Generalized Linear Mixed Models Elizabeth A. Claassen, PhD Senior Research Statistician Developer

Generalized Linear Mixed Models Modeling non-Normal data with random effects

- Mixed Modeling has been the standard for analyzing data with more than one source of random variation (blocking, split-plots, etc.).
- The Linear Mixed Model (LMM) assumes the response is continuous with no bounds.
- What if your response is a discrete count? Or a binary response? Or a proportion in terms of y/n?

• Enter the Generalized Linear Mixed Model (GLMM)

Generalized Linear Model (GLM)

- Examples of GLMs
 - Logistic regression
 - Poisson regression
 - Normal regression
 - Analysis of variance models

GLMM – Defining Elements

- Distribution - exponential family • Linear Predictor • Link $\mathbf{y} \mid \mathbf{b} \sim f(\mathbf{\mu}, \Sigma)$ $\mathbf{\eta} = \mathbf{X}\mathbf{\beta} + \mathbf{Z}\mathbf{b}$ $\mathbf{b} \sim N(\mathbf{0}, \mathbf{G})$ $\mathbf{\eta} = g(\mathbf{\mu})$
- Linear predictor is the mixed model; the distribution and link function allow for non-Gaussian data

Motivating Example

- Paired Comparison Experiment:
 - a.k.a. Randomized Complete Block Design
 - 8 Pairs / Blocks / Clinics
 - 2 Treatments "Treatment 0" "Treatment 1"

e.g. "control" & "test"

- Response: count

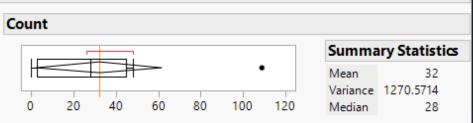
e.g. "**obs**" = **0, 1, 2, ...;** number of patients / claims / defects

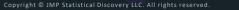
Example: The Data

Clinic	Treatment_0	Treatment_1
1	1	36
2	5	109
3	21	30 48
4	7	48
5	2	0
6	6	2
7	0	5
8	19	26

Distributions Treatment=0 Count Summary Statistics Mean 7.625 Variance 64.553571 Median 5.5

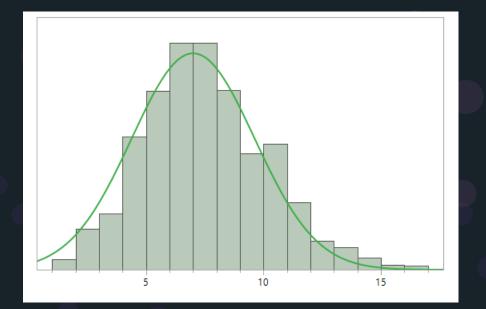
Distributions Treatment=1





What Distribution?

Poisson λ =7



Count ~ Normal, ANOVA with count is okay, right?

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Two Things a Model Must Do

 Plausibly describe the process that gives rise to the observed data

- how explanatory variables affect response
- probability distributions involved
- Allow / <u>facilitate</u> addressing the objective that motivated collecting the data
 - test a hypothesis
 - make a decision
 - estimate a parameter

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Linear Model for RCBD Count Data

- ANOVA linear model for RCBD
- Model: count = intercept + treatment + block + residual
 - $count_{ij} = \mu + \tau_i + b_j + e_{ij}$
- Implement in JMP with Standard Least Squares or JMP Pro with Mixed Model

ANOVA – selected results

Response Count

Fixed Effect Tests

Source	Nparm	DF	DFDen	F Ratio	Prob > F
Treatment	1	1	7	3.6387	0.0981

Multiple Comparisons for Treatment

Least Squares Means Estimates

Treatment	Estimate	Std Error	DF	Lower 95%	Upper 95%
0	7.625000	9.1348406	13.993	-11.96814	27.218143
1	32.000000	9.1348406	13.993	12.40686	51.593143

Problems with $y=X\beta+Zb+e$

- Assumes $X\beta$ estimates $E(y) \propto \lambda$
- $\hat{\lambda}$ must be > 0
- No guarantee $0 < \mathbf{X}\hat{\boldsymbol{\beta}}$
 - e.g. regression provides easy examples
- Logical issues
 - Poisson assumptions aren't the same as LMM

 $E(y|b) = \lambda \qquad E(y|b) = X\beta$ \neq $Var(y|b) = \lambda \qquad Var(y|b) = \sigma^{2}$

- "Residual" has no meaning
- We need a better approach

Blocked Design: A Closer Look

"Experiment" (Study) Design					
Block	Unit				
Block 1					
Block 2					
Block 3					
Block 4					
Block 5					
Block 6					
Block 7					
Block 8					

Treatment Design					
0		1			
•					

Full Design					
Block	Unit				
Block 1	0	1			
Block 2	1	0			
Block 3	0	1			
Block 4	0	1			
Block 5	1	0			
Block 6	1	0			
Block 7	1	0			
Block 8	0	1			

Repurposed ANOVA Table

Experim	Experiment		ent	Combined	
Source	d.f.	Source	d.f.	Source	d.f.
block	7			block	7
		trt	1	trt	1
unit(block)	8*(2-1) =8	"parallels"	14	unit(block) trt a.k.a. "residual" a.k.a "blk x trt"	8-1=7
Total	15	Total	15	Total	15

Repurposed ANOVA & Sensible Model sensible model > one-to-one ANOVA effect – model parameter match

combined		model			
Source	d.f.	LMM	naive GLM(M)	Poisson GLM(M) w/unit	Negative Binomial GLMM
block	7	b _j	b _j	b _j	b _j
treatment	1	τ	τ _i	τ	τ
unit(block) trt block x trt "residual"	7	e _{ij} or σ²	here's the problem → overdispersion likely	bt _{ij}	ф
total	15				

Overdispersion: model fails to adequately account for variation in the data Consequence: confidence intervals too narrow; inflated type I error rate

Copyright © JMP Statistical Discovery LLC. All rights reserved.

