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Minimum volume ellipsoid
Stefan Van Aelst1∗ and Peter Rousseeuw2

The minimum volume ellipsoid (MVE) estimator is based on the smallest volume
ellipsoid that covers h of the n observations. It is an affine equivariant, high-
breakdown robust estimator of multivariate location and scatter. The MVE can be
computed by a resampling algorithm. Its low bias makes the MVE very useful for
outlier detection in multivariate data, often through the use of MVE-based robust
distances.
We review the basic MVE definition as well as some useful extensions such as the
one-step reweighted MVE. We discuss the main properties of the MVE including
its breakdown value, affine equivariance, and efficiency. We discuss the basic
resampling algorithm to calculate the MVE and illustrate its use on two examples.
An overview of applications is given, as well as some related classes of robust
estimators of multivariate location and scatter.  2009 John Wiley & Sons, Inc. WIREs Comp
Stat 2009 1 71–82

INTRODUCTION

The minimum volume ellipsoid (MVE), introduced
by Rousseeuw,1,2 was the first high-breakdown

robust estimator of multivariate location and scatter
that has come to be regularly used in practice. The
MVE became popular thanks to its high resistance to
outliers, which makes it a reliable tool for outlier
detection, and the widely available, user-friendly
implementations of its computational algorithm. We
first review the definition of the MVE and illustrate
its use on two real data examples. We then give an
overview of some important properties of the MVE,
which are affine equivariance, breakdown value,
and efficiency. We discuss the standard resampling
algorithm to calculate MVE estimates in practice and
give references to alternative algorithms. We give
an overview of applications of the MVE estimators
of location and scatter, which often involve outlier
detection in multivariate data. We also discuss some
extensions of the MVE, and related estimators.

DEFINITION
We consider a multivariate dataset Xn = {x1, . . . , xn}
with n observations xi = (xi1, . . . , xip)t; i = 1, . . . , n in
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p dimensions. Note that all vectors in this overview
are considered to be column vectors. We focus on
estimating the location and scatter of this multivariate
dataset Xn. It is convenient to collect the observations
of a dataset Xn in an n × p data matrix X where each
row corresponds to an observation xi of Xn.

As an example, we consider the pulp fiber data3

which is available in the R package ‘robustbase’. This
dataset contains measurements of properties of pulp
fibers and the paper made from them. The final aim is
to investigate relations between pulp fiber properties
and the resulting paper properties, see e.g., Refs 4,5
Here we focus on the pulp fiber properties. The dataset
contains n = 62 measurements of the following four
pulp fiber characteristics: arithmetic fiber length, long
fiber fraction, fine fiber fraction, and zero span tensile
strength. A standard approach to investigate whether
this multivariate dataset forms a homogeneous group
or contains aberrant points is to calculate the
Mahalanobis distances of the observations, given by

MD(xi) =
√

(xi − x̄n)tS−1
n (xi − x̄n) i = 1, . . . , n

(1)

where x̄n is the sample mean and Sn the sample
covariance matrix of the data. It is well known
that if the data follow a four-dimensional Gaussian
distribution, then the squared Mahalanobis distances
approximately follow a chi-square distribution with
four degrees of freedom. Therefore, we compare the
Mahalanobis distances to the square root of χ2

4,0.975,
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FIGURE 1 | Distances of the observations in the pulp fiber dataset based on the four pulp fiber properties: (a) Mahalanobis distances based on
sample mean and sample covariance matrix; (b) Robust distances based on MVE estimates of location and scatter. The horizontal cutoff line in both

panels is at
√

χ2
4,0.975 = 3.34.

which is the 97.5% quantile of the chi-square distri-
bution with four degrees of freedom. This cutoff value
is represented by the horizontal line in Figure 1a.

