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Where did we leave off?

Last week, we talked about using the Generalized Regression platform in 
JMP Pro to analyze Designed Experiments.

https://community.jmp.com/t5/Mastering-JMP-Videos-and-Files/Developer-Tutorial-Using-JMP-Pro-Generalized-Regression-to/ta-p/434112
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What is Variable Selection Again?

Variable selection is the process of selecting a subset of variables 
(predictors) to use in modeling a response variable.

• We have a candidate set of 
explanatory variables that 
may be associated with the 
response. Put them all into a 
variable selection procedure 
and see what happens.

• But we still need to think 
carefully about our data!
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Where did we leave off?
Just to recap

With experiments, we tend to stick with stepwise methods with the AICc. 

And we tend to request Effect Heredity.

Stepwise
Methods AICc and 

BIC
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The same approach may not be optimal for observational data.

1. We probably have lots more data.

2. We almost certainly don’t have orthogonality.

3. We may be more interested in prediction than interpretation.

Today we’ll talk about the methods in Genreg that we tend to recommend 
for observational data sets.
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Estimation
How good is an estimator?

Whenever we estimate something, how do we measure how good it is?

There are two things to consider?

1. How far from the truth do the estimates tend to be? (Bias)

2. How variable are our estimates? (Variance)

We combine the two to define the Mean Square Error of an estimator.

Mean Squared Error( መ𝜃) = Bias መ𝜃
2

+ Variance( መ𝜃)
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Estimation
An exaggerated example

Suppose we do a simulation to 
compare two estimators. 

• Estimator 1 is centered at the 
truth (.5), but highly variable.

• Estimator 2 is slightly biased, 
but much less variable.

We’d almost certainly prefer 
Estimator 2, right?
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Estimation
Ordinary Least Squares

Often when we think of regression, we think of least squares estimation

መ𝛽𝑂𝐿𝑆 = arg min
𝛽



𝑖=1

𝑛

𝑦𝑖 − 𝑥𝑖𝛽
2

The Gauss-Markov theorem tells us that መ𝛽𝑂𝐿𝑆 has the minimum variance of 
all unbiased estimators.

…but OLS estimates can have high variance.

…in particular when our predictors are highly correlated.  
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Penalized Regression
Maybe some bias is OK?

High variance in OLS estimates can make our model not fit new data well.

Maybe a biased but less variable estimator would generalize better?

This is the motivation behind ridge regression.
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Penalized Regression
Ridge Regression

Hoerl and Kennard (1970) proposed ridge regression.

Instead of OLS, what if we minimize a penalized sum of squared errors?

መ𝛽𝑟𝑖𝑑𝑔𝑒 = arg min
𝛽


𝑖
𝑦𝑖 − 𝑥𝑖𝛽

2 +
𝜆

2


𝑗
𝛽𝑗
2

= 𝑋𝑇𝑋+ 𝜆𝐼𝑝
−1
𝑋𝑇𝑦

𝜆 is a tuning parameter that controls the magnitude of parameters.

• 𝜆 = 0 is the usual OLS solution.

• As 𝜆 increases, parameter estimates move toward zero. Shrinkage!

• Stabilizes estimates when predictors are highly correlated.
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Penalized Regression
Ridge Regression

Easiest to see how this 
works with a single 
predictor.

As the tuning parameter 
increases, the slope of the 
fitted line shrinks to zero.
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Penalized Regression
Can Ridge have a lower MSE than OLS?

• It depends on 𝜆

• 𝜆 ∈ 0,22 Ridge beats 
OLS, otherwise Ridge is 
worse

• This is a simulated 
example with N=100 
and p=50.
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Penalized Regression
Choosing the Tuning Parameter

In order to beat OLS, we need to carefully choose the tuning parameter 𝜆.

How should we do that?

Define a grid of values [𝜆1 , 𝜆2 ,⋯ , 𝜆𝑘]

Try out each value of 𝜆 and see which one fits the best (AICc, BIC, CV).

Usually we’d choose 𝜆1 = 0 to include OLS.

Very similar to what we talked about last week with stepwise methods: 

Fit a sequence of models and keep the best.
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Penalized Regression
The Importance of Ridge Regression

At the 2021 Joint Statistical Meetings, Trevor Hastie of Stanford had a talk 
celebrating the 50th anniversary of ridge regression.