GLMM – Defining Elements

- Distribution - exponential family • Linear Predictor • Link $\mathbf{y} \mid \mathbf{b} \sim f(\mathbf{\mu}, \Sigma)$ $\mathbf{\eta} = \mathbf{X}\mathbf{\beta} + \mathbf{Z}\mathbf{b}$ $\mathbf{b} \sim N(\mathbf{0}, \mathbf{G})$ $\mathbf{\eta} = g(\mathbf{\mu})$
- Linear predictor is the mixed model; the distribution and link function allow for non-Gaussian data

Repurposed ANOVA→ appropriate GLMM

combined				
Source	e d.f.			
bloc	k 7			
treatmen	t 1			
unit(block) tr block x tr "residual	t			
tota	l 15			

 $\Rightarrow b_{j} \text{ i.i.d. } N\left(0,\sigma_{B}^{2}\right); bt_{ij} \text{ i.i.d. } N\left(0,\sigma_{BT}^{2}\right)$ Linear predictor: $\eta + \tau_{i} + b_{j} + (bt)_{ij}$ Link: $\eta_{ij} = \log(\lambda_{ij})$ $y_{ij} \mid b_{j}, bt_{ij} \sim \text{ ind Poisson}(\lambda_{ij})$ $\hat{\lambda}_{i} = \exp(\hat{\eta} + \hat{\tau}_{i})$

JMP Demo

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Example 1

- SAS for Mixed Models (2018), Example 11.5; from Beitler & Landis (Biometrics, 1985)
- Multi-location clinical trial
- 8 clinics, two treatments: "CNTL" and "DRUG"
- n_{ij} patients assigned to treatment *i* at clinic *j*
- Response variable y_{ij} is number of patients with a favorable outcome
- Objective: does "DRUG" increase probability of favorable outcome & if so, how much?

Repurposed ANOVA Table					
SOURCE	DF	MODEL EFFECT			
clinic	7	$c_j \sim N(0, \sigma_c^2)$			
treatment	1	$ au_i$			
group(clinic) trt a.k.a. clinic × trt	7	$ct_{ij} \sim N(0, \sigma_{ct}^2)$			
TOTAL	15				

Resulting GLMM

- distribution of observations: $y_{ij}|c_j, ct_{ij} \sim Binomial(n_{ij}, p_{ij})$
- logit link function: $\eta_{ij} = log\left(\frac{p_{ij}}{1-p_{ij}}\right)$
- linear predictor: $\eta_{ij} = \eta + \tau_i + c_j + ct_{ij}$

Example 2

- SAS for Mixed Models (2018), Example 12.3
- Multi-source, random coefficient regression
- 8 lots
- Amounts $X_1 = 0, X_2 = 2, X_3 = 4, \dots X_6 = 10$ of finishing treatment applied to samples from each lot
- Response variable y_{ij} is number of aberrant micro-sites on finished product for amount i, lot j discrete count
- Objectives:
 - $\circ\,$ estimate effect of increasing amount of finishing treatment on aberrant micro-site count
 - o estimate above via linear regression
 - \circ determine amount of finishing treatment required to assure expected aberrant micro-site count \leq 10

Example 2, continued

Repurposed ANOVA Sources of Variation & Resulting Model Effects

Study (Experiment) Design	Treatment Design	Combined	Linear Regression Model Effect
Lot		Lot	$B_{0j} + b_{1j} X_{1j} = \beta_0 + b_{0j} + b_{1j} X_{1j}$
	Amount	Amount	$\beta_1 X_j$
Sample (Lot)		sample(lot) amount	$s_{ij} \sim N(0, \sigma_s^2)$

Terminology & Assumed Distributions

- b_{0j} called random intercept together
 - pt together account for <u>LOT</u>
- *b*_{1j} called random slope
- random intercept & slope potentially correlated
- $\begin{bmatrix} b_{oj} \\ b_{1j} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{bmatrix}\right)$
- often assume $\sigma_{01} = 0$
- e.g. with only 8 lots, may not have enough replication to estimate σ_{01}

Resulting GLMM

- distribution of observations: $y_{ij}|b_{0j}, b_{1j}, s_{ij} \sim Poisson(\lambda_{ij})$
- log link function: $\eta_{ij} = log(\lambda_{ij})$
- linear predictor: $\eta_{ij} = \beta_0 + b_{0j} + (\beta_1 + b_{1j})X_i + s_{ij}$

Further Resources

SAS for Mixed Models: Introduction and Basic Applications (2018), Stroup, Milliken, Claassen and Wolfinger

Generalized Linear Mixed Models: Modern Concepts, Methods and Applications (2012), Stroup

Statistically Speaking Webinar: *The "What, Why, and How" of Generalized Linear Mixed Models,* Stroup and Claassen

