Optimizing Processes Using Designed Experiments

Tom Donnelly, PhD, CAP Principal Systems Engineer Defense & Aerospace Team JMP Statistical Discovery LLC

Desk 919-531-1380 Mobile 302-489-9291 <u>www.jmp.com/fedgov</u> tom.donnelly@jmp.com

Agenda 30-MINUTE PRESENTATION & 15-MINUTE Q & A

- Multiple Response Optimization *Trade-Space Analysis – Why we do Design of Experiments (DOE)*
- Six step framework for creating a successful DOE & important questions to consider
- Real-World Experimental Issues Custom DOE is all about

Making Designs Fit the Problem – NOT Making Problems Fit the Designs!

- Two Example Designs 1st Quick (slide), 2nd Detailed (run JMP)
 - 1. Four continuous factors, three responses, and 2nd order RSM model
 - 2. Continuous, discrete numeric, categorical, and hard-to-change factors, plus added constraints, and 2nd order RSM model

DOE BOOKS

WWW.JMP.COM/BOOKS

Optimal Design of Experiments: A Case Study Approach

by Peter Goos and Bradley Jones 2011 (John Wiley Sons Inc.)

> Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP

by Heath Rushing, James Wisnowski, and Andrew Karl 2013 (SAS Institute)

> Design and Analysis of Experiments, 8th Edition by Douglas C. Montgomery 2012 (Wiley)

Strategies for Formulations Development: A Step-by-Step Guide Using JMP by Ronald Snee and Roger Hoerl

by Ronald Snee and Roger Hoer 2016 (SAS Institute)

Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition

by George E. P. Box, J. Stuart Hunter, and William G. Hunter 2005 (Wiley)

> Design of Experiments: A Modern Approach by Bradley Jones and Douglas C. Montgomery 2019 (SAS Institute)

 Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition

by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook 2016 (Wiley)

Why use DOE?

QUICKER ANSWERS, LOWER COSTS, SOLVE BIGGER PROBLEMS

- More rapidly answer "what if?" questions
- Identify important factors when faced with many
- Do sensitivity and trade-space analysis
- Optimize across multiple responses
- By running efficient subsets of all possible combinations, one can – for the same resources and constraints – solve bigger problems
- By running sequences of designs one can be as *cost effective as possible* and *run no more trials than needed* to get a useful answer

Agent Fate 10,000+, USAF Sim Study 648

TRADE-OFF AND OPTIMIZATION (1-MIN RECORDING)

Scan QR code for HTML, phone-sized, interactive version on JMP Public

STATISTICAL DISCOVERY

Multiple Response Optimization – Best Trade-Off of Three Target Values

Top Crust

Target Value 5.5 ± 0.5

Bottom Crust Target Value 5.5 ± 0.5

Overlay of Contour Plots Acceptable Region is White

JMP Statistical Discovery LLC.

Multiple Response Optimization – Best Trade-Off of Three Target Values

6-Step DOE Process

Describe	Specify	Desig	n Collect	Fit	Predict
Identify goal, responses, and factors. Ranges require SME!	Identify effects for an assumed model. Propose 1 st or 2 nd order?	Generate a design and evaluate it for suitability.	Run trials using design settings. Measure response for each run.	Determine a model that best fits experimental data.	Use the model to optimize factor settings or to predict process performance.
Describe 1.What is the goal of the experimental 2.How do you measure success? 3.What response variables do you mea 4.If more than one response needs 1	tion? asure? to be characterized for your process, w	hat are the relative levels of	Specify 1.Are you looking to identify importa 2.Are you looking to build a predictiv NOTE: These two questions	int main effects from a large set (e.g., 6+ re model with which to characterize and determine if the proposed model will be	-) of factors? optimize a process? e 1 st order or 2 nd order.

Design

1.What is your budget?

2.What is your deadline?

imp.com

3. Does every trial cost about the same (i.e., take the same amount of time to setup and run)? 4.Does getting setup to run the first trial cost substantially more than running the next few? Whenever initial setup is large, consider adding extra trials (replicates or especially checkpoints) while they are cheap to run. 5.Do any combinations of variable settings cause problems (e.g., unsafe, too costly, breaks the equipment/process, impossible to achieve)?

6.Will you need to constrain the design space or disallow certain combinations of factor settings? 7. If you run the same process on separate days, do you ever get obviously/surprisingly different results? 8.Do you have past records of replicated trials for each response?

