Mixed Models Part 1 - A Critical Tool When You Have More Than One Source of Variation

Elizabeth A Claassen, PhD Research Statistician Developer, JMP

JMP for Mixed Models

• Example driven

- Focus on concepts rather than formulas
- Get modelers modeling!

• Data available

- JMP Journal organized by chapter
- support.sas.com/hummel
- support.sas.com/claassen
- support.sas.com/wolfinger

Overview

- Introduction to the various concepts in mixed modeling
 - Fixed vs Random Effects
 - Correlation between experimental units
 - Different size experimental units for different effects
- Teach through example
 - Formulas only when necessary
 - Focus on conceptual understanding
- JMP and JMP Pro
 - A lot of mixed models can be fit in JMP
 - But some more complicated models require JMP Pro

Why use Mixed Models?

What we will cover:

- What is a Random Effect?
- Mixed Models → possibly different results for estimates, Cls, and pairwise comparisons

- **REML** Use it! Especially when you have missing data or unequal group sizes
- LSMeans better than arithmetic means. ;)

Prepare the experimental unit and assign the Treatment Level (i.e., which metal?)

Metal = Copper

Explore "Bond" data: No Blocks

Conduct the experiment: test the breaking strength of the metal bond.

Divide each ingot into three experimental units

Explore "Bond" data: With Blocks (Fixed? Or Random?)

Prepare the experimental unit and assign the Treatment Level (i.e., which metal?)

Metal = Copper

Conduct the experiment: test the breaking strength of the metal bond.

Definitions

• Fixed Effect

• When you care about exactly those levels, and you want to make inference for a future observation from exactly those levels

Random Effect

- when the levels are a sample from a larger population, and you want to make inference to the larger population and not just to those specific levels, and/or
- when you are primarily interested in explaining the variability coming from that effect rather than, say, pairwise comparisons

Do I care about only those seven ingots? Or do I want to understand which bonding metal will work best on a future ingot?

Determining a 'Sensible' Model Repurposing the ANOVA table

- ANOVA tables originally designed to aid construction of F-tests
 - Degrees of freedom
 - Expected Mean Squares
 - F-ratios
- Modern software computes these statistics automatically
- Repurpose the ANOVA table to describe a 'sensible' model
 - Sources of Variation
 - Experiment Design
 - Treatment Design
 - One-to-one match of ANOVA effects and model parameters

Experime	ent Design	Treatment Design		Skeleton ANOVA		
Source	df	Source	df	Source	df	
Total				Total		

Experiment Design		Treatment Design		Skeleton ANOVA	
Source	df	Source	df	Source	df
Ingot	7-1=6				
Total				Total	

Experiment Design		Treatment Design		Skeleton ANOVA	
Source	df	Source	df	Source	df
Ingot	7-1=6				
Ingot-third	(3-1)*7=14				
Total				Total	

Experiment Design		Treatment Design		Skeleton ANOVA	
Source	df	Source	df	Source	df
Ingot	7-1=6				
Ingot-third	(3-1)*7=14				
Total	21-1=20			Total	

Experiment Design		Treatment Design		Skeleton ANOVA	
Source	df	Source	df	Source	df
Ingot	7-1=6				
		Metal	3-1=2		
Ingot-third	(3-1)*7=14				
Total	21-1=20			Total	

Experiment Design		Treatment Design		Skeleton ANOVA	
Source	df	Source	df	Source	df
Ingot	7-1=6			Ingot	6
		Metal	3-1=2		
Ingot-third	(3-1)*7=14				
Total	21-1=20			Total	

Experiment Design		Treatment Design		Skeleton ANOVA	
Source	df	Source	df	Source	df
Ingot	7-1=6			Ingot	6
		Metal	3-1=2	Metal	2
Ingot-third	(3-1)*7=14			Ingot-third Metal -> Residual	12
Total	21-1=20			Total	20

From ANOVA to Model One-to-one ANOVA source & Model Parameter

Skeleton ANOVA					
Source	df				
Ingot	6				
Metal	2				
Ingot-third Metal -> Residual	12				
Total	20				

 $y_{ij} = \mu + r_j + \alpha_i + e_{ij}$

 y_{ij} is the observation of the i^{th} Metal in the j^{th} Ingot

 $\boldsymbol{\mu}$ is the intercept

 r_j is the j^{th} Ingot effect and $\sim N(0, \sigma_r^2)$ α_i is the i^{th} Metal effect

 e_{ij} is the residual error and $\sim N(0,\sigma^2)$

Fit Mixed

Fit Statistics

-2 Residual Log Likelihood	109.98743
-2 Log Likelihood	115.94455
AICc	129.94455
BIC	131.16716

