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Summary

A generalization of the Behrens-Fisher problem for two samples is examined in a nonparametric model.
It is not assumed that the underlying distribution functions are continuous so that data with arbitrary
ties can be handled. A rank test is considered where the asymptotic variance is estimated consistently
by using the ranks over all observations as well as the ranks within each sample. The consistency of
the estimator is derived in the appendix. For small samples �n1; n2 � 10�, a simple approximation by a
central t-distribution is suggested where the degrees of freedom are taken from the Satterthwaite-Smith-
Welch approximation in the parametric Behrens-Fisher problem. It is demonstrated by means of a
simulation study that the Wilcoxon-Mann-Whitney-test may be conservative or liberal depending on
the ratio of the sample sizes and the variances of the underlying distribution functions. For the sug-
gested approximation, however, it turns out that the nominal level is maintained rather accurately. The
suggested nonparametric procedure is applied to a data set from a clinical trial. Moreover, a confidence
interval for the nonparametric treatment effect is given.

Key words: Rank Test; Heteroscedastic Model; Satterthwaite-Smith-Welch
Approximation; Ties; Ordered Categorical Data.

1. Introduction

The problem of analyzing two independent samples with possibly heteroscedastic
normally distributed errors has been considered extensively in the literature. For a
recent discussion, see, for example, Moser and Stevens (1992) or Roth (1983).
In this context, an accurate and simple approximation is of particular interest. The
so-called Satterthwaite-Smith-Welch (SSW) approximation is used by many statisti-
cal software packages because this method provides a good approximation of the
pre-assigned level, even in the case of extreme heteroscedasticity and unequal
sample sizes.

In nonparametric models, asymptotic procedures for the heteroscedastic case
have been considered by Fligner and Policello (1981) and by Brunner and
Neumann (1982, 1986) under the assumption of continuous distribution functions.
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In the present paper, this assumption is relaxed and arbitrary distribution functions
are admitted (with the exception of the trivial case of one-point-distributions). This
includes the cases where ties occur by rounding off observations from continuous
distributions as well as by observing count data or ordered categorical data. Based
on some recent results of Akritas and Brunner (1997) an asymptotically distri-
bution free rank test is derived and a consistent estimator for the unknown asymp-
totic variance is given. Moreover, a simple approximation for small samples is
considered and its accuracy is examined by means of a simulation study.

Models and hypotheses are considered in Section 2 while the main results are
given in Section 3 and 4. Finally, the application of the procedure is demonstrated
by an example in Section 6. Some technical details are provided in the Appendix.

2. Nonparametric Model and Hypothesis

We consider a general nonparametric model where N � n1 � n2 independent ran-
dom variables

Xik � Fi�x� ; k � 1; . . . ; ni ; �2:1�
are observed under i � 1; 2 treatments. The distribution functions Fi�x� may be
arbitrary (with the exception of the trivial case of one-point-distributions). In a
nonparametric context, the hypothesis of no treatment effect is commonly formu-
lated as HF

0 : F1 � F2 which implies homoscedasticity under the hypothesis.
To formulate a nonparametric hypothesis of no treatment effect, which entails

the parametric Behrens-Fisher problem as a special case, we consider the relative
treatment effect

p � P�X11 < X21� � 1
2 P�X11 � X21� : �2:2�

The random variable X11 is called to tend to smaller (larger) values than the ran-
dom variable X21 if p > 1

2 �p < 1
2� and the two random variables are called tenden-

tiously equal if p � 1
2. To illustrate the meaning of p � 1

2, consider two normal
distributions Fi; i � 1; 2 with expectations and variances mi and s2

i , respectively.
Then it is easily seen that m1 � m2 , p � 1

2, where the variances s2
1 and s2

2 may
be different. Thus, a reasonable hypothesis of no treatment effect in the general
nonparametric model (2.1) can be expressed as Hp

0 : p � 1
2. This hypothesis has

been called generalized or nonparametric Behrens-Fisher problem (Fligner and
Policello, 1981; Brunner and Neumann, 1986) since the parametric Behrens-
Fisher problem is contained as a special case.

To estimate the relative treatment effect p and to derive its asymptotic distribu-
tion it is more convenient to express p in terms of the distribution functions. To
this end, we use the so-called normalized version Fi�x� � 1

2 �Fÿi �x� � F�i �x�� of the
distribution function (Ruymgaart, 1980) where Fÿi �x� � P�Xi1 < x� is the left-
continuous version and F�i �x� � P�Xi1 � x� is the right-continuous version of the

18 E. Brunner, U. Munzel: The Nonparametric Behrens-Fisher Problem



distribution function. Then, the relative teatment effect p can be written as
p � � F1 dF2 and the hypothesis of no treatment effect is written as
Hp

0 : p � � F1 dF2 � 1
2. We note that HF

0 : F1 � F2 � F implies Hp
0 : p � 1

2, be-
cause

�
F dF � 1

2, which follows from integration by parts.