- 1. Are the replicate trial response values close together or spread out over time?
- 2. How big is the variability for each response? That is, what is the standard deviation or rootmean squared error (RMSE) of the response?

9. How tiny of a difference for each response is considered practically important? 10.For each response, do you think you are looking for tiny differences in big variability (hard to do because

lots of replication is needed) or big differences in small variability (easy to do)?

11.What is the desired level of confidence in detecting effects? This is typically 95%, which leads to setting alpha at 0.05 (Type I error)

12.What are acceptable levels of power for the various types of effects (main, interaction, guadratic, categorical levels)? NOTE: This is the desired level of confidence in NOT missing an effect if it is real. It is typically 0.8 for main effects and interactions, and less for guadratic effects (Type II error).

13. How hard is it to come back later to run checkpoint trials? Can you build in checkpoint trials now especially if they are inexpensive to run? If so, where?

- Your guess at where the best performance will occur.
- Your guess at where the poorest performance will occur.
- Your boss' opinion as to where to run the process.
- Add a trial to support the next higher model. 4.
- Some points outside the design region.

14. What trial do you think is most likely to break the design? NOTE: Perhaps run that trial firs

Loads of 4 If more than one Questions importance? 5.What kind of control factors do you have? to Ask

Readable List in Blog

lurking factors being correlated with the blocks. 6. Over what ranges does it make sense to operate the control factors? Too bold may break the process. Too timid may not generate a sufficiently large effect. Don't know? Involve subject matter experts on the process.

an ordinal categorical factor.

1.

Continuous (Quantitative) - varies over a range.

Categorical (Qualitative) – varies as different levels.

proportions are constrained to sum to (typically) 1.00.

7. Are there potentially important factors that can't be controlled? 8.Can any uncontrollable factors be monitored so that the settings can be captured and recorded (e.g., ambient temperature, humidity, operator at time of trial)? These can be treated as covariate factors. 9. Does the process drift over the course of the day or period being measured? 10. How many trials can be run in a day? Will multiple days be required? 11.Do you typically run control samples for this process? 12. Will trials be run in batches or groups? 13.Are there any hard-to-change factors, and if so, which ones? 14. How many devices do you have of each type? 15.Do you have historical data that can be "data mined" for possible factors and to better understand factor ranges?

Discrete Numeric – analyzes like a continuous factor, but only available at discrete levels, like

Blocking factors – groupings of trials such as day or batch that should not have an effect. We

add blocking factors to see if the process shifts between groups as an indicator of unknown or

4. Mixture or formulation factor – behaves like a continuous factor, but all mixture component

16. Are these real experiments or are they computer simulations?

Turn many small decisions into one big process optimization success

17.If simulations, are they deterministic (same answer every time), or stochastic (randomness built in so answer is slightly different each time)?

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Classic Definition PURPOSEFUL CONTROL OF THE INPUTS (FACTORS) IN SUCH A WAY AS TO DEDUCE THEIR RELATIONSHIPS (IF ANY) WITH THE OUTPUT (RESPONSES).

Alternative A DOE IS THE SPECIFIC COLLECTION OF TRIALS Definition of DOE RUN TO SUPPORT A PROPOSED MODEL.

- If proposed model is *simple* just main effects or 1st order terms
 (X₁, X₂, X₃, etc.) the design is called a *screening* DOE
 - Goals include rank factor importance or find a "winner" quickly
 - Used with many (> 6?) factors at start of process characterization
- If the proposed model is *more complex*, the model is 2^{nd} order so that it includes two-way interaction terms (x_1x_2 , x_1x_3 , x_2x_3 , etc.) and in the case of continuous factors, squared terms (x_1^2 , x_2^2 , x_3^2 , etc.), the design is called a *response-surface* DOE
 - Goal is generally to develop a **predictive model** of the process
 - Used with a few (< 6?) factors after a screening DOE

Quadratic model is not much bigger than Interaction model. If you have continuous factors, choose full 2nd order Quadratic

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Real-World Design Issues

Reasons why classical designs likely will not work... Making Designs Fit the Problem – NOT Making Problems Fit the Designs!