If the data indeed form a homogeneous cloud,
then we do not expect to find any Mahalanobis dis-
tances far above the horizontal cutoff line. Figure 1a
suggests that the data are fairly homogeneous with at
most two observations that deviate a little from the
data cloud formed by the other observations. How-
ever, it is well known that the sample mean and sample
covariance matrix can be heavily influenced by out-
liers in a multivariate dataset (see e.g., Refs 6–8). As
a result, even if there are outliers in the dataset, they
can affect the sample mean and sample covariance
matrix in such a way that these outliers get small
Mahalanobis distances MD(xi). Hence, outliers can
remain undetected in Figure 1a. This phenomenon is
called the masking effect (see e.g., Refs 9,10). Because
the dimension of the dataset in this example is fairly
low, we can examine the dataset further by investigat-
ing the pairwise scatterplots in Figure 2. The ellipses
shown in these scatterplots are the projections of the
tolerance ellipsoid

E(x̄n, Sn, 0.975) =
{
x; MD(x) ≤

√
χ2

4,0.975

}
(2)

on the respective coordinate planes. Hence, in a homo-
geneous point cloud all observations should lie within
or close to the boundaries of these ellipses. From
the scatterplots in Figure 2 we immediately see that
although no observations lie far from the ellipses, the

data do not form a homogeneous cloud. Several obser-
vations deviate from the shape of the majority of the
points. These outliers have inflated the sample covari-
ance matrix and also affected its shape, which leads
to the masking effect when investigating Mahalanobis
distances. Hence, to reliably estimate the center and
scatter of this dataset, robust estimates of location
and scatter are needed, such as the MVE estimator.

The MVE estimator of multivariate location and
scatter of a dataset Xn is defined as the center and
covariance structure of the ellipsoid with minimal
volume that covers at least h points of Xn, where h
can be chosen between [n/2] + 1 and n. Note that for
any x ∈ R, the value [x] denotes the largest integer
smaller than or equal to x. More formally, the MVE
estimator is defined as follows.

Definition 1 The MVE location estimator tn and
scatter estimator Cn minimize the determinant of C
subject to the condition

#{i; (xi − t)tC−1(xi − t) ≤ c2} ≥ h, (3)

where the minimization is over all t ∈ R
p and

C ∈ PDS(p), the class of positive definite symmetric
matrices of size p.

The value c is a fixed chosen constant that
determines the magnitude of Cn. Usually, c is chosen
such that Cn is a consistent estimator of the covariance
matrix for data coming from a multivariate normal
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FIGURE 2 | Pairwise scatterplots of the four pulp fiber variables. The ellipses represent the 97.5% tolerance ellipsoid for the observations, based
on the sample mean and sample covariance matrix.

distribution, i.e., c =
√

χ2
p,α where α = h/n. From its

definition it is clear that the MVE estimates the center
and scatter of the h most concentrated observations in
the dataset. The value of h can be chosen by the user
and determines the robustness of the resulting MVE
estimates. A standard choice is h = [(n + p + 1)/2]
because it yields the maximal breakdown value as
will be explained in the next section, where we give
an overview of the properties of the MVE estimator.
The examples in this article all use this standard
choice of h.

Let us return to the example. Figure 1b shows
the robust distances of the observations based on the
MVE estimates of location and scatter,7 given by

RD(xi) =
√

(xi − tn)tC−1
n (xi − tn) i = 1, . . . , n.

(4)

In Figure 1b we immediately see that the dataset
contains two far outliers and seven less extreme
outliers. Figure 3 shows the pairwise scatterplots with
the MVE-based tolerance ellipsoid

E(tn, Cn, 0.975) =
{
x; RD(x) ≤

√
χ2

4,0.975

}
. (5)

These scatterplots illustrate that the MVE
estimates of location and scatter indeed reflect the
center and shape of the majority of the data.

As a second example, we consider an engineer-
ing problem that was first analyzed in Ref 11 Philips
Mecoma (The Netherlands) produced diaphragm
parts for TV sets. These are thin metal plates, molded
by a press. When starting a new production line,
p = 9 characteristics were measured for n = 677
parts. The aim was to gain insight in the production
process and to find out whether abnormalities have
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FIGURE 3 | Pairwise scatterplots of the four pulp fiber variables. The ellipses represent the 97.5% tolerance ellipsoid for the observations, based
on the MVE estimates of location and scatter.

occurred and why. We can again calculate distances
of the observations and check for unexpectedly large
distances that indicate anomalies in the data. When
classical Mahalanobis distances are used, there is
no indication of severe anomalies (see Figure 1 in
Ref 11), but as before this may be the consequence of
the masking effect. Therefore, we now examine the
MVE-based robust distances shown in Figure 4. This
figure gives a much better insight into the evolution
of the production process. The robust distances
immediately reveal that the production line was
unstable in the beginning (first 100 observations) and
reveals a strongly deviating group of outliers, ranging
from index 491 to index 565. Both phenomena
were investigated and interpreted by engineers at
Philips.