3. The Test and its Asymptotic Distribution

To estimate the relative treatment effect p, the distribution functions F1 and F2 are
replaced by their empirical counterparts F̂i�x� � 1

2 �F̂ÿi �x� � F̂�i �x�� where F̂ÿi �x� is
the left-continuous version and F̂�i �x� is the right-continuous version of the em-

pirical distribution function. Let H�x� �P2
i�1

ni

N
Fi�x� denote the combined distribu-

tion function and let Ĥ�x� �P2
i�1

ni

N
F̂i�x� denote the normalized version of the

combined empirical distribution function. Note that Rij � N � Ĥ�Xik� � 1
2 is the

rank of Xik among all N � n1 � n2 observations X11; . . . ; X2n2 . In case of ties,
Rij is the mid-rank, which comes out in a natural way by using the normalized
version F̂i�x� of the empirical distribution function, as defined above. Let

�Ri� � nÿ1
i

Pni

k�1
Rik, i � 1; 2; denote the mean of the ranks Rik in the ith sample.

Then, it follows that

p̂ � � F̂1 dF̂2 � 1

n1

�R2� ÿ n2 � 1

2

� �
�3:3�

is an unbiased and consistent estimator for the relative treatment effect p. The
unbiasedness of p̂ follows immediately from E�c�X21 ÿ X11�� �

�
F1 dF2, where

c�u� � 0; 1
2 ; 1 according as u <;�; >, denotes the normalized version of the count

function. The L2-consistency follows from (7.13) in the Appendix as a special
case by letting g�u� � u:

Finally, the asymptotic normality of the statistic
����
N
p

p̂ÿ 1

2

� �
� 1����

N
p � �R2� ÿ �R1��

is based on the following decomposition����
N
p �p̂ÿ p� � ����

N
p �� F̂1 dF̂2 ÿ

�
F1 dF2�

� ����
N
p �� �F̂1 ÿ F1� dF2 �

�
F1 d�F̂2 ÿ F2� �

� �F̂1 ÿ F1� d�F̂2 ÿ F2��
� ����

N
p �� F1 dF̂2 ÿ

�
F2 dF̂1 � 1ÿ 2

�
F1 dF2� � CN � UN � CN ;

where CN �
����
N
p � �F̂1 ÿ F1� d�F̂2 ÿ F2� and

UN �
����
N
p 1

n2

Pn2

j�1
F1�X2j� ÿ 1

n1

Pn1

j�1
F2�X1j� � 1ÿ 2p

 !
:
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The so-called Asymptotic Equivalence Theorem states that CN !p 0, which means
that the two statistics

����
N
p �p̂ÿ p� and UN have, asymptotically, the same distribu-

tion. This result follows from Theorem 2.2 of Akritas and Brunner (1997) as a
special case by letting mijk � 1; c � 1 and r � 2 in this theorem. Further, note
that UN is a linear combination of independent and identically distributed random
variables F1�X2j�; j � 1; . . . ; n2; and F2�X1j�; j � 1; . . . ; n1; which are uniformly
bounded by 1 and the asymptotic normality of UN follows immediately from the
Central Limit Theorem, if s2

1 � Var �F2�X11�� > 0 and s2
2 � Var �F1�X21�� > 0:

Moreover, it follows that E�UN� � 0 and that

s2
N � Var �UN� � N�s2

1=n1 � s2
2=n2� : (3.4)

Thus,
����
N
p �p̂ÿ 1

2�=sN � � �R2� ÿ �R1��=
���������
Ns2

N

p
has, asymptotically, a standard nor-

mal distribution under Hp
0 : p � 1

2 :

