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Where did we leave off?

Last week, we talked about using the Generalized Regression platform in
JMP Pro to analyze Designed Experiments.
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What is Variable Selection Again?

Variable selection is the process of selecting a subset of variables
(predictors) to use in modeling a response variable.

We have a candidate set of
explanatoryvariables that
may be associated with the
response. Putthemall into a
variable selection procedure
and see what happens.

But we still need to think
carefullyabout our data!



Where did we leave off?
Justto recap

With experiments, we tend to stick with stepwise methods with the AlCc.

And we tend to request Effect Heredity.
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The same approach may not be optimal for observational data.

1. We probably have lots more data.
2. We almost certainly don’t have orthogonality.
3. We may be more interested in prediction than interpretation.

Today we’ll talk about the methods in Genreg that we tend to recommend
for observational data sets.



Estimation
How good is an estimator?

Whenever we estimate something, how do we measure how good it is?

There aretwo things to consider?
1. How far from the truth do the estimates tend to be? (Bias)
2. How variable are our estimates? (Variance)

We combine the two to define the Mean Square Error of an estimator.

Mean Squared Error(8) = Bias(é)2 + Variance(0)



Estimation
An exaggerated example

Estimator 1
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Estimation
Ordinary Least Squares

Often when we think of regression, we think of least squares estimation
n
Bors = argﬁmin Z()’i —x;)*
i=1

The Gauss-Markov theorem tells us that ,BAOLS has the minimum variance of
all unbiased estimators.

...but OLS estimates can have high variance.
...in particular when our predictors are highly correlated.



Penalized Regression
Maybe some bias is OK?
High variance in OLS estimates can make our model not fit new data well.

Maybe a biased but less variable estimator would generalize better?

This is the motivation behind ridge regression.



Penalized Regression
Ridge Regression

Hoerl and Kennard (1970) proposed ridge regression.
Instead of OLS, what if we minimize a penalized sum of squared errors?

A . A
Priage = arg mlnz_(yi —x;8)% + EZ | ,31.2
B i j

~1
= (XTX+aL,) XTy
Aisa tuning parameterthat controls the magnitude of parameters.
« A =0 isthe usual OLS solution.

- As A increases, parameter estimates move toward zero. Shrinkage!
- Stabilizes estimates when predictors are highly correlated.



Penalized Regression
Ridge Regression
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Penalized Regression
Can Ridge have a lower MSE than OLS?

Graph Builder
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Penalized Regression
Choosingthe Tuning Parameter

In order to beat OLS, we need to carefully choose the tuning parameter A.

How should we do that?

Define a grid of values [A4, 45, -+, Ak ]
Try out each value of A and see which one fits the best (AlCc, BIC, CV).

Usually we’d choose 4; = 0 toinclude OLS.

Very similar to what we talked about last week with stepwise methods:

Fit a sequence of models and keep the best.



Penalized Regression
The Importance of Ridge Regression

At the 2021 Joint Statistical Meetings, Trevor Hastie of Stanford had a talk
celebrating the 50t anniversary of ridge regression.

Ridge or more formally L2 regularization shows up in many areas of
statistics and machine learning. It is one of those essential devices that any
good data scientist needs to master for their craft.

Ridge Regularization: An Essential
Concept in Data Science

Trevor Hastie
Department of Statistics
Department of Biomedical Data Science
Stanford University



Penalized Regression
A Family of Models

Ridge opened the door to a variety of penalized regression techniques

A

= ' i — xiB)? + 2 |
b argﬂman(Y xif)* + Z]:p(ﬁ])

x? Ridge (L2 norm)
|x| Lasso (L1 norm)
I1(x #0) Best Subset (LO norm)
(ad —x), Smoothly clipped absolute
I(x=2)+ (a—1)A I(x>2) deviation

We have no plans to implement SCAD in JMP, but the pointis that there are
many types of penalties out there.
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Penalized Regression
The Lasso

Tibshirani (1996) introduced the Lasso:
Blasso = argﬁminZ(yi - xiﬁ)z + AZ |,3]|
i J

Biases coefficients by shrinking them toward zero, like ridge.
Unlike ridge, it can shrink estimates all the way to zero. (selection)

Least absolute shrinkage and selection operator

The absolute value penalty is a pain compared to ridge.



Penalized Regression
Ridge and Lasso Geometry

Instead of thinking about penalizing the SSE, we can think about these
methods as constrained optimization problems.