Random Effects Covariance Parameter Estimates

Variance					Wald p-
Component	Estimate	Std Error	95% Lower	95% Upper	Value
ingot	11.447778	8.7203658	-5.643825	28.539381	0.1893
Residual	10.371587	4.2341828	5.3331979	28.261813	
Total	21.819365	9.056538	11.11697	60.718883	

- Fixed Effects Parameter Estimates
- Random Coefficients
- Fixed Effects Tests

Source	Nparm	DFNum	DFDen	F Ratio	Prob > F
metal	2	2	12.0	6.358764	0.0131*

Bond with random Ingots

Bond with random Ingots

	[′] ▼Fit Mixed								
•	Fixed Effects Tests								
•	∽ M ulti	ple Cor	nparisons	s for met	al				
	Least	Square	es Means	Estimate	es				
	metal	Estima	te Std Er	ror DF	Lower 95	5% Upp	oer 95%		
	с	70.1857	14 1.76551	75 11.609	66.3245	558 74	.046870		
	i	75.9000	00 1.76551	75 11.609	72.0388	844 79	.761156		
	n	71.1000	00 1.76551	75 11.609	67.2388	344 74	.961156		
	Tuk	ey HSD	All Pairw	ise Com	parison	S			
	Quantile	= 2.66776	δ, Adjusted D	F = 12.0, A	djustment	= Tukey	-Kramer		
All Pairwise Differences									
	meta	-metal	Difference	Std Error	t Ratio P	rob> t	Lower 95%	Upper 95%	
	с	i	-5.71429	1.721427	-3.32 🕻	0.0156*	-10.3066	-1.12194	
	С	n	-0.91429	1.721427	-0.53 0).8578	-5.5066	3.67806	
	i	n	4.80000	1.721427	2.79 🕻	0.0404*	0.2077	9.39235	

Why bother using a mixed model? Why not just include the random effect like a fixed effect?

Metal and Ingot both fixed effects

•	Response pressure										
•	Summ	ary of	Fit								
	AICc	BI	С								
	138.964	127.409	92								
	Analys	sis of V	<i>l</i> aria	nce							
	Sum of										
	Source	DF	Sc	quares	Mean	Square	F Ratio				
	Model	8	400	.19048		50.0238	4.8232				
	Error	12	124	.45905		10.3716	Prob > F				
	C. Total	20	524	.64952			0.0076*				
►	Param	neter E	stim	ates							
•	Effect	Tests									
	Sum of										
	Source	Nparm	DF	Squ	lares	F Ratio	Prob > F	-			
	metal	2	2	131.9	0095	6.3588	0.0131	k			
	ingot	6	6	268.2	8952	4.3113	0.0151	k			

Bond with random Ingots

•	Fit Mix	ced										
▼	Fit Stat	tisti	cs									
	-2 Residu -2 Log Lil AICc BIC	ual Lo keliho	g L ood	ikelihood	1 10 11 12 13	09.987 15.944 29.944 31.167	743 455 455 716					
▼	Random Effects Cov					rian	ce	Paran	nete	er Es	timat	es
	Variance Compon	ent	E	stimate	St	d Erre	or s	95% Lov	wer	95%	Upper	Wald p- Value
	ingot		11.	.447778	8.7	20365	58	-5.643	825	28.5	39381	0.1893
	Residual		10.	.371587	4.2	34182	28	5.3331	979	28.2	61813	
	lotal		21.	.819365	9.	05653	88	11.11	697	60.7	18883	
►	Fixed E	Effec	cts	i								
	Param	eter	E	stimat	es							
►	Rando	m C	oe	fficien	ts							
▼	Fixed Effects Tests											
	Source	Npar	m	DFNum	DF	Den		F Ratio	Pro	ob > F		
	metal		2	2		12.0	6.	358764	0.	0131*		

Answer #1: Ingot is used in the model to explain variance.