4. Estimation of the Variance

Note that, even under Hp
0, the variances s2

1 and s2
2 in (3.4) are unknown and must

be estimated from the data. To this end, let Y1k � F2�X1k�; k � 1; . . . ; n1; and
Y2k � F1�X2k�; k � 1; . . . ; n2; and note that the random variables Y1k and Y2k are

independent by assumption. Then, the quantities ~s2
i � �ni ÿ 1�ÿ1 Pni

k�1
�Yik ÿ �Yi��2

are unbiased and consistent for s2
i ; i � 1; 2: However, the random variables Yik

are unobservable and, for the computation of an estimator, they must be replaced
by observable random variables which are ªclose enoughº to the unobservable
random variables Yik. Therefore, we replace the distribution functions Fi�x� by
their empirical counterparts F̂i�x�; i � 1; 2. Then, by definition,

n1F̂1�X2k� � NĤ�X2k� ÿ n2F̂2�X2k� � R2k ÿ R
�2�
2k ;

n2F̂2�X1k� � NĤ�X1k� ÿ n1F̂1�X1k� � R1k ÿ R
�1�
1k ;

where R
�i�
ik � niF̂i�Xik� � 1

2 denotes the (within) rank of Xik among the ni observa-
tions within the ith sample Xi1; . . . ; Xini ; i � 1; 2. In the case of ties, the mid-
ranks come out automatically as already noted for the (overall) ranks
Rik � NĤ�Xik� � 1

2. Then, the variances s2
i are estimated by

ŝ2
i � S2

i =�N ÿ ni�2 ; �4:5�
where

S2
i �

1

ni ÿ 1

Pni

k�1
Rik ÿ R

�i�
ik ÿ �Ri� � ni � 1

2

� �2

: �4:6�

is the empirical variance of Rik ÿ R
�i�
ik ; k � 1; . . . ; ni; i � 1; 2:

The mean square error caused by replacing the unobservable random variables
Yik by the observable random variables �Rik ÿ R

�i�
ik �=�N ÿ ni� is of the order
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1=�N ÿ ni�: This follows from E�F̂2�X1k� ÿ F2�X1k��2 � 1=n2 and
E�F̂1�X2k� ÿ F1�X2k��2 � 1=n1 (see Appendix 7.1). The estimator ŝ2

i is consistent
for s2

i ; since E�ŝ2
i =s2

i ÿ 1�2 ! 0; i � 1; 2 (the technical details are outlined in the
Appendix 7.2). Thus, under Hp

0 ;

ŝ2
N � N � �ŝ2

1=n1 � ŝ2
2=n2� �4:7�

is consistent for s2
N and it follows that the statistic

WBF
N �

����
N
p �p̂ÿ 1

2�
ŝN

� 1����
N
p �

�R2� ÿ �R1�
ŝN

�4:8�

has, asymptotically, a standard normal distribution under the hypothesis Hp
0 : p � 1

2.

5. Approximation for Small Samples

In a comprehensive simulation study, the behaviour of the Wilcoxon-Mann-Whit-
ney-test (WMW) and of the test based on the statistic WBF

N in (4.8) was examined
under heteroscedasticity, where several types of distributions were compared: (1)
two normal distributions with unequal variances, (2) one unimodal and one bimo-
dal distribution, (3) two symmetric discrete distributions with unequal variances,
and (4) two distributions with different variances and with different skewnesses.
The ratio of the variances of the two distributions F1 and F2 ranged from 0.1 to
10. It turned out that the WMW-test led to conservative decisions if the larger
sample size was taken from the population with the larger variance while it led to
rather liberal decisions in the opposite case. This fact did not depend on the total
sample size N but on the ratio of the variances s2

1 and s2
2 and on the ratio n1=n2

of the two sample sizes, i.e. the liberal or the conservative behaviour did not
vanish asymptotically. For samples sizes n1; n2 � 10; the simulated type-I error
rates for the WMW test ranged from 7% to 19.9% (nominal level 10%), from
2.8% to 12.2% (nominal level 5%) and from 0.2% to 4% (nominal level 1%). The
test based on the statistic WBF

N , however, was more or less liberal for medium or
small sample sizes (smaller than about 50) and was quite accurate for larger sam-
ple sizes. These results gave rise to develop a more accurate approximation for
small samples.

Note that the distribution of ŝ2
N in (4.7) becomes degenerate rather quickly (at

the rate of 1=N), because ŝ2
N is consistent for s2

N and thus, the small sample
distribution of WBF

N may be approximated by a distribution which converges to the
standard normal disribution with increasing sample sizes. A simulation study
showed that the quality of the approximation was mainly affected by the ratio of
the variances, the sample sizes and, of course, by the total sample size. These
findings gave rise to use an approximation by a t-distribution where the degrees of
freedom were taken from the parametric SSW-approximaion, i.e. for small sample
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sizes, the null distribution of WBF
N is approximated by a central t-distribution with

f̂ �
P2
i�1

ŝ2
i =ni

� �2

P2
i�1
�ŝ2

i =ni�2=�ni ÿ 1�
�

P2
i�1

S2
i =�N ÿ ni�

� �2

P2
i�1
�S2

i =�N ÿ ni��2=�ni ÿ 1�
�5:9�

degrees of freedom, where S2
i is given in (4.6). It is easily seen that f̂ !1 and

thus, the tf̂ -distribution converges to the standard normal distribution which means
that the approximation is asymptotically correct.