- Lasso: rrkinzi(yi — x;8)? such that Zj|,8j| <Ss
- Ridge: mﬁinzi(yi — x;)? such that Zjﬁ.z <s

Ridge

In two dimensions, the
feasible regions for lasso
and ridge are a diamond
and circle respectively.



Penalized Regression

257 257
204 204
154 154
-~
104 104
B Lasso
~ ridge ~
= 05+ = 054
0a- 0a-
05 05
=10 =104
. -1'13 -n'_'. [111] 05 lh 1.-5 20 . . -1'13 -n'_'. [111] 05 lh 1.-5 20 .
Betal Betal

Corners on the lasso feasible region allow for intersections at zero (selection).



Penalized Regression
Ridge vs Lasso

Ridge
« Providesan estimatefor all p terms (even whenn < p)
- Naturallyhandles collinearityand even linear dependencies

Lasso

« Estimationandvariable selection at the same time
« Providesestimatesfor up ton parameters

- If x4 and x, are highly correlated, we’ll probably only select one of them.

Can we combine their strengths?



Penalized Regression
The Elastic Net

Zou and Hastie (2005): Ridge + Lasso = Elastic Net
Penalty: p(B) = —,82 + a|f| a€]0,1]

-« a tuning parameter controls the mix of £; and £, penalties.
- Ridge and Lasso are special cases (& = 0 and @ = 1 respectively)
When a € (0,1)
1.  We get selection and shrinkage
2. We can handle collinearity and dependencies.
3. We can estimate more than n coefficients.
Just stick with a close to 1 (default is .99 in Genreg)



Penalized Regression
Elastic Net vs Lasso

Example

X, and x, are highly correlated and at least one of them is truly active.
- Lassowill likely only choose x, or x,
- Elastic Net will likely choose x, and x,

Elastic Net “stretches” to select groups of correlated variables.

Which solution is better? It depends.
Lasso will be simpler and probably predict well.
Elastic Net may have a more meaningful interpretation.



Penalized Regression
Adaptive Lasso

What if we knew in advance which predictors are important?

Then variable selection seems unnecessary...

But regardless, if we somehow knew which predictors were important we
might penalize their coefficients less.

Adaptive Lasso
Bar = arg min%,(y; = xiB)* + A% w; 15|

A predictor that we know is important would get a smaller weight.



Penalized Regression
Adaptive Lasso

Carefully chosen weights give the adaptive lasso the oracle property.

That means that asymptotically,
1.  We should choose the correct active set.
2. We should predict as well as if we knew the true active setin advance.

If we use the inverse of the OLS solution, we get the oracle property.
1

W] = =~
1B oLs|




Penalized Regression
Adaptive Lasso

But be careful! If OLS is unstable, the adaptive lasso may stink.

The nice theory around the adaptive lasso may be based on assumptions
that are not appropriate for your data.

You may want to avoid the adaptive lasso when Estimation Method

1. You havesingularities (n < p) Lasso

2. Your predictorsarehighly correlated
3. Youradaptivelasso fit looks suspicious

| Adaptive
> Advanced Controls

My advice: proceed with caution.



Penalized Regression
Another variation of the Lasso

There could be a benefit to doing the lasso twice.

1.  Dothe lasso on the full set of predictors, giving us a set S.
2.  DothelassoonS.

This is called the Double Lasso. Why do two passes?
Pass 1 = Selection
Pass 2 = Shrinkage

Breaking the processin two parts helps avoid overshrinking, which can
result in a better model.



Penalized Regression
Double Lasso

When will the second pass of the lasso pay off the most?
...if variables come and go before the best solution in the first pass.

A Solution Path

200 *

150
. <

If your Lasso
solution path looks
like this, then the
double lasso may
fit slightly better.
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Penalized Regression
The Dantzig Selector

Candes and Tao (2007) suggested a new penalized regression method
aimed at variable selection in the n < p setting.

BDS = arg minzj |Bj| subject to IXT(y—XB)|w < s
B

In words — control the magnitude of coefficients subject to a constraint on
the maximum correlation between the design and the residuals.

This is a penalized regression technique, but it is mainly recommended for
analyzing designed experiments.



Penalized Regression
Can you spot the difference?
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These pathsare nearly identical, but the active sets are actually slightly different.
GSas



Penalized Regression
The Dantzig Selector

From Efron, Hastie, and Tibshirani (2007)

Fromour brief study, the inherent criterion in DS for including predictorsin the
modelappears to be counterintuitive, and its prediction accuracy seems to be
similar tothat of the Lasso in some settings, and inferior in other settings. Hence
we find little reason to recommendthe Dantzig selector over the Lasso.