- Work with these different kinds of control variables/factors:
- Continuous/quantitative? (Finely adjustable like temperature, speed, force)
- **Categorical/qualitative?** (Comes in types, like material = *rubber*, *polycarbonate*, *steel* with mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials...)
- Mixture/formulation? (Blend different amounts of *ingredients* and the process performance is dependent on the *proportions* more than on the amounts)
- Blocking? (e.g. "lots" of the same raw materials, multiple "same" machines, samples get processed in "groups" – like "eight in a tray," run tests over multiple days – i.e. variables for which there shouldn't be a causal effect
- Work with **combinations of these four kinds** of variables?
- Certain combinations cannot be run? (too costly, unsafe, breaks the process)
- Certain factors are hard-to-change (temperature takes a day to stabilize)
- Would like to add onto existing trials? (really expensive/time consuming to run, or by adding constraints can repair broken design)

Categorical Factors and Responses

Factors

- <u>Agent</u>
 - Agent 1
 - Agent 2
 - Agent 3
- <u>Decontaminant</u>
 - Decon 1
 - Decon 2
 - Decon 3
 - Decon 4

• <u>Material</u>

- Steel
- Aluminum
- Glass
- Polycarbonate
- CARC (Paint)
- Viton
- Kapton
- Silicone

<u>Responses</u>

- Pass/Fail
- Yes/No
- Not Cracked/Cracked
- Safe/Caution/Unsafe
- Not Corroded/ Moderately Corroded/ Severely Corroded

Continuous Factors and Responses

• Factors

- Time
- Temperature
- Amount of Agent/Unit Area
- Wind Speed
- Humidity

<u>Responses</u>

- Evaporation Rate
- Absorption
- Adsorption
- Residual Concentration

Copyright $\ensuremath{\mathbb{C}}$ JMP Statistical Discovery LLC. All rights reserved.

Discrete Numeric Variable

EXAMPLE: NUMBER OF TEETH ON BICYCLE SPROCKETS – INTEGER !!!

	and.								
522						Evenly	Spaced		
5222	\sim 3 3 1		18	Teeth	16	19	22	25	28
55556	222			Delta		3	3	3	3
)	3) <>><			% Change		18.8%	15.8%	13.6%	12.0%
>552									
ンちから	wards.		22			Actual S	Spacing		
				Teeth	16	18	22	24	28
				Delta		2	4	2	4
		JAC		% Change		12.5%	22.2%	9.1%	16.7%
Jakke -						Improved	d Spacing		
				Teeth	16	18	21	24	28
100		The second se		Delta		2	3	3	4
16	24	2	28	% Change		12.5%	16.7%	14.3%	16.7%

Discrete Numeric Variable

Have only four sizes of pizza pan: 9", 12", 14" & 16" in diameter. Sizes are not evenly spaced and missing mid-point of full range, 12.5".

If size treated as <u>continuous</u> factor, 9" to 16" range entered, & model specified as quadratic, then JMP will produce <u>design with mid-points</u> of 12.5".

If size treated as <u>discrete numeric</u> factor, all four sizes entered, & model specified as quadratic, then JMP will produce <u>design with all four levels</u>. There will be more 9s & 16s (extremes), than 12s & 14s (more central).

Designs like a categorical factor Models like a continuous factor

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Mixture Variables simple mixture – making salad dressing

- Relative *proportions* of factors or components is more important than actual quantity
- Three liquid components Oil, Water, and Vinegar
- 8 oz. in Cruet vs. 4 gal. in Jug 5 oz. "O" 320 oz. 5/8 1 oz. "W" 64 oz. 1/8
 - 2 oz. "V" 128 oz. 1/4
- To study these mixture
 components in a DOE use ranges
 that are proportions:

O:	0.500 to 0.750	(½ to ¾)
W:	0.000 to 0.250	(0 to ¼)
V:	0.125 to 0.375	(½ to ¾)

Sum of proportions *constrained* to equal 1.

1 = O + W + V so therefore... W = 1 - (O + V), O = 1 - (V + W), & V = 1 - (O + W)

Copyright $\ensuremath{\mathbb C}$ JMP Statistical Discovery LLC. All rights reserved.