PROPERTIES

Affine equivariance
A natural property of estimators in the multivariate
location and scatter model is affine equivariance,
which means that the estimators behave properly
under affine transformations of the data. That is,
the estimators T and C of multivariate location and
scatter are affine equivariant iff for any data matrix X

T(XA + 1nvt) = AtT(X) + v

C(XA + 1nvt) = AtC(X)A (6)

for all nonsingular p × p matrices A and v ∈ R
p. The

vector 1n = (1, 1, . . . , 1)t ∈ R
n. Affine equivariance of

the estimators is important because it makes the
analysis independent of the measurement scale of
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FIGURE 4 | MVE-based robust distances of the observations in the

Philips dataset. The horizontal cutoff line is at
√

χ2
9,0.975 = 4.36.

the variables as well as translations or rotations of
the data.

The MVE estimates tn and Cn of multivariate
location and scatter are affine equivariant.2,7 This
follows from the fact that the nonsingular affine
transformation x → Atx + v transforms an ellipsoid
with center m and scatter matrix S containing at least
h points of X into an ellipsoid with center Atm + v and
scatter matrix AtSA which contains at least h points of
XA + 1nvt. The volume of the transformed ellipsoid
equals det(AtSA)1/2 = |det(A)|det(S)1/2. Since |det(A)|
is a constant, the MVE estimates of XA + 1nvt are
indeed given by Attn + v and AtCnA where tn, Cn are
the MVE estimates of X.

Breakdown value
A useful measure of the global robustness of an
estimator is its breakdown value. Intuitively, the
breakdown value is the smallest percentage of
contamination that can have an arbitrarily large effect
on the estimator (see e.g., Refs 6,7). Results for the
breakdown value of the MVE estimators of location
and scatter have been given in Refs 2,12,13

We discuss the finite-sample replacement
breakdown value, introduced in Ref 14 For a given
dataset Xn, consider all possible contaminated
datasets X̃n obtained by replacing any m of the
original observations by arbitrary points. Then the
finite-sample breakdown value ε∗

n(T, Xn) of a location
estimator T at the dataset Xn is the smallest fraction
m/n of outliers that can carry the estimate over

all bounds:

ε∗
n(T, Xn) := min

m

{
m
n

; sup
X̃n

‖T(X̃n) − T(Xn)‖ = ∞
}

.

(7)

Usually ε∗
n(T, Xn) varies only slightly between samples

and with the sample size n, so that we can denote its
limiting value (for n → ∞) by ε∗(T). Similarly, the
breakdown value of a covariance matrix estimator C
is defined as the smallest fraction of contamination
that can either take the largest eigenvalue λ1(C) to
infinity or the smallest eigenvalue λp(C) to zero. For
the MVE estimators we then have the following result.

Theorem 1 Consider a dataset Xn ⊂ R
p that is in

general position, which means that no p + 1 points lie
on a hyperplane. Then the MVE estimators (tn, Cn)
of multivariate location and scatter have finite-sample
breakdown value

ε∗
n(tn, Xn) = ε∗

n(Cn, Xn)

= min(n − h + 1, h − p)
n

. (8)

It follows immediately that for n → ∞ the
breakdown value of the MVE estimators equals
ε∗(T) = ε∗(C) = min(α, 1 − α) where α = h/n as
before. From Theorem 1 it can be shown that the
MVE estimates have their highest breakdown value
ε∗

n(tn, Xn) = ε∗
n(Cn, Xn) = [(n − p + 1)/2]/n ≈ 50%

when h = [(n + p + 1)/2] (see Ref 12). One can prove
that this is the maximal breakdown value for all affine
equivariant estimators of scatter15 and location.16