Bond with random Ingots: adjustments to one-group CIs

Metal and Ingot both fixed effects

Respo	onse pr	essure							
• Mult	iple Co	mparison	s for met	al					
Leas	t Squar	es Means	s Estimate	es					
metal	Estim	ate Std E	rror DF	Lower	95%	Upper 95%	Меа	Arithmetic In Estimate	r
c i	70.1857 75.9000	714 1.2172 000 1.2172	327 12 327 12	67.53 73.24	3592 7878	72.837836 78.552122		70.185714 75.900000	
⊓ ⊡Tuk	ey HSD	All Pairw	vise Com	pariso	ns	13.152122		71.100000	
antile	e = 2.6677 Pairwise	6, Adjusted I Differen	DF = 12.0, A CES	djustme	nt = Tu	key			
meta	l -metal	Difference	Std Error	t Ratio	Prob>	t Lower	95%	Upper 95%	
с	i	-5.71429	1.721427	-3.32	0.015	6 [*] -10.3	3066	-1.12194	
С	n	-0.91429	1.721427	-0.53	0.857	78 -5.5	5066	3.67806	
i	n	4.80000	1.721427	2.79	0.040)4* 0.2	2077	9.39235	

F	✓Fit Mixed											
• Fi	Fixed Effects Tests											
•	Multiple Comparisons for metal											
•	Least Squares Means Estimates											
	metal Estimate Std Error DF Lower 95% Upper 95%											
c	c 70.185714 1.7655175 11.609 66.324558 74.046870											
i		75.9000	000	1.7655 ⁻	175	11.609	72.03	8844	79	.761156		
r	٦	71.1000	000	1.7655	175	11.609	67.23	8844	74	.961156		
•	• Tuke	y HSD	All	Pairw	ise	Com	pariso	ns				
Q	uantile	= 2.6677	6, Ao	djusted D)F =	12.0, A	djustmer	nt = Ti	ukey	-Kramer		
		airwise) Di	fferend	ces							
	metal	-metal	Diff	erence	Ste	d Error	t Ratio	Prob	> t	Lower 95%	6 Upp	er 95%
	с	i	-5	5.71429	1.7	721427	-3.32	0.01	56*	-10.306	6 - [.]	1.12194
	С	n	-0	0.91429	1.7	721427	-0.53	0.85	78	-5.506	6 3	3.67806
	i	n	4	1.80000	1.7	721427	2.79	0.04	04*	0.207	7 9	9.39235

Answer #2: And that effects CIs for the fixed effects.

Bond with random Ingots: adjustments to one-group CIs

Metal and Ingot both fixed effects

	Respo	nse pr	essi	ure									
•	Multi	ple Co	mpa	arisons	s for m	eta	al						
	Least	Squar	es N	leans	Estima	nte	s						
	metal	Estim	ate	Std Er	ror [)F	Lower	95%	Upp	oer 95%	Ме	Arithmetic an Estimate	
	c i n	70.1857 75.9000 71.1000	714 000 000	1.21723 1.21723 1.21723	327 327 327	12 12 12	67.53 73.24 68.44	3592 7878 7878	72 78 73	2.837836 9.552122 9.752122		70.185714 75.900000 71.100000	
•	Tuk Quantile	ey HSD = 2.6677	All 6, Ac	Pairw djusted D	ise Co DF = 12.0,	mj , Ad	bariso djustme	ns nt = T	ukey				
	• All P	airwise	Di	fferen	ces								
	metal	-metal	Diff	erence	Std Erro	or	t Ratio	Prob)> t	Lower 9	5%	Upper 95%	
	с	i	-5	5.71429	1.72142	27	-3.32	0.01	56*	-10.30	066	-1.12194	
	c i	n n	-0 4).91429 I.80000	1.72142 1.72142	27 27	-0.53 2.79	0.85 <mark>0.04</mark>	78 04*	-5.50 0.20	066 077	3.67806 9.39235	

▼F	it Mix	ed										
• Fi	xed E	ffects	Tests									
•	Multiple Comparisons for metal											
T L	Least Squares Means Estimates											
r	metal Estimate Std Error DF Lower 95% Upper 95%											
c	70.185714 1.7655175 11.609 66.324558 74.046870											
i		75.9000	00 1.76	55175	11.609	72.03	8844	79	.761156			
r	٦	71.1000	00 1.76	55175	11.609	67.23	8844	74	.961156			
•	• Tuke	ey HSD	All Pai	wise	Com	pariso	ns					
Q	uantile	= 2.6677	6, Adjuste	d DF =	12.0, A	djustmer	nt = T	ukey	-Kramer			
	All P	airwise	Differe	nces	;							
	metal	-metal	Difference	e St	d Error	t Ratio	Prob)> t	Lower 95	%	Upper 95%	
	с	i	-5.7142	9 1.	721427	-3.32	0.01	56*	-10.306	66	-1.12194	
	С	n	-0.9142	9 1.	721427	-0.53	0.85	78	-5.506	66	3.67806	
	i	n	4.8000	0 1.	721427	2.79	0.04	04*	0.207	77	9.39235	

Answer #2: (But not the CIs for differences if the design is balanced).