- A design run over 5 days that is sensitive to humidity might SHIFT on Thursday
 - But what if because of the rain the tester from days 1, 2, 3 & 5 didn't make it to work?
 - What if that day the power went out briefly? Or all-hands meeting "paused" the work? Or...?
- The block variable doesn't tell you the cause of the effect just that a shift has been detected among blocks.
- Hoping block variable has no effect. If it does, then how can we reliably predict other blocks? If significant, it probably means we are missing a factor.
- The only way to be sure that no "unknown" factor has crept into the experiment, is to test for it and "blocking" your design is an inexpensive insurance policy to buy.
- Block variable is a categorical factor having only 1-way effects (no interactions)

Number of Unique Trials for 3 Response-Surface Designs and Number of Quadratic Model Terms vs. Number of Continuous Factors

- *— Unique Trials in Central Composite Design
- Output: Out
- Unique Trials in Custom Design with 6 df for Model Error
- Terms in Quadratic Model

36 trial I-optimal response-surface design started as 10-factor DSD and was then augmented with 12 more trials in 6 most important factors

If generally running 3, 4 or 5-factor fractional-factorial designs...

- 1. How many interactions are you not investigating?
- 2. How many more trials needed to fit curvature?
- 3. Consider two stages: Definitive Screening + Augmentation

Power & Fraction of comparison for same sized, 27-trial 4-factor designs: box-behnken, central Design Space Plots composite, I-optimal, and smaller 24-trial & 21-trial I-optimal designs

BB best for Quadratics CC best for Main Effects & Interactions IO-27 strong second for ALL IO-24 nearly as good BB highest Prediction Variance CC lower and flatter than BB IO-27 lowest & flattest Prediction Variance IO-24 nearly as good

https://community.jmp.com/t5/JMP-On-Air/Can-You-Stop-Using-Classic-RSM-Designs-Cold-Turkey-or-Take-Two-I/ta-p/263202

Four Continuous Factor RSM Design

MAKE THE DOE FOR THIS ANALYSIS

Custom DOE Dialog, Design, Distribution of Design Trials, & Projections of Designs Trials in 2-D

 Custom Design 										/0	
Responses										60-	
⊿ Factors											
Add Factor T Remove	Add N Factor	s 1								-	
Nerro		Channel	Mahara							50	
Name	Continuous	Changes	values	00						-	
A Sensitizer 1	Continuous	Easy	50	90							
	Continuous	Easy	200	300	Is 💌						
AReaction Time	Continuous	Easy	120	180	F	Sensitizer 1	Sensitizer 2	Dye	Reaction Time	Speed	Contrast
Covariate/Candid	ate Runs				1	50	50	250	120	5.36	0.616
Define Factor Cons	traints				2	50	50	200	180	5.39	0.537
None					3	90	70	200	120	5 3 1	0.623
O Specify Linear Constr	aints					50	10	200	120	5.40	0.025
O Use Disallowed Com	pinations Filter				4	50	90	200	150	5.13	0.431
O Use Disallowed Com	binations Script				5	70	70	250	180	5.37	0.643
Model					6	50	90	300	120	4.79	0.375
Main Effects Interaction	s 🕶 RSM	Cross	Powers Remove 1	ferm	7	90	90	200	180	5.45	0.626
Name			Estimability		8	90	50	250	150	5.00	0 470
Intercept			Necessary		0	50	50	200	150	5.00	0.470
Sensitizer 1			Necessary		9	50	50	300	150	5.22	0.478
Sensitizer 2			Necessary		10	70	90	200	120	5.41	0.668
Dye			Necessary		11	90	90	250	120	5.33	0.734
Reaction Time			Necessary		12	50	50	250	120	5 2 2	0.574
Sensitizer 1*Sensitizer 1		-	Necessary		12	50	50	250	120	5.52	0.574
Sensitizer 1*Sensitizer 2 Sonsitizer 2*Sonsitizer 2			Necessary		13	70	50	200	150	5.49	0.596
Sensitizer 1*Dve			Necessary		14	50	70	250	180	5.22	0.558
Sensitizer 2*Dye			Necessary		15	70	70	250	150	5 57	0.689
Dye*Dye			Necessary		15	10		200	150	5.00	0.000
Sensitizer 1*Reaction Tir			Necessary		16	90	90	300	150	5.26	0.653
Sensitizer 2*Reaction Tir	ne		Necessary		17	70	70	250	150	5.47	0.688
Dye*Reaction Time Reaction Time*Reaction	Time		Necessary		18	70	70	300	120	5.42	0.657
Alles Temps	nine		Necessary		19	50	70	200	120	5.43	0.518
Allas Terms					20	50	50	200	150	5 15	0.505
Design Generation					20	50	50	500	150	5.15	0.505
Group runs into rand	om <mark>bl</mark> ocks of siz	ze:	2		21	90	70	200	120	5.33	0.661
					22	50	90	300	120	4.97	0.411
Number of Center Points	. 0				23	90	50	300	120	5.09	0.492
Number of Replicate Rur	is: 6				24	90	50	300	180	5.03	0.358
Number of Dunci					25	70	70	250	150	5.59	0.707
Minimum	21				26	70	00	200	190	5.25	0.605
O Default	28				20	70	90	500	180	5.25	0.005
User Specified	27				27	50	90	200	150	5.24	0.476
Make Design						<					