Efficiency
Davies13 has shown that the MVE estimators of
location and scatter converge at rate n−1/3 to a non-
Gaussian distribution. This low rate of convergence
implies that the asymptotic efficiency of the MVE
estimators is 0%. Also the finite-sample efficiency of
the MVE estimates is low (see e.g., Ref 7). Therefore,
one usually computes the one-step reweighted MVE
estimates,17 given by

t1
n =

(
n∑

i=1

wixi

) /(
n∑

i=1

wi

)

C1
n =

(
n∑

i=1

wi(xi − t1
n)(xi − t1

n)t

)/(
n∑

i=1

wi

)
(9)
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with

wi =
{

1 if RD(xi) ≤
√

χ2
p,0.975

0 otherwise

where RD(xi) are the robust distances of the
observations based on the initial MVE estimates of
location and scatter as defined in (4). These one-
step reweighted MVE estimates are a weighted mean
and covariance where regular observations are given
weight one, but outliers (according to the initial
MVE solution) are given weight zero. The one-step
reweighted MVE estimators have the same breakdown
value as the initial MVE estimators12 but a much
better finite-sample efficiency (see e.g., Refs 7,17).
Note that many software implementations (such as
the implementation in R that we used for the examples
in this review) report the one-step reweighted MVE
estimates by default.

Note that it has been shown more recently
that the one-step reweighted MVE estimates do not
improve on the convergence rate (and thus the 0%
asymptotic efficiency) of the initial MVE estimator.18

Therefore, as an alternative, a one-step M-estimator
can be calculated with the MVE estimates as initial
solution,2,19 which results in an estimator with the
standard n−1/2 convergence rate to a normal asymp-
totic distribution. Another alternative to increase the
efficiency of the MVE while retaining its robustness
properties has been proposed in Ref 20.

ALGORITHM
From Definition 1 it follows that calculating the exact
MVE for a dataset Xn would require examining
all (n

h) ellipsoids containing h observations of Xn
to find the ellipsoid with smallest volume. This
number of ellipsoids is usually very large, hence
solving this combinatorial problem is only feasible
in practice for small datasets in low dimensions.21,22

Therefore, one resorts to approximate algorithms.
The standard MVE algorithm limits its search to
ellipsoids determined by subsets consisting of (p + 1)
observations of Xn. For each subset of size (p + 1),
indexed by J = {i1, . . . , ip+1} ⊂ {1, . . . , n}, its sample
mean and sample covariance matrix given by

x̄J = 1
p + 1

p+1∑
j=1

xij and SJ = 1
p

p+1∑
j=1

(xij − x̄J)(xij − x̄J)t

(10)

are calculated. The covariance matrix SJ is nonsin-
gular iff the (p + 1)-subset is in general position. If

the (p + 1)-subset is not in general position, then
observations from Xn are added until a subset with
nonsingular sample covariance matrix is obtained (or
a singular subsample of size h is obtained, in which
case the final MVE solution is singular). The ellipsoid
determined by x̄J and SJ is then inflated or deflated
until it contains exactly h points: the scaling factor is

given by D2
J /c2 with c =

√
χ2

p,α as before and

D2
J = [(xi − x̄J)t(SJ)−1(xi − x̄J)]h:n, (11)

where h : n indicates the hth smallest squared distance
among the squared distances of the n observations in
Xn. The resulting ellipsoid then satisfies condition (3)
and its volume is proportional to

[det((D2
J /c2)SJ)]1/2 = (DJ/c)pdet(SJ)1/2. (12)

The algorithm then returns the solution with smallest
objective function (12) among a large number of
(p + 1)-subsets.

It has been shown that this resampling algorithm
keeps the affine equivariance property of the MVE
estimator. Moreover, if all ( n

p+1) subsets of size (p + 1)
are considered, then the solution of the algorithm
has the same breakdown value as the exact MVE.23

However, in practice the total number of (p + 1)-
subsets is infeasibly large and only a random collection
is considered. Standard implementations of the MVE
algorithm use m = 3000 random (p + 1)-subsets by
default, to keep the computation time reasonable.24

However, modern computers can handle many more
(p + 1)-subsets in a short period of time. For example,
for the Philips data (n = 677, p = 9) that we used
as an example in this review, it takes less than
9 s to calculate the approximate MVE solution
based on m = 30000 random (p + 1)-subsamples
when using the R implementation on a standard
contemporary PC.