Might be worth trying with modeling the results of a designed experiment,
but skip it for observational data.



Some Options to Consider



Some Options to Consider
Effect Heredity

Recall: Effect Heredity means that in order for A*B to be in the model, A
and B must also be in the model.

Stepwise Methods accommodate heredity very easily.

Penalized Methods? Not so much.
Estimation Method

. . . . Lasso v
We will try if you request it. But if C] Adaptive
heredity is truly important, best to 4 Advanced Controls
stick with stepwise methods. [] Enforce Effect Heredity



Some Options to Consider
Grid Controls

Recall that when we fit a penalized regression model, we evaluate over a
grid of tuning parameters [A11, 45, -+, A% ].

k — 150 by defaUH-. Estimation Method

Lasso ™
[ ] Adaptive
We calculate Aj. It is the smallest value 4 Advanced Controls
[ ] Enforce Effect Heredity
Number of Grid Points | 150 |
Minimum Penalty Fraction ‘ 0 ‘

that zeroes out all of the coefficients.

And A; = aAy, you canspecify a € [0,1).
In the Genreg controls, we call this the “Minimum Penalty Fraction”.



Some Options to Consider
Grid Scale

We just saw how we choose the
minimum and maximum grid points.
The Grid Scale lets us choose how to
choose the pointsin between.
Linear: lots of models early in path

Log: lots of models latein the path

Square Root: A greatin-between

Estimation Method
Lasso
[ ] Adaptive
4 Advanced Controls

[ | Enforce Effect Heredity

Number of Grid Points |

150

Minimum Penalty Fraction |

Grid Scale

Initial Displayed Solution

> Force Terms

Square Root

Linear
Sguare Root
Log




Some Options to Consider
Grid Types

4 = Graph Builder
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Some Options to Consider
Forced Terms

As advertised, Forced Terms are omitted from the penalty. So they arein
every model in the solution path.

4 Solution Path
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Intercept -97.73917 25923427 14.215185 0.0002*
BMI 6.5633035 0.7476607 77.061221 0001*
BP 1.0367349 0.2271829 20.824962
Total Cholesterol Forced in  1.3633829 0.2426358
LDL -1470191  0.2779251 27.982843
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Some Options to Consider
Early Stopping

Forvery large problems, it might make sense to try Early Stopping.

Estimation Method

Lasso

What exactly does that mean?

| Adaptive

If we go 10 steps after the best fit, > Advanced Controls

we stop instead of going through the entire grid. Validation Method
AlCc

| Early Stopping

Example |
Lets say 4; provides the best fit so far.

Go

If we get to 4,19 and 4; is still the best, we go ahead and stop.

Of course sometimes we end up stopping too soon, so use caution.



Some Options to Consider

Informative Missing

If we have missing valuesin any of our predictors, we may want to consider
the Informative Missing option in the Fit Model launch.
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Some Options to Consider
Informative Missing

X Or Mean If
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Some Options to Consider
Initial Solution

By default, we give you the best fitting model.  EstmationMethod

Lasso
| Adaptive
' ' i dvanced I
But we can give you slightly bigger or smaller ~ “feneecsontre®

[] Enforce Effect Heredity

models that are still supported by the data. Number of Grid Points 750
Minimum Penalty Fraction 0]
Grid Scale ' Square Root
Let ¥ be the best AlCc or BIC. nital Displayed Solution [ gy py
A Smallest in Yellow Zone
Green Zone: [y, y +4] gl Ll Smallest in Green Zone
alidation Metho Best Fit
Ye”OW ZOﬂe [y +4, y +10] R B:ggestinGreenZDne
s . Biggest in Yellow Zone

[] Early Stopping

Works similarly with k-fold. [ 6o



Some Options to Consider
...0r maybe not
Do we really need to be concerned with these Advanced Controls???

We've chosen defaults carefully, so probably not often.

But they’re there if you need extra care with non-standard problems.



Summary

The Generalized Regression platform is the place to build regression
models.

...for both designed experiments and observational data.

Some things to keep in mind...

- Penalized regression shows great promise for observational data.
- Effect Heredity probablyisn’t necessary.

- Use a hold-out set if you have enough data, otherwise the AlCc.



Thanks!
Clay.Barker@sas.com
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