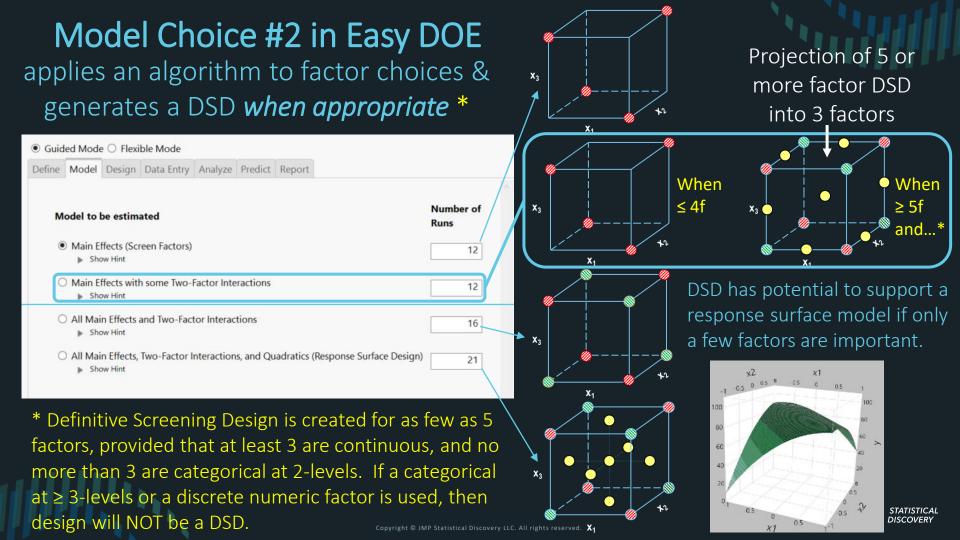
24

Show Hint

MoP = Measure of Performance

Key Features of Easy DOE

JMP 17 makes it easier for everyone to experiment


- End-to-end coverage of every step of experimentation.
- Streamlined experience through tailored elements in a new user interface.
- Guided mode for novice experimenters (default) and Flexible mode for more demanding situations.
- Comprehensive summary report is automatically written based on the current state of the experiment.
- Save your work at any time and return to the same point.
- Easily share experiments with others.

Developer Tutorial: Easy DOE – Expertly Guiding Users Through Designing an Experiment

Backup Slide