Croux and Haesbroeck25 proposed a modifica-
tion of the standard resampling algorithm for MVE
by taking an average of the solutions corresponding to
several ‘near-optimal’ (p + 1)-subsets instead of con-
sidering only the solution corresponding to the best
(p + 1)-subset. They showed that their average solu-
tion maintains the breakdown value and has a better
finite-sample efficiency.25,26 The standard resampling
algorithm can also be improved by using location
adjustment as proposed in Ref 27. An alternative
improvement of the standard resampling algorithm
for MVE has been proposed in Ref 8 [pp. 198–199] by
updating the center and scatter estimates correspond-
ing to the best (p + 1)-subset, using the h observations
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within its minimum volume ellipsoid. Several alter-
native algorithms to calculate the MVE have been
proposed.17,28–35

The resampling algorithm to calculate the MVE
estimators of multivariate location and scatter has
been implemented in several software packages. In
standard S-PLUS the MVE is available as the function
cov.mve. In R, this function is part of the library
MASS. The improved resampling algorithm proposed
in Ref 8 has been implemented in the R library rrcov
as the function CovMve. The MVE is also available
in SAS/IML as the call MVE (since Version 6.12).
Finally, the MVE is still available as a stand-alone
FORTRAN program that can be downloaded from
the website http://www.agoras.ua.ac.be/.

APPLICATIONS

To reliably detect outliers in multivariate data, it is
not only important that the estimators of location
and scatter have a high breakdown value but also
that the bias of the estimators caused by a fraction of
contamination below the breakdown value should be
as small as possible. The maximal possible asymptotic
bias, called maxbias, of the MVE estimates caused
by a fixed fraction of contamination has been
investigated in Refs 36,37 in the one-dimensional case
and in Refs 38,39 in the multivariate case. It turns out
that the maxbias of the MVE estimators is generally
low and compares favorably to many other high-
breakdown estimators of multivariate location and
scatter, such as the Stahel-Donoho estimator40–42 and
the minimum covariance determinant estimator.1,2

The good bias behavior of the MVE makes the esti-
mator suitable for outlier detection. For this purpose,
the MVE estimate of scatter is often multiplied by a
finite-sample correction factor such that the resulting
robust distances are appropriately scaled when
the observations come from a multivariate normal
distribution (see Ref 43 for details). Therefore, cutoff
values of the usual χ2

p distribution can be used for the
robust distances based on the MVE.

MVE-based robust distances are often used to
detect leverage points in linear regression.17 Leverage
points are outliers in the explanatory variables of
the regression model and have a high influence on
the standard least squares regression (see e.g., Ref 7).
Detecting leverage points by examining the MVE-
based robust distances of the explanatory part of
the observations was first proposed in the context
of least median of squares (LMS) regression.1 LMS,
or its generalization the least quantile of squares
(LQS) estimator,24 is a regression analog of the MVE.

Consider a dataset Zn = {(x1, y1), . . . , (xn, yn)} and the
multiple regression model

yi = θ1xi1 + · · · + θpxip + εi = xt
iθ + εi; i = 1, . . . , n

(13)

where εi are the errors centered at zero. The residuals
corresponding to a fit θ are denoted by ri(θ) =
yi − xt

iθ. The LQS looks for the fit θn that minimizes
the h smallest squared residual r2

i (θ)h:n where h is
usually chosen between [n/2] + 1 and n. From this
definition it is clear that the LQS is determined by the
h observations in the dataset that lie most concentrated
around a hyperplane. For the choice h = [n/2] + 1, the
LQS minimizes the median of the squared residuals
which leads to the LMS. For datasets in general
position, the breakdown value of the LQS is given by

ε∗
n(θn, Zn) = min(n − h + 1, h − p + 1)

n
. (14)

It follows immediately that for n → ∞ the breakdown
value of the LQS becomes ε∗(θLQS) = min(α, 1 − α)
where α = h/n as before. Moreover, the LQS
reaches its maximal breakdown value ε∗

n(θn, Zn) =
([(n − p)/2] + 1)/n ≈ 50% when h = [(n + p + 1)/2]
(see Ref. 24 for details).