Ridge or more formally  L2 regularization shows up in many areas of 
statistics and machine learning. It is one of those essential devices that any 

good data scientist needs to master for their craft.
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Penalized Regression
A Family of Models

Ridge opened the door to a variety of penalized regression techniques

መ𝛽 = arg min
𝛽



𝑖

𝑦𝑖 − 𝑥𝑖𝛽
2 + 𝜆

𝑗

𝜌(𝛽𝑗)

We have no plans to implement SCAD in JMP, but the point is that there are 
many types of penalties out there.
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Penalized Regression
The Lasso

Tibshirani (1996) introduced the Lasso:

መ𝛽𝑙𝑎𝑠𝑠𝑜 = arg min
𝛽



𝑖

𝑦𝑖 − 𝑥𝑖𝛽
2 + 𝜆

𝑗

|𝛽𝑗|

Biases coefficients by shrinking them toward zero, like ridge.

Unlike ridge, it can shrink estimates all the way to zero. (selection)

Least absolute shrinkage and selection operator

The absolute value penalty is a pain compared to ridge.
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Penalized Regression
Ridge and Lasso Geometry

Instead of thinking about penalizing the SSE, we can think about these 
methods as constrained optimization problems.

• Lasso: min
𝛽

σ𝑖 𝑦𝑖 − 𝑥𝑖𝛽
2 such that σ𝑗 𝛽𝑗 ≤ 𝑠

• Ridge: min
𝛽

σ𝑖 𝑦𝑖 − 𝑥𝑖𝛽
2 such that σ𝑗 𝛽𝑗

2 ≤ 𝑠

In two dimensions, the 
feasible regions for lasso 
and ridge are a diamond 
and circle respectively.
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Penalized Regression
More Geometry

Corners on the lasso feasible region allow for intersections at zero (selection).
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Penalized Regression
Ridge vs Lasso

Ridge

• Provides an estimate for all p terms (even when 𝑛 < 𝑝)

• Naturally handles collinearity and even linear dependencies

Lasso

• Estimation and variable selection at the same time

• Provides estimates for up to 𝑛 parameters

• If 𝑥1 and 𝑥2 are highly correlated, we’ll probably only select one of them.

Can we combine their strengths?
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Penalized Regression
The Elastic Net

Zou and Hastie (2005):  Ridge + Lasso = Elastic Net

Penalty:  𝜌 𝛽 =
1−𝛼

2
𝛽2 + 𝛼|𝛽| 𝛼 ∈ 0,1

• 𝛼 tuning parameter controls the mix of ℓ1 and ℓ2 penalties.

• Ridge and Lasso are special cases (𝛼 = 0 and 𝛼 = 1 respectively)

When 𝛼 ∈ 0,1

1. We get selection and shrinkage

2. We can handle collinearity and dependencies.

3. We can estimate more than n coefficients.

Just stick with 𝛼 close to 1 (default is .99 in Genreg)
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Penalized Regression
Elastic Net vs Lasso

Example

𝑥2 and 𝑥4 are highly correlated and at least one of them is truly active.

• Lasso will likely only choose 𝑥2 or 𝑥4
• Elastic Net will likely choose 𝑥2 and𝑥4

Elastic Net “stretches” to select groups of correlated variables.

Which solution is better? It depends. 

Lasso will be simpler and probably predict well.

Elastic Net may have a more meaningful interpretation.
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Penalized Regression
Adaptive Lasso

What if we knew in advance which predictors are important?

Then variable selection seems unnecessary…

But regardless, if we somehow knew which predictors were important we 
might penalize their coefficients less.

Adaptive Lasso
መ𝛽𝐴𝐿 = arg min

𝛽
σ𝑖 𝑦𝑖 − 𝑥𝑖𝛽

2 + 𝜆σ𝑗𝑤𝑗 |𝛽𝑗|

A predictor that we know is important would get a smaller weight.
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Penalized Regression
Adaptive Lasso

Carefully chosen weights give the adaptive lasso the oracle property.

That means that asymptotically,

1. We should choose the correct active set.

2. We should predict as well as if we knew the true active set in advance.

If we use the inverse of the OLS solution, we get the oracle property.

𝑤𝑗 =
1

| መ𝛽𝑗,𝑂𝐿𝑆|
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Penalized Regression
Adaptive Lasso

But be careful! If OLS is unstable, the adaptive lasso may stink.

The nice theory around the adaptive lasso may be based on assumptions 
that are not appropriate for your data.

You may want to avoid the adaptive lasso when

1. You have singularities (𝑛 ≪ 𝑝)

2. Your predictors are highly correlated

3. Your adaptive lasso fit looks suspicious

My advice: proceed with caution.
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Penalized Regression
Another variation of the Lasso

There could be a benefit to doing the lasso twice.

1. Do the lasso on the full set of predictors, giving us a set S.

2. Do the lasso on S.

This is called the Double Lasso. Why do two passes?

