# SEM JMP Pro 17.0 Supplementary Material 

JMP SEM Online Help:
https://www.jmp.com/support/help/en/17.0/\#page/imp/structural-equationmodels.shtml\#

## OVERVIEW

- Model Specification
- Model Comparison Table
- Model summary results
- Nested model comparisons
- Results



## MODEL COMPARISON: <br> Summary Results

## Model Comparison results:

-Summary results for all models are stored in this table making it easy to compare all of your models

## Default models:

-By default SEM runs 2 models upon launch. (This can be toggled on/off)
-Unrestricted model: Fits all means, variances, and covariances of the specified model variables. This model has 0 degrees of freedom (DF)
-Independence model: Fits only the means and variances of the specified model variables.

```
\(\triangle\) Model Comparison
```


## 2 Log Likelihood (-

 2LL):-The log-likelihood of the fitted model multiplied by -2 . -This value can be used to compare nested models and is used to derive some model fit indices.

## Number of

 Parameters: -\# of estimated parameters for the model.-More parameters represent more complex models. -Degrees of freedom (DF) will be less, as estimated parameters increases.

## BIC:

-The Bayesian
information criterion. -Smaller numbers indicate a better model fit relative to other models.

## CFI:

-Bentler's
Comparative Fit
Index.
-Between 0 and 1.
-Values > 0.90 represent good model fit

## RMSEA:

-Root Mean Square Error of
Approximation -Between 0 and 1. -Values less than 0.10 represent good model fit

都 They account for model-data fit but also penalize for model complexity.
-Fit indices used in conjunction with knowledge of a domain help users to find models that represent data well and reflect real world relationships among variables.

## MODEL COMPARISON: Nested Model Comparison

## Nested model

## comparison:

-To run, select 2 rows (or more) and select
"Compare Selected Models"
-Only appropriate for nested model comparisons -Model B (simpler model)
is nested within Model A (more complex model) here

## What is a nested model?

-A model is nested if the simpler model (the model with the smaller number of estimated parameters) can be obtained from the more complex model (the model with the larger number of estimated parameters) by fixing one or more parameters
-The simpler model must be a direct subset of the more complex model

-In this example, the chisquare difference test is statistically significant (prob>ChiSq = .0019, which is less than < .05)
-We would conclude the more complex model (Model A) fits statistically better relative to the simpler model (Model B).
-We would also want to consider whether this difference is practically important and evaluate other aspects of our model (such as local fit)

Copyright © JMP Statistical Discovery LLC. All rights reserved.

## MODEL RESULTS

## Red triangles menus:

-Contain extra options and tables relevant to where they are.

## SEM Results Tables:

 -SEM contains many type of results for evaluating the model.-By default only the summary of fit and parameter estimates are turned on. -Click the "red triangle" to obtain additional results.

## Recall Model:

-Use the "Recall in Model Specification" option to bring your model back to the top window if you want to modify it and run a new model.

4 - Structural Equation Models

## Results:

-Results are displayed in tables throughout the report
-All results can be exported as a data table by "right clicking" on the table

## Path diagram lock:

-If you want to freeze your diagram in place so that JMP does not auto-redraw the diagram. Press the lock button here.




## Path diagram customization:

-The path diagram is fully customizable in the results, "right click" on the diagram to access the customize options
-Use "undo" or "control-z" to revert any chānge ${ }^{\text {® }}$

## Path diagram model results:

-Estimates appear here on the path diagram
-Under "right click" you can
choose which estimates to display

## Path diagram visualization:

 $-\mathbf{R}^{\mathbf{2}}$ is visualized through the shade of the variables. The greater the shade the more variance that is explained for that variable by the model.-Dashed lines represent paths that not statistically significant -The thickness of the lines represents the magnitude of the standardized estimates