To detect regression outliers and leverage points
simultaneously, a diagnostic plot was introduced17

which divides the observations into four categories:
regular observations, vertical outliers, good leverage
points, and bad leverage points. A vertical outlier is
an observation whose xi is inlying but whose (xi, yi)
does not fit the linear trend formed by the majority
of the data. A leverage point is an observation with
outlying xi. It is called a good leverage point if its
(xi, yi) fits the linear trend formed by the majority of
the data, and a bad leverage point when it does not.
Applications of LMS with MVE-based detection of
leverage points have been given in several areas such
as chemometrics,44 management,45 and astronomy.46

MVE-based robust distances were used in
Refs 47–50 in the context of one-step M-estimators
with high breakdown value, in Refs 51,52 in the
context of high-breakdown rank regression, and
in Refs 53,54 for high-breakdown estimators in
heteroscedastic regression models. The MVE can also
be used for estimating location with dependent data.55

The MVE has also been used for outlier detection
in many other multivariate analysis models such
as principal component analysis,56,57 discriminant
analysis,58,59 factor analysis,60 multiplicative factor
models,61 image segmentation,62 and multivariate
control charts.63–65 Some textbooks also recommend
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using the MVE for robust multivariate data analysis
(see e.g., Ref 66 [pp. 56–61]).

EXTENSIONS

The MVE can be seen as a special case within the class
of S-estimators.67 Location-scatter S-estimators7,15,68

are defined as follows.

Definition 2 The S-estimators of multivariate location
and scatter are the solution (t0

n, C0
n) which minimizes

the determinant of C under the constraint

1
n

n∑
i=1

ρ0

(√
(xi − t)tC−1(xi − t)

)
≤ b (15)

over all t ∈ R
p and C ∈ PDS(p).

Setting b = EF[ρ0(‖X)‖] ensures consistency at
the model distribution F, which usually is taken
to be multivariate normal. The choice of the
discontinuous function ρ0 = 1 − I(x ∈ [0, c]) and b =
(n − h)/n yields the MVE estimators. It can be shown
that for suitable choices of continuously differentiable
loss functions ρ0, S-estimators have a high breakdown
value and are asymptotically normal.15,68 A standard
choice for the loss function ρ0 is Tukey’s biweight
ρ-function, given by

ρ(x) =



x2

2 − x4

2c2 + x6

6c4 if |x| ≤ c

c2

6 if |x| ≥ c.
(16)

The constant c determines the breakdown value
which is given by ε∗ = 6b/c2, so S-estimators can
be tuned to have high breakdown value. S-estimators
have a positive efficiency at the multivariate normal
distribution, but there exists a trade-off between
efficiency and breakdown value. The efficiency of
high-breakdown S-estimators can still be quite low,
especially in lower dimensions, which makes them less
suitable for inference. Note that S-estimators of scatter
can also be based on differences of the observations,
which yields a higher efficiency.69

MM-estimators are an extension of S-estimators
that have high efficiency at the multivariate normal
distribution and at the same time a high break-
down value.70,71 Location-scatter MM-estimators are
defined as follows.

Definition 3 let (t0
n, C0

n) be multivariate S-estimators
as given by Definition 2. Denote sn := det(C0

n)1/(2p).

Then the multivariate MM-estimators for location
and shape (t1

n, V1
n) minimize

1
n

n∑
i=1

ρ1

(
[(xi − t)tG−1(xi − t)]

1
2 /sn

)

among all t ∈ R
p and G ∈ PDS(p) for which det(G) =

1. The MM-estimator for the scatter matrix is
C1

n := s2
nV1

n.