Summary/Tips

- You are dealing with Random Effects:
 - when the levels are a sample from a larger population, and/or
 - when you are primarily interested in explaining the variability rather than, say, pairwise comparisons.
- If you treat a random effect as fixed, your standard errors (and therefore your CIs on the other fixed effects) will be less appropriate. "All models are wrong, but some are useful." "When you know better, do better."

- LSMeans are not necessarily the arithmetic means. Missing data / imbalance needs REML to better estimate the LSMeans.
- With missing data / imbalance, the pairwise comparisons for the other fixed effects are also affected by the choice to model an effect as random.
- Don't rely only on the p-value remember that p=0.049 and p=0.050 are basically the same thing.

Models with Factorial Designs

What we will cover:

- What is a Factorial Design and why would we use one?
- How is discussion of Factorials a Mixed Model topic?
- Beyond the split plot

Factorial Treatment Designs

- A factorial treatment design occurs when the experiment has two or more treatment factors of interest
- These designs are more efficient than one factor at a time experiments
 - Reduce the number of experiments and therefore experimental units required
 - Enables the measurement of *interactions* between the factors
 - Improved statistical properties for *main effects* and *simple effects*
- Factorial treatment designs are often used with split-plot experiment designs
 - Often one factor is harder to change treatment levels than the other
 - The hard-to-change factor is the *whole plot* factor
 - The easier-to-change factor is the *split plot* factor

Main Effects

When there's negligible interaction

- A main effect is the effect of a single factor averaging over any other factors in the model
- Because we have determined there is no interaction, it does not matter what level the other factor(s) are at. Thus, we can use the "average" level/effect.
- Use LSMeans comparisons of the factor to make decisions about optimal factor settings.

Simple effects

When an interaction is non-negligible

- A simple effect is the effect of one factor given a particular level of the other factor(s).
- An interaction by definition is when the simple effect *changes* depending on the level of the other factor.
- Look at *slices* of the interaction LSMeans to determine optimal factor settings.

Greenhouse Example

- A plant researcher has two plant varieties and a pesticide meant to protect the plants against disease
- The amount of pesticide can be applied to sections of greenhouse benches.
- Bench sections can hold multiple plants.
- From past experiments the researcher knows there is variability between benches within the greenhouse, so benches should be a blocking factor.

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4				
Total				Total	

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4				
WP(Block)	(4-1)*5=15				
Total				Total	

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4				
WP(Block)	(4-1)*5=15				
SP(WP)	(2-1)*20=20				
Total				Total	

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4				
WP(Block)	(4-1)*5=15				
SP(WP)	(2-1)*20=20				
Total	40-1=39			Total	

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4				
		Dose	4-1=3		
WP(Block)	(4-1)*5=15				
SP(WP)	(2-1)*20=20				
Total	40-1=39			Total	

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4				
		Dose	4-1=3		
WP(Block)	(4-1)*5=15				
		Туре	2-1=1		
		Type*Dose	3		
SP(WP)	(2-1)*20=20				
Total	40-1=39			Total	

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4			Block	4
		Dose	4-1=3		
WP(Block)	(4-1)*5=15				
		Туре	2-1=1		
		Type*Dose	3		
SP(WP)	(2-1)*20=20				
Total	40-1=39			Total	

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4			Block	4
		Dose	4-1=3	Dose	3
WP(Block)	(4-1)*5=15			WP(Block) Dose -> Block*Dose	12
		Туре	2-1=1		
		Type*Dose	3		
SP(WP)	(2-1)*20=20				
Total	40-1=39			Total	39

Experime	ent Design	Treatment D	Design	Skeleton ANOVA	
Source	df	Source	df	Source	df
Block	5-1=4			Block	4
		Dose	4-1=3	Dose	3
WP(Block)	(4-1)*5=15			WP(Block) Dose -> Block*Dose	12
		Туре	2-1=1	Туре	1
		Type*Dose	3	Type*Dose	3
SP(WP)	(2-1)*20=20			SP(WP) Dose,Type -> Residual	16
Total	40-1=39			Total	39

