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Simple Linear Regression

𝑟𝑖

What is simple linear regression?

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖+ 𝜖𝑖

Usually we assume 
𝜖𝑖 ∼ 𝑁(0,𝜎2)

We don’t have to assume 
normality, but it makes inference 
easier.



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Simple Linear Regression

Assuming that the errors (and response) are normal makes life easier. 

Why? Among other reasons, things like estimation and inference tend to 
have an explicit form.

For example:
መ𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

𝑐𝑜𝑣 መ𝛽 = 𝑋𝑇𝑋 −1𝜎2

We get a lot of mileage out of assuming normality, but it isn’t always valid.
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Simple Linear Model
Normality

What happens if you assume normality when you shouldn’t?

Two main concerns:

1. Predictions outside of meaningful range (maybe not a big deal)

2. Inference is not reliable (probably a bigger deal)
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What if normality is not appropriate?

Let’s say we want to model steals for a basketball player.

What might impact performance?

Experience?
Opponent?
Home/Away?
How much rest?
… 

JMP
1
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Steals in Basketball

The response will only take integer values.

And even for the best players, the response will only take 
a couple values.

𝑌 = {0,1,2,3,4,5} for Steve Nash

Normality isn’t appropriate at all here, but we still need to 
build a model.

What should we do?
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Overview

1. Overview of Generalized Linear Models (GLMs)

2. How to evaluate your models

1. Know your data and your distribution

2. R-square

3. Information criteria

3. Examples



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Generalized Linear Models
A quick overview
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Generalized Linear Models
But first, back to the linear model

Our beloved linear model
𝑌𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑝𝑥𝑝𝑖 + 𝜖𝑖

= 𝑥𝑖
𝑇𝛽 + 𝜖𝑖 where 𝑥𝑖 is a 𝑝 + 1 vector

We assume that our errors are independent and normally distributed.
𝜖𝑖 ∼ 𝑁 0, 𝜎2

So given our predictor vector 𝑥𝑖, we know the distribution of the response
𝑦𝑖 |𝑥𝑖 ∼ 𝑁(𝑥𝑖

𝑇𝛽, 𝜎2)

E 𝑦𝑖 𝑥𝑖) = 𝑥𝑖
𝑇𝛽 Var 𝑦𝑖 𝑥𝑖) = 𝜎2
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Generalized Linear Model

Same idea as linear regression but instead of normality, 

we assume that 𝑦𝑖|𝑥𝑖 has some other distribution.

Many cases where we need to do this

1. Count data (ex: number of defects on a product)

2. Skewed data (ex: salaries)

3. Proportions

4. Labels (ex: good/neutral/bad or yellow/blue/green)
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Generalized Linear Model
Formal Statement

We assume a probability function for our response

𝑓 𝑦 𝜃,𝜙 = exp
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
− 𝑐(𝑦, 𝜙)

This is called an exponential family distribution. 

Do we need to spend any more time on this level of detail? 

Nope. 

Instead, let’s focus on using these models.
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Generalized Linear Models

Three key ingredients to a GLM:

1. A distribution for the response given the predictors (the random piece)

2. A linear predictor 𝑥𝑖
𝑇𝛽 (the systematic piece)

3. A link function (the piece that connects 1 and 2)
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Generalized Linear Model
The Distribution

When we talk about the distribution in our GLM, we’re talking about the 
distribution of the response given the predictors.

This is a critical piece!

In general it is not the distribution of the residuals. 

Of course there are exceptions (Normal, t-distribution, …)
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Generalized Linear Model
The Distribution

The Normal may trick us into thinking
of the distribution of the residuals.

How can we avoid this mistake?

Helpful reminder:

The Gamma distribution is strictly 
positive.

The residuals for this Gamma 
regression are positive and negative.
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Generalized Linear Model
The Distribution

Another common gotcha.

The distribution is not the distribution of the response. 

It’s the distribution of the response given the predictors.

Why is this distinction important? Let’s look at an example.
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Generalized Linear Model
The Distribution

We have a single effect to model the response.
Based on this histogram, should we do a mixture model regression?
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Generalized Linear Model
The Distribution

Absolutely not!

The truth is that this is just a 
simulated One-way ANOVA model

𝑦𝑖 = 4+ 4 ∗ I 𝑥𝑖 = 2 + 𝑧𝑖
𝑧𝑖 ∼ 𝑁(0,1)
𝑥𝑖 = {1,2}

The histogram of the response 
ignores our predictor(s), so it 
provides limited information.
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Generalized Linear Models
The Linear Predictor

A linear function that ties our predictors to the mean of the distribution.