MM-estimators are thus two-step estimators.
In the first step, a robust high-breakdown estimator
sn of the scale of the distribution is obtained. This
preliminary estimate of scale is then used to calculate
M-estimators of location t1

n and shape V1
n. It can be

shown that the loss function ρ0 used to calculate the
initial S-estimator determines the breakdown value of
the estimators t1

n, V1
n, and C1

n while the loss function
ρ1 can be tuned to obtain a high efficiency, e.g., 95%
efficiency for the location estimator t1

n when the data
come from a multivariate normal distribution (see
Refs 70,71 for details). Related classes of multivariate
location and scatter estimators that can attain high
breakdown value and high efficiency at the same time
are the CM-estimators72 and τ -estimators.73

Note that although these highly efficient esti-
mators also attain a high breakdown value, there is
a robustness cost in terms of the maxbias of these
estimators for fractions of contamination below the
breakdown value.74 The higher bias of these estima-
tors makes them somewhat less suitable when the
main goal is outlier detection. On the other hand,
their high efficiency makes them more appropriate for
inference purposes. Inference can be derived from the
asymptotic normal distribution of the estimators, or
the bootstrap approach can be used. However, note
that a standard application of the bootstrap to robust
estimators poses two problems. First, the high com-
putation time of robust estimators causes practical
limitations because recalculating robust estimates a
large number of times becomes very time consuming.
Second, the fraction of outliers varies among boot-
strap samples. Therefore, the estimator may break
down in some bootstrap samples even though the
fraction of outliers in the original sample does not
exceed the breakdown value of the estimator. To
solve both problems simultaneously, we can calculate
a one-step approximation for the robust estimate in
each bootstrap sample, starting from the solution in
the original sample. It has been shown that when a
linear correction is used, this fast bootstrap procedure
is robust and consistent in the sense that the bootstrap
distribution converges weakly to the distribution of
the estimators (see Refs 71,75,76 for details).
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The MVE estimator of multivariate location and
scatter discussed here is also related to the minimum
covariance determinant estimator (MCD) that was
introduced in Refs 1,2. The MCD looks for the h
observations whose sample covariance matrix has the
smallest possible determinant. The MCD estimates of
location and scatter are then the sample mean and
sample covariance matrix (multiplied by a consistency
factor) of that optimal subset of h observations where,
as before, h is usually chosen between [n/2] + 1 and
n. The MCD estimators of location and scatter have
the same breakdown value as the MVE estimators (see
e.g., Refs 77). The MCD has the additional advantage
that it converges to a normal distribution at the regu-
lar n−1/2 rate.78 Its efficiency is generally low, but can
be much increased by one-step reweighting.11,18,79 For
many years, the MVE was preferred over the MCD
because of its slightly better computational efficiency
when using a resampling algorithm. However, in 1999
a much faster MCD algorithm was developed11 and
since then many users prefer the MCD as robust
estimator of location and scatter.

Projection estimators of multivariate location
and scatter can combine a high breakdown value
with a small maxbias that does not depend on the
dimension p.38,80–85 However, these estimators are
substantially harder to compute, especially in higher
dimensions. Finally, we note that the MVE has also
been extended to a class of maximum trimmed likeli-
hood estimators.86

CONCLUSION

We have reviewed the MVE estimator of multivari-
ate location and scatter. An overview of the main
properties of the MVE has been given, including its
affine equivariance, breakdown value, and efficiency.
The finite-sample efficiency can easily be improved by
reweighting the initial MVE estimator. We discussed
computation of the MVE using a resampling algorithm
based on (p + 1)-subsets. Several researchers have
focused on the development of efficient algorithms
to calculate approximate MVE solutions. However, it
seems to us that there is still room for improvement.
Moreover, many of the already proposed improve-
ments are not available in most statistical software
packages, in contrast to the standard resampling algo-
rithm. The high breakdown value and low maxbias of
the MVE estimators make them very useful for outlier
detection in multivariate datasets, as illustrated in this
article. This property is often used in regression to
detect leverage points. An overview of applications
of MVE has been given as well as some extensions
of MVE to larger classes of robust estimators with
useful properties. Note that an extensive overview
of high-breakdown robust multivariate methods has
been given in Ref 87.

A challenging problem for future research is
the development of robust estimators of multivariate
location and scatter for very high-dimensional data,
especially when the sample size is small compared to
the dimension. A discussion on robustness in very high
dimensions is provided in Ref 88.
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