Cost

0.198 0.175

0.447 0.177

0.445

0.231

0.471

0.670

0.283 0.226

0.310

0.257

0.456

0.166

0.390

0.226

0.356 0.337

0.222

0.287 0.457

0.191

0.588 0.733

0.318

0.290

0.177

0.470

Scatterplot Matrix										
t o	90 80-	0	0	•						
Sensi izer 2	70 60-	۲	0	•						
	50-	0	۲	•						
	300-	0	۰	•	•	۰	•			
Dye	280- 260- 240-	0	۰	•	•	۰	•			
	220- 200- 180-	0	۰	•	0	•	•			
-	170		0	•	•	Θ	٠	•	•	٠
eactior Time	170- 160- 150- 140-	0	۰	•	•	0	•	0	•	•
~	130- 120- 110-	0	0	•	•	•	•	•	•	•
	110	50 6	50 70 80 Sensit)	50 (50 70 8 Sensit	0	200	240 2	80
			izer 1			izer 2			Dye	
							im		STATIST DISCOVE	ICAL ERY

Distributions of Responses and Factors

Jmp STATISTICAL DISCOVERY 4 Factors, 3 Types, 1 Hard-to-Change, Plus 2 constraints

Continuous

• Time: 10 20 (easy)

Continuous

• Temp: 350 450 (<u>hard</u>)

Discrete Numeric with 4 levels

Categorical with 3 levels

- **Pizza Size**: 9, 12, 14, & 16 (easy)
- Pizza Type: (easy)
 - Cheese
 - Meats
 - Veggies

Hi + Hi = "Burnt" Lo + Lo = "Not Done"

CREATE DOE FOR A REAL-WORLD PIZZA PROCESS

Time and Temperature Constraints

- Shorter times means more pizzas produced per hour
- Make most of your money in a few hours each evening
- *"No pizza shall take more than 7 minutes!"* Mgmt.

Time and Temperature Constraints Uncoded = Raw Units

Time and Temperature Constraints Uncoded = Raw Units

RECALL EQUATION OF A STRAIGHT LINE? y = mx + b

Slope = m = rise/run = -150/15; m = -10 Intercept = b = y when x = zero; b = 600 Intercept = b = y when x = zero; $b^{\pm} 500^{\text{istical Discovery LLC. All rights reserved.}}$

Time and Temperature Constraints Uncoded = Raw Units

•			Constraint
_	Time	Temp	Location
1	15	450	Upper
2	20	400	Upper
3	15	350	Lower
4	10	400	Lower

HAVE JMP SOLVE y = mx + b

Time and Temperature Constraints Uncoded "Broadened" Design

WHAT IF CONSTRAINTS NARROWED DESIGN REGION TO A THIN DIAGONAL SLICE IN TIME & TEMP? THEY WOULD THEN BE HIGHLY CORRELATED.

y = mx + b Temp = m*Time + b [1]*Temp = [-10]*Time + [625] [10]*Time + [1]*Temp = [625]

[10]*Time + [1]*Temp <= [625]

y = mx + b Temp = m*Time + b [1]*Temp = [-10]*Time + [475] [10]*Time + [1]*Temp = [475]

[10]*Time + [1]*Temp >= [475]

4 Factors, 3 Types, 1 Hard-to-Change, Plus 2 constraints

GO TO JMP AND CREATE DOE FOR THIS REAL-WORLD PIZZA PROCESS

Factors						
Add Factor 🔻 Rei	move Add N	Factors	1			
Name	Role	Change	s Values			
Time	Continuous	Easy	10		20	
Temperature	Continuous	Hard	350		450	
A Pizza Size	Discrete Nu	ım Easy	9	12	14	
✓ Pizza Type	Categorical	Easy	Cheese	Vegg	ies	Mea
Define Factor C	Constraints					
 None Specify Linear Control 	onstraints					
 Use Disallowed Use Disallowed 	Combinations Combinations	Filter Script				
Linear Constraints						
Add						
10 Time +	1 Tem	nperature	≤	625		
10 Time +	1 Tem	nperature	≥ ×	475		
Remove Last Con	straint					
Check Constraints	•					