ANOVA to Model

Source	df
Block	4
Dose	3
WP(Block) Dose -> Block*Dose	12
Туре	1
Type*Dose	3
SP(WP) Dose,Type -> Residual	16
Total	39

- $y_{ijk} = \mu + r_k + \delta_i + w_{ik} + \tau_j + \delta \tau_{ij} + e_{ijk}$
- y_{ijk} is the observation of the i^{th} Dose, j^{th} Type, and k^{th} block.
- μ is the intercept
- r_k is the k^{th} block effect and $\sim N(0, \sigma_r^2)$
- δ_i is the *i*th Dose effect
- w_{ik} is the ik^{th} whole-plot (Block*Dose) effect and $\sim N(0, \sigma_w^2)$
- τ_j is the *j*th Type effect
- $\delta \tau_{ij}$ is the *ij*th Dose*Type interaction effect
- $\underset{\sim}{e_{ijk}}$ is the split-plot, residual error and $\tilde{N}(0,\sigma^2)$

Dialog boxes $y_{ijk} = \mu + r_k + \delta_i + w_{ik} + \tau_j + \delta \tau_{ij} + e_{ijk}$

ect Columns	PICK Role variables		Persona	ality: Mixed Model	
4 Columns	Y	Y	Unbour	nded Variance Components	
Block		otional	Help	Run	
🔒 Туре	-				
L Dose	By	tional	Recall	Keep dialog open	
4 Y		nionai	Remove		
	Construct Model Ef	fects			
	Fixed Effect	s Random Effe	cts Repeated Struct	ure	
	Add	Type			
	Crees	Dose			
	Cross	Type*Dose			_
	Nest		Fixed Effects Ra	ndom Effects Repeated Structure	
	Macros *		Add	Block	Block
	Degree		Cross	Block*Dose	
	Attributes				
	No Intercept		Nest		
			Nest Random Coeffi	cients	
			Macros	*	

Results

		₽ P	۶+×				
FIT MIXE	a a						
Kandom	Соеп	icients				_	
Fixed Ef	fects 7	lests					
Source	Nparn	DFNum	DFDen	F Ratio	Prob > F		
Туре		1 1	16.0	2.776243	3 0.1151		
Dose		3 3	12.0	13.62535	6 0.0004*		
Type*Dose		3 3	16.0	2.28784	5 0.1176		
 Multip 	le Con	nparison	s for D	ose			
Means	Estim / HSD 2.9688	es ates All Pairv , Adjusted	vise Co DF = 12.0	ompariso	o ns ent = Tukey	-Kramer	
All Pa	irwise	Differen	ces				
Dose -	Dose	Difference	Std Er	ror t Rati	o Prob> t	Lower 95%	Upper 95%
1 2	2	-7.99000	1.633	728 -4.8	9 0.0018*	-12.8402	-3.13978
	4	-9.75000	1.633	728 -5.9	7 0.0003*	-14.6002	-4.89978
1 4	3	-6.77000	1.633	728 -4.1	4 0.0064*	-11.6202	-1.91978
1 8		-1 /6000	1.633	/28 -1.0	8 0.7092	-6.6102	3.09022
$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4$	4	1 22000	1 600	700 07	F 0 0760	0 <u>60</u> 00	6 11/11
$ 1 8 \\ 2 4 \\ 4 8 $	4 3 3	1.22000	1.633 1.633	728 0.7 728 1.8	5 0.8763 2 0.3095	-3.6302 -1.8702	6.07022 7.83022

Results

Variety-Pesticide Evaluation - Fit Least Squares

▼ ■ Response Y

▼ ■ Multiple Comparisons for Type*Dose

Least Squares Means Estimates

Туре	Dose	Estimate	Std Error	DF	Lower 95%	Upper 95%
r	1	20.000000	1.4768632	20.231	16.921576	23.078424
r	2	27.840000	1.4768632	20.231	24.761576	30.918424
r	4	28.180000	1.4768632	20.231	25.101576	31.258424
r	8	24.800000	1.4768632	20.231	21.721576	27.878424
s	1	17.060000	1.4768632	20.231	13.981576	20.138424
s	2	25.200000	1.4768632	20.231	22.121576	28.278424
s	4	28.380000	1.4768632	20.231	25.301576	31.458424
s	8	25.800000	1.4768632	20.231	22.721576	28.878424