The accuracy of this approximation was examined by means of a simulation
study, where the same sample sizes and heteroscedastic distributions were used as
in the simulation study for the WMW test. For the approximation by the t-distri-
bution with f̂ degrees of freedom given in (5.9), the simulated type-I error rates
ranged from 9.5% to 10.7% (nominal level 10%), from 4.6% to 5.7% (nominal
level 5%) and from 0.5% to 1.5% (nominal level 1%). The quality of this approx-
imation is comparable to that of the SSW-approximation in the parametric case.
For extremely small sample sizes �ni < 10�; simple and accurate approximations
in a general nonparametric model cannot be expected.

6. An Example

In this section, we apply the statistic WBF
N and the approximation by the t-distribu-

tion with f̂ degrees of freedom given in (5.9) to the shoulder tip pain trial as reported
by Lumley (1996). In this clinical trial, a pain score was observed for every patient
after a laparoscopic surgery. The pain score ranged from 1 (low) to 5 (high). Two
treatments (Y and N) were randomly assigned to 25 eligible female patients where
14 patients received the active treatment Y and 11 patients the control treatment N.
(Here we consider only the subset of the pain scores on the third day after the sur-
gery for the 25 female patients). The observed pain scores are listed in table 6.1.

For the physician, it was mainly of interest to know whether the pain scores after
the active treatment Y ªtended to be lowerº than after the control treatment N. In this
trial, the ªdifferenceº of the two treatments can be described by the relative treatment
effect p � � F1 dF2; where F1 denotes the distribution of the pain scores under treat-
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Table 6.1

Pains scores on the third day after surgery for n1 � 14 patients under the treatment Y and
n2 � 11 patients under the treatment N

Treatment Pain Score

Y 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1
N 3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4



ment Y and F2 denotes the distribution of the pain scores under treatment N. It is of
interest to detect the one-sided alternative Hp

1 : p > 1
2 and thus, it appears to be natur-

al to test the hypothesis Hp
0 : p � 1

2 against this one-sided alternative. Moreover, the
possible benefit of the active treatment can be estimated by the relative treatment
effect p̂ � � �R2� ÿ �n2 � 1�=2�=n1; where �R2� is the mean of the (mid-)ranks
Rik; i � 1; 2; k � 1; . . . ; ni; of the observed pain scores under the control treatment.
We note that it is not reasonable to apply a parametric procedure (e.g. the t-test) for
the analysis of this trial because the pain scores are ordered categorical data.

The two rank means are �R1� � 9:79 (treatment Y), �R2� � 17:09 (treatment N)
and the estimated relative treatment effect is p̂ � 0:792: The hypothesis Hp

0 : p � 1
2

is rejected at the 1%-level (WBF
N � 3:24, one sided p-value: 0.002), where the

approximation by the t-distribution for small samples is used � f̂ � 21:01�.
Moreover, from the derivation of the statistic in section 3, it follows that����
N
p �p̂ÿ p�=ŝN has, asymptotically, a standard normal distribution and, for large
sample sizes, a one-sided �1ÿ a�-confidence interval for the relative treatment
effect p is given by P�p � pL� �:: 1ÿ a; where pL � p̂ÿ u1ÿa � ŝN=

����
N
p

. For small
samples, the suggested approximation by the t-distribution may be used and the
critical value u1ÿa is replaced by the critical value tf̂ ; 1ÿa of the t-distribution with
f̂ degrees of freedom given in (5.9). For the present example, the lower bound of
a one-sided 95%-confidence interval for the relative treatment effect is
pL � 0:792ÿ 1:721 � 0:451=

�����
25
p � 0:64; which is (at a confidence level of 95%)

the minimal probability of observing a lower pain score under treatment Y than
under treatment N.