𝑥𝑖
𝑇𝛽 = 𝛽0 +

𝑗=1

𝑝

𝑥𝑗𝛽𝑗

Exactly what it sounds like: a linear combination of predictors we specify.

𝑥𝑖
𝑇𝛽 can take any value, we may need to map it into a meaningful range… 
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Generalized Linear Models
The Link Function

Converts linear predictor into the correct range for the distribution’s mean.

𝑥𝑖
𝑇𝛽 = 𝑔 𝜇 𝑔−1 𝑥𝑖

𝑇𝛽 = 𝜇

Some important link functions

1. Identity: 𝑔−1 𝑥𝑖
𝑇𝛽 = 𝑥𝑖

𝑇𝛽 maps into (−∞,∞)

2. Log: 𝑔−1 𝑥𝑖
𝑇𝛽 = exp(𝑥𝑖

𝑇𝛽) maps into 0,∞

3. Logit: 𝑔−1 𝑥𝑖
𝑇𝛽 = ൗ

1
1+exp(−𝑥𝑖

𝑇𝛽)
maps into (0,1)

There are plenty of others, but these are the big ones.

Note: Genreg picks the most appropriate link for you.
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Generalize Linear Models
Inverse Link Functions

Identity Logit Log

For when the 
response can 
take any value

The response should 
be in [0,1] 
(probably probabilities)

The response needs 
to be positive
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Generalized Linear Model
An Example

Put the three pieces together and what do we have? 

Let’s look at a simple example.

Y increases as a function of X

Y seems to become more variable with X 
(less obvious)

The Gamma is a natural choice.

Gamma is defined for 𝑦 ∈ (0,∞), so the 
log link makes sense.
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Generalized Linear Model
An Example

Genreg output

Recall our model looks like
𝑦|𝑥 ∼ Gamma 𝜇, 𝜎 𝜇 = exp(𝛽0 + 𝛽1𝑥)

And መ𝛽0 = 1.064 ො𝜎 = 1.938
መ𝛽1 = .488

This is the 
linear 
predictor.
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Generalized Linear Model
An Example

So what does that tell us about our response at say, x=6?
exp 1.064 + .488 ∗ 6 ≈ 54.2

𝑦|𝑥=6 ∼ Gamma(54.2, 1.938)

E y x = 6 = 54.2
Var 𝑦 𝑥 = 6 = 54.2 ∗ 1.938
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Choosing a Distribution
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Evaluating Models

We probably know some things about our response.

1. Is it always positive? 

2. Is it always integer valued? 

3. Is the variance constant or is it proportional to the mean?

4. Is the response a proportion?

5. Is it even numeric?

Using what we know about the response, we can usually narrow it down to 
a couple of distributions.
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Evaluating Models
Positive Responses

If your response is always positive, that narrows it down a little.

Ex: Most physical measurements, time, …

Consider strictly positive distributions with a log link.

Some natural choices:

1. Gamma and Exponential

2. Lognormal

3. Weibull

And if we know we have count data…
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Evaluating Models
Count Data

Is it a binomial?

Are we counting independent events for a given number of trials?

Ex: Number of heads out of 10 coin flips?

…Or is it Beta-Binomial?

Are we counting correlated events for a given number of trials?

The correlation causes the response to be more variable.

Ex: Number of shots made out of 10 attempts in a basketball game.
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Evaluating Models
Binomial vs Beta-Binomial

200 simulated observations from each distribution

Binomial
E 𝑦 = 𝑛𝑝

Var 𝑦 = 𝑛𝑝(1− 𝑝)

Beta-Binomial
E 𝑦 = 𝑛𝑝 1−𝑝

Var 𝑦 = 𝑛𝑝 1− 𝑝 [1+ 𝑛− 1 𝛿]
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Building Models
Count Data

What if we’re not counting binary outcomes?

Ex: Number of defects on a product

Number of cars that pass through an intersection in a day

Then we probably need to use the Poisson distribution.

The Poisson is unique in that E 𝑦 = var 𝑦 = 𝜆

And if we need to accommodate overdispersion (extra variance)?

Choose the Negative-Binomial where E 𝑦 = 𝜆 var 𝑦 = 𝜎𝜆
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Building Models
Three flavors of the Poisson

Poisson(𝜆)
E(y) = 𝜆

Var(y) = 𝜆

Need extra variation?
Gamma Poisson(𝜆, 𝜎)

E(y) = 𝜆
Var(y) = 𝜆𝜎

Also known as the 
Negative Binomial.