⊿ Model

Main Effects Interactions 🔻	RSM Cross	Powers -	Remove Term
Name	Estimability		
Intercept	Necessary		~
Time	Necessary		
Temperature	Necessary		
Pizza Size	Necessary		
Pizza Size*Pizza Size	If Possible		
Pizza Size*Pizza Size*Pizza Size	If Possible		
Pizza Type	Necessary		
Time*Time	Necessary		
Time*Temperature	Necessary		
Temperature*Temperature	Necessary		
Time*Pizza Size	Necessary		\sim

			•
Design Genera	ation		
Number of Whole F	lots	6	
Number of Runs:			
O Minimum	17		
 Default 	24		
 User Specified 	24		
Make Design			

🖉 \ 6/2 Cols 💌						
₹ /	Whole Plots	Time	Temperature	Pizza Size	Pizza Type	
	1	20	450	16	Cheese	
	2	÷			Veggie	
	3				Meats	
	5					
24/12	6	10	350	9		
1	1	10	450	14	Veggie	^
2	1	17.5	450	9	Meats	
	1	10	450	9	Cheese	
4	1	17.5	450	16	Cheese	
5	2	15	397.5	14	Cheese	
6	2	10	397.5	16	Cheese	
7	2	10	397.5	9	Veggie	
8	2	15	397.5	12	Meats	
9	3	12	355	16	Veggie	
10	3	20	355	16	Cheese	
11	3	15.2	355	12	Meats	
12	3	20	355	9	Veggie	
13	4	20	400	14	Meats	
14	4	18	400	16	Veggie	
15	4	15	400	12	Cheese	
16	4	10	400	9	Meats	
17	5	15	425	9	Veggie	
18	5	12	425	16	Meats	
19	5	20	425	9	Cheese	
20	5	20	425	12	Veggie	
21	6	12.5	350	16	Meats	
22	6	12.5	350	9	Cheese	
23	6	20	350	9	Meats	
24	6	15.5	350	12	Veggie	~
	<				>	

DISTRIBUTION OF DESIGN TRIALS & PROJECTIONS OF DESIGNS TRIALS IN 2-D & 3-D

Design Balance

Visualize

⊿_6/2 Cols 💌					
₹ /	Whole Plots	Time	Temperature	Pizza Size	Pizza Type
	1	20	450	16	Cheese
	2	in 19			Veggie
	3				Meats
	4				
	5	10	250	0	
24/12	1	10	350	9	Veggie
1	1	17.5	450	14	Veggie
2	1	17.5	450	9	Meats
3	1	10	450	9	Cheese
4	1	17.5	450	16	Cheese
5	2	15	397.5	14	Cheese
6	2	10	397.5	16	Cheese
7	2	10	397.5	9	Veggie
8	2	15	397.5	12	Meats
9	3	12	355	16	Veggie
10	3	20	355	16	Cheese
11	3	15.2	355	12	Meats
12	3	20	355	9	Veggie
13	4	20	400	14	Meats
14	4	18	400	16	Veggie
15	4	15	400	12	Cheese
16	4	10	400	9	Meats
17	5	15	425	9	Veggie
18	5	12	425	16	Meats
19	5	20	425	9	Cheese
_20	5	20	425	12	Veggie
21	6	12.5	350	16	Meats
22	6	12.5	350	9	Cheese
22	6	20	350	0	Moats
23	6	15.5	350	12	Vennie
24	U III	15.5	330	12	veggie

Final Design Showing Constrained Regions

Final Design Showing Constrained Regions

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Final Design Showing Constrained Regions

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Agenda 30-MINUTE PRESENTATION & 15-MINUTE Q & A

- Multiple Response Optimization *Trade-Space Analysis – Why we do Design of Experiments (DOE)*
- Six step framework for creating a successful DOE & important questions to consider
- Real-World Experimental Issues Custom DOE is all about

Making Designs Fit the Problem – NOT Making Problems Fit the Designs!

- Two Example Designs 1st Quick (slide), 2nd Detailed (run JMP)
 - 1. Four continuous factors, three responses, and 2nd order RSM model
 - 2. Continuous, discrete numeric, categorical, and hard-to-change factors, plus added constraints, and 2nd order RSM model