7. Appendix

7.1 Some inequalities

To prove the consistency of the variance estimators ŝ2
i ; i � 1; 2; given in (4.5), we

first need some inequalities. Consider the notation of sections 3 and 4. Then,

E�F̂1�X2k� ÿ F1�X2k��2 � 1=n1 : �7:10�
Proof: Using the independence of X1j and X1j0 for j 6� j0; the independence of

X1j and X2k; j � 1; . . . ; n1; k � 1; . . . ; n2; and Fubini's theorem, it follows that

E�F̂1�X2k� ÿ F1�X2k��2

� 1

n2
1

Pn1

j�1

Pn1

j0�1
E��c�X2k ÿ X1j� ÿ F1�X2k�� �c�X2k ÿ X1j0 � ÿ F1�X2k���

� 1

n2
1

Pn1

j�1
E�c�X2k ÿ X1j� ÿ F1�X2k��2 � 1

n1
;

since E�c�X2k ÿ X1j� ÿ F1�X2k�� � 0 and jc�X2k ÿ X1j� ÿ F1�X2k�j � 1 : &
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Next we consider a function g�u� on �0; 1� with the properties
sup

0�u�1
jg�u�j � C0 <1 and sup

0�u�1
jg0�u�j � C1 <1. Then,

�i� Var �g�F1�X2k��� � C2
0 ; �7:11�

�ii� E�g�p̂� ÿ g�p��2 � C2
1E�p̂ÿ p�2 : �7:12�

Proof: Inequality (7.11) is obvious, since jg���j � C0, by assumption. The
second inequality (7.12) follows by applying the mean value theorem.

7.2 Consistency of the variance estimator

Next, we consider the ratio of the estimator ŝ2
2 in (4.5) and

s2
2 �

�
F2

1 dF2 ÿ �
�

F1 dF2�2 and we show that E�ŝ2
2=s2

2 ÿ 1�2 ! 0: Note that it
suffices to show that E�ŝ2

2 ÿ s2
2�2 ! 0; since s2

2 > 0 by assumption. The result for
ŝ2

1 will follow in the same way.
To apply the inequalities (7.11) and (7.12), let g�u� � u2: Then, C0 � 1 in

(7.11) and C1 � 2 in (7.12). Furthermore, let p�g� � � g�F1� dF2 and
p̂�g� � � g�F̂1� dF̂2. Then, s2

2 and ŝ2
2 can be written as s2

2 � p�g� ÿ g�p� and

ŝ2
2 �

S2
2

n2
1

� n2

n2 ÿ 1

�
F̂2

1 dF̂2 ÿ p̂2

� �
� n2

n2 ÿ 1
�p̂�g� ÿ g�p̂�� :

Thus,

ŝ2
2 ÿ s2

2 �
n2

n2 ÿ 1
�p̂�g� ÿ g�p̂� ÿ p�g� � g�p�� � 1

n2 ÿ 1
s2

2 :

Applying the cr-inequality for r � 2 and taking the expectation, it follows that

E�ŝ2
2 ÿ s2

2�2 �
4n2

n2 ÿ 1
�E�p̂�g� ÿ p�g��2 � E�g�p̂� ÿ g�p��2� � 2

�n2 ÿ 1�2 ;

since 0 < s2
2 � 1: First, we show that

E�p̂�g� ÿ p�g��2 ! 0 : �7:13�
Applying the cr-inequality for r � 2 and Jensen's inequality it follows that

�p̂�g� ÿ p�g��2 �
�

g�F̂1� dF̂2 ÿ
�

g�F1� dF̂2 �
�

g�F1� dF̂2 ÿ p�g�
� �2

� 2

�
�g�F̂1� ÿ g�F1��2 dF̂2 � 2

1

n2

Pn2

k�1
�g�F1�X2k�� ÿ p�g��

� �2

:

&
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Taking the expectation, it follows for the first term
� �g�F̂1� ÿ g�F1��2 dF̂2 that

E

�
�g�F̂1� ÿ g�F1��2 dF̂2

� �
� 1

n2

Pn2

k�1
E�g�F̂1�X2k�� ÿ g�F1�X2k���2

� C2
1 �

1

n2

Pn2

k�1
E�F̂1�X2k� ÿ F1�X2k��2 � 4=n1 ! 0 ; for n1 !1

by applying the mean value theorem, inequality (7.10) and noting that C1 � 2: For
the second term, we note that p�g� � E�g�F1�X2k��� and thus, by independence, it
follows that

E
1

n2

Pn2

k�1
�g�F1�X2k�� ÿ p�g��

� �2

� 1

n2
2

Pn2

k�1
E�g�F1�X2k�� ÿ p�g��2 � 1

n2
2

Pn2

k�1
Var �g�F1�X2k���

� C2
0=n2 � 1=n2 ! 0 ; for n2 !1

using inequality (7.11). Finally, it follows that E�g�p̂� ÿ g�p��2 ! 0 by inequality
(7.12) and from (7.13) by letting g�u� � u: This completes the proof.
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