▼ ■Least Squares Means Plot

		070	0.01	Variety-Pesticide	e Evaluation - F	it Least So	uares						
k ?	89 4 9	1	P / -	12									
Res	Response Y												
M	Multiple Comparisons for Type*Dose												
	Tukey HSD All Pairwise Comparisons												
	Quantile = 3 46215 Adjusted DE = 16 0 Adjustment = Tukey-Kramer												
Qua	nule = 3	.40215,	Adjusted	DF = 16.0, AC	justment =	тикеу-к	ramer						
▼ A	All Fairwise Differences												
Т	Type Dose -Type -Dose Difference Std Frror t Ratio Proholt Lower 95% Unner 95%												
r	1	r	2	-7.8400	1.879586	-4.17	0.0128*	-14.3474	-1.3326				
r	1	r	4	-8.1800	1.879586	-4.35	0.0090*	-14.6874	-1.6726				
r	1	r	8	-4.8000	1.879586	-2.55	0.2417	-11.3074	1.7074				
r	1	S	1	2.9400	1.314363	2.24	0.3814	-1.6105	7.4905				
r	1	S	2	-5.2000	1.879586	-2.77	0.1721	-11.7074	1.3074				
r	1	S	4	-8.3800	1.879586	-4.46	0.0073*	-14.8874	-1.8726				
<u> </u>	1	c	8	-5 8000	1 970596	-3 00	0 0005	-12 307/	0 7074				
r	2	r	4	-0.3400	1.879586	-0.18	1.0000	-6.8474	6.1674				
r	2	r	8	3.0400	1.879586	1.62	0.7345	-3.4674	9.5474				
<u> </u>	2	S	1	10,7800	1.879586	5 74	0.0006*	4 2726	17 2874				
r	2	S	2	2.6400	1.314363	2.01	0.5057	-1.9105	7.1905				
r	2	S	4	-0.5400	1.879586	-0.29	1.0000	-7.0474	5.9674				
r -	2	S	8	2.0400	1.879586	1.09	0.9510	-4.4674	8.5474				
r	4	r	8	3.3800	1.879586	1.80	0.6298	-3.1274	9.8874				
r	4	S	1	11.1200	1.879586	5.92	0.0005*	4.6126	17.6274				
r -	4	S	2	2,9800	1.879586	1.59	0.7521	-3.5274	9.4874				
r	4	S	4	-0.2000	1.314363	-0.15	1.0000	-4.7505	4.3505				
r	4	S	8	2.3800	1.879586	1.27	0.8986	-4.1274	8.8874				
r	8	s	1	7.7400	1.879586	4.12	0.0142*	1.2326	14.2474				
ŗ	8	S	2	-0.4000	1.879580	-0.21	0.5666	-6.9074	6.1074				
	0	s	4	-3.5800	1.079000	-1.90	0.0020	- 10.0874	2.9274				
	1	5	0	-1.0000	1.314303	-0.70	0.9930	-5.5505	1,6206				
s	1	5	4	-11 3200	1 870596	-4.33	0.0094	-17 8274	-1.0320				
s	1	5	9	-8.7400	1 870586	-0.02	0.0004	-15.2474	-4.0120				
5	2	5	4	-3 1800	1 879586	-4.00	0.6022	- 9 6874	3 3 2 7 4				
9	2	5	8	-0.6000	1 879586	-0.32	1 0000	-7 1074	5 9074				
Ľ	4	6	8	2 5800	1 879586	1.37	0.8567	-3 9274	9.0874				

Beyond the Split-Plot

Factorial Treatments with other Experiment Designs

- Many variations and extensions of the basic split-plot exist
 - Split-split-plot
 - Strip-split-plot
 - Combinations of any of these!
- Nested designs (often look like split-plots)
- With the skeleton ANOVA process, can translate virtually any design to model

Multiple Random Effects (and negative variance components)

Fabric Shrinkage

	3	9	1	2	8	6	5	7	4
	4	8	7	3	5	9	1	2	6
	6	5	2	7	1	4	8	3	9
	8	7	5	4	3	1	6	9	2
	2	1	3	9	6	7	4	8	5
	9	6	4	5	2	8	7	1	3
	1	4	9	6	7	3	2	5	8
	5	3	8	1	4	2	9	6	7
l	7	2	6	8	9	5	3	4	1

What we will cover:

- Just like we can have several treatment effects, and cross them (or nest them) – we can also do this with random effects
- Latin Square is a special kind of crossed random effects
- A note about Negative Variance Components

Describe the data

 Fabric Shrinkage — A fabric manufacturer needs to test four new materials to be used in permanent press garments. The heat chamber used to test fabrics has four positions. Each fabric should be tested under each position, and due to time constraints, the manufacturer is limited to four runs. Fabric shrinkage is the response of interest.