Pass 1 = Selection

Pass 2 = Shrinkage

Breaking the process in two parts helps avoid overshrinking, which can 
result in a better model.



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Penalized Regression
Double Lasso

When will the second pass of the lasso pay off the most?

…if variables come and go before the best solution in the first pass.

If your Lasso 
solution path looks 
like this, then the 
double lasso may 
fit slightly better.
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Penalized Regression
The Dantzig Selector

Candes and Tao (2007) suggested a new penalized regression method 
aimed at variable selection in the 𝑛 ≪ 𝑝 setting.

መ𝛽𝐷𝑆 = arg min
𝛽

σ𝑗 |𝛽𝑗| subject to 𝑋𝑇(𝑦 − 𝑋𝛽) ∞ ≤ 𝑠

In words – control the magnitude of coefficients subject to a constraint on 
the maximum correlation between the design and the residuals.

This is a penalized regression technique, but it is mainly recommended for 
analyzing designed experiments.
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Penalized Regression
Can you spot the difference?

Lasso Dantzig Selector

These paths are nearly identical, but the active sets are actually slightly different.
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Penalized Regression
The Dantzig Selector

From Efron, Hastie, and Tibshirani (2007)

From our brief study, the inherent criterion in DS for including predictors in the 
model appears to be counterintuitive, and its prediction accuracy seems to be 
similar to that of the Lasso in some settings, and inferior in other settings. Hence 
we find little reason to recommend the Dantzig selector over the Lasso.

Might be worth trying with modeling the results of a designed experiment, 
but skip it for observational data.
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Some Options to Consider
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Some Options to Consider
Effect Heredity

Recall: Effect Heredity means that in order for A*B to be in the model, A 
and B must also be in the model.

Stepwise Methods accommodate heredity very easily.

Penalized Methods? Not so much.

We will try if you request it. But if 

heredity is truly important, best to 

stick with stepwise methods.
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Some Options to Consider
Grid Controls

Recall that when we fit a penalized regression model, we evaluate over a 
grid of tuning parameters [𝜆1 , 𝜆2 ,⋯ , 𝜆𝑘].

𝑘 = 150 by default

We calculate 𝜆𝑘 . It is the smallest value 

that zeroes out all of the coefficients.

And 𝜆1 = 𝑎𝜆𝑘 , you can specify 𝑎 ∈ [0,1).

In the Genreg controls, we call this the “Minimum Penalty Fraction”.
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Some Options to Consider
Grid Scale

We just saw how we choose the 
minimum and maximum grid points.
The Grid Scale lets us choose how to 
choose the points in between.

Linear: lots of models early in path

Log: lots of models late in the path

Square Root: A great in-between
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Some Options to Consider
Grid Types

Grid points closer to 0 
are closer to the 
unpenalized fit.

Grid points closer to 1 
are closer to the 
intercept only model.
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Some Options to Consider
Forced Terms

As advertised, Forced Terms are omitted from the penalty. So they are in 
every model in the solution path.
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Some Options to Consider
Early Stopping

For very large problems, it might make sense to try Early Stopping.

What exactly does that mean?

If we go 10 steps after the best fit, 

we stop instead of going through the entire grid.

Example

Lets say 𝜆𝑗 provides the best fit so far.

If we get to 𝜆𝑗+10 and 𝜆𝑗 is still the best, we go ahead and stop.

Of course sometimes we end up stopping too soon, so use caution.
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Some Options to Consider
Informative Missing

If we have missing values in any of our predictors, we may want to consider 
the Informative Missing option in the Fit Model launch.
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Some Options to Consider
Informative Missing

Original Data Modified Data

When you ask for 
informative missing, 
we essentially 
convert it to the 
modified data for 
modelling.

That way we don’t 
have to drop any 
rows.
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Some Options to Consider
Initial Solution

By default, we give you the best fitting model.

But we can give you slightly bigger or smaller 
models that are still supported by the data.

Let 𝛾 be the best AICc or BIC.

Green Zone: [𝛾, 𝛾 +4]

Yellow Zone: [𝛾 +4, 𝛾 +10]

Works similarly with k-fold.
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Some Options to Consider
…or maybe not

Do we really need to be concerned with these Advanced Controls???

We’ve chosen defaults carefully, so probably not often.

But they’re there if you need extra care with non-standard problems.
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Summary

The Generalized Regression platform is the place to build regression 
models.

…for both designed experiments and observational data.

Some things to keep in mind…

• Penalized regression shows great promise for observational data.

• Effect Heredity probably isn’t necessary.

• Use a hold-out set if you have enough data, otherwise the AICc.
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Thanks!
Clay.Barker@sas.com

http://www.sas.com/