Need extra zeros?
ZI-Poisson(𝜆, 𝜋)
E(y) = 1−𝜋 𝜆

Var(y) = 𝜆 1− 𝜋 1+ 𝜆𝜋
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Evaluating Models
Coefficient of Determination

From working with least-squares models, we all know and love 𝑅2

𝑅2 = 1 −
σ𝑖 𝑦𝑖 − ො𝑦𝑖

2

σ𝑖 𝑦𝑖 − ത𝑦 2
= 1−

𝑆𝑆𝐸

𝑆𝑆𝑇

For GLMs, 𝑅2 isn’t useful since we’re not working with square loss.

What is 𝑅2 measuring? How well a model fits compared to the mean.

We can extend that idea to GLMs.
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Evaluating Models
Generalized R-square

For generalized linear models,

𝑅𝑔
2 = 1−

𝐿0
𝐿𝑀

2/𝑛

Where 𝐿0 = likelihood for an intercept only model

𝐿𝑀 = likelihood for our fitted model.

If our model isn’t very good, 𝐿𝑀 ≈ 𝐿0 and 𝑅𝑔
2 will be close to zero.

If our model is great, 𝐿𝑀 ≫ 𝐿0 and 𝑅𝑔
2 will be close to 1.
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Evaluating Models
Be Careful!

Let’s say we narrow it down to the gamma or lognormal for our model.

Gamma: 𝑅𝑔
2 = .85.

Lognormal: 𝑅𝑔
2 = .95.

Is the lognormal model better? Maybe.

…but maybe the intercept-only  lognormal model just fits very poorly.

We can use the R-square to compare models within a distribution.

To compare between distributions, use an information criteria.
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Evaluating Models
Information Criteria

The AIC and BIC are information criteria that we use to compare models. 

AIC = 2𝑝 − 2log(𝐿)

AICc = 2𝑝 − 2 log 𝐿 +
2𝑝(𝑝+1)

𝑛−𝑝−1
small sample correction

BIC = log 𝑛 ∗ 𝑝 − 2 log 𝐿

where p is the number of parms fit, L is the likelihood, and n is sample size. 

These measures balance model fit with model complexity.

Smaller values are better.
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Evaluating Models
Information Criteria

The AIC and BIC estimate the Kullback-Leibler divergence, which is the 
distance from the fitted model to the truth.

So we can use them to compare models within the same distribution and 
across different distributions.
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Evaluating Models
AICc and BIC

The AICc and BIC are great all-purpose tools for

• …comparing 2 or more models

• …that don’t have to be nested

• …that don’t even have to be from the same response distribution

We do need a likelihood and degree of freedom, which can be a limitation.

Ex: The degrees of freedom for a tree isn’t well defined.

Rule of thumb: AIC tends to overfit and BIC tends to underfit.
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Choosing the Response Distribution
Discrete Responses

Using our intuition, we can narrow it down to a few distributions and then 
use the AICc or BIC to guide us.

If we have count data…usually we think of the Poisson.

• Events out of trials? -> binomial or beta-binomial

• Do we need to account for overdispersion?  -> negative binomial

• Do we have extra zeros? -> zero-inflated distribution

• Only observe a couple of distinct values? -> consider switching to logistic
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Choosing the Response Distribution
Discrete Responses with extra zeros

The ZI stands for “Zero Inflated”.
…which means there are more zeros than 
otherwise expected.

Suppose we ask folks leaving a park how many
fish they caught while visiting.
There are two ways to observe a zero.
1. A visitor doesn’t fish
2.   A visitor fishes, but doesn’t catch anything.
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Choosing the Response Distribution
Continuous Responses

And if we have a continuous response…

• Do we have negative values? -> normal

• Is it bound to (0,1)? -> beta

• Does variance increase with the mean? -> gamma, Weibull, lognormal

• Is it time-to-event/censored? -> probably Weibull or lognormal

• A pretty good catch-all? -> normal

• Do we suspect that we have outliers? -> Cauchy or t(5).
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Choosing the Response Distribution

What if our response isn’t even numeric???

• Is it two-level? Use the binomial.

Ex: Yes/No or A/B.

• 3+ levels and order matters? Use Ordinal logistic.

Ex: Low/Medium/High or Small/Medium/Large.

• 3+ levels and order doesn’t matter?  Use the Multinomial.

Ex: Pizza/Hamburger/Burrito or Red/Blue/Green/Orange.
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Wrap-up
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Wrap Up

• GLMs are an important piece of your modeling toolbox. 

• Genreg makes them easy to fit and use.

• How should I choose the response distribution?

• Narrow it down to a handful of meaningful options

• Compare AICc or BIC values to pick the “best”.

• When all else fails, the Normal and Gamma are a good start.



sas.com
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Thanks!
Clay.Barker@sas.com

http://www.sas.com/