4 Runs

Experiment Design		Treatment Design		Skeleton ANOVA		
Source	df	Source	df	Source	df	
Run	4-1=3			Run	3	
Position	4-1=3			Position	3	
		Material	4-1=3	Material	3	
Run*Position (the e.u.)	(4-1)*(4-1)=9			(Run*Position) Material → Residual	9-3=6	
Total	16-1=15			Total	15	

Negative Variance Components?

•		Fit Model				
Model Specificati	on					
Select Columns	Pick Role Variables		Per	sonality:	Mixed Model	
4 Columns	Y 4	ain		Jnbounded	Variance Components	_
Lage	opti	onal	H	Help	Run	
illet ▲ Gain	By opti	onal	R	ecall	Keep dialog open	
			R	emove		
	Construct Model Effe	cts				
	Fixed Effects F Add Cross Nest	Random Effects Condition Diet Condition*Diet	Repeated Stru Fixed Effects	cture		
	Macros 🔻			Add	Cage Cage*Condition	
	Degree 2	1.1.1.1.1.1.1	C	cross		
	Attributes 💌		1	Vest		
	No Intercept		Nest Rando	m Coeffici	ents	
			M	acros	•	
			Degree 2			

Window Tools	Gra	ph Tools	**				Sho	w Data Table Lo	cal Data Filte
 Response 	Gain								
• Summary o	of Fit								
RSquare RSquare Adj Root Mean Squ Mean of Respo Observations (d	uare Error nse or Sum We	(((() (0.351969 0.054955 5.617433 57.19444 36						
Parameter	Estima	tes]						
Random Ef	fect Pr	edic	tions						
REML Varia	ance Co	amc	onent	Estimat	tes				
Random Effec	t Var R	atio	Compon	var ent Std	Error §	95% Lower	95% Upper	Wald p- Value	Pct o Tota
Cage Condition*Cage Residual	0.1593 -0.197	643 757	5.02882 -6.2403 31.5555	94 4.714 46 4.869 556 11.19	19355 93074 56574	-4.212274 -15.78401 17.503302	14.269933 3.3033207 73.091115	0.2862 0.2000	13.746 0.000 86.254
Total -2 LogLikeliho Note: Total is th Total including r Covarianc	od = 179 e sum of ⁻ negative e ce Matr	.2911 the po stima ix of	36.5843 7789 ositive va ites = 30	12.1 ⁻ riance cor .344039	1967 nponen	20.956243 ts.	79.50077		100.000
Variance (Compo	nent	Estim	ates					
Iterations									
Fixed Effect	t Tests				Durk	E			
Fixed Effect	t Tests Nparm	DF	DFDen	F Ratio	Prop :	> Г			
 Fixed Effect Source Condition 	t Tests Nparm 3	DF 3	DFDen 4.718	F Ratio 4.3123	0.079	> F 98			
 Iterations Fixed Effect Source Condition Diet 	t Tests Nparm 3 2	DF 3 2	DFDen 4.718 16	F Ratio 4.3123 0.8248	0.079 0.456	98 61			

BUT WHY????

- Negative variance component estimates might happen when, for example, a variance is very small or when there is negative correlation among experimental units. This latter situation often happens when there is competition for resources among plots or units, as here with mice in a cage. In such cases, the REML optimal value for the variance estimate can cross into the negative region.
- Although it might seem strange to report negative variance component estimates, this unbounded fit is the best model for estimating the fixed effects comparisons.
- Allowing the negative variance component(s), you get better control over Type 1 error for your fixed effects comparisons, and in some cases better power.

Summary

- You can have multiple random effects to account for multiple sources of variance (multiple restrictions on randomization for the treatment).
- A Latin Square is a special restriction when you have the (number of treatments) = (number of runs from restriction 1) = (number of runs from restriction 2).
- Allow negative variance estimates. It's better for your model fit and better inference.

