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Abstract

For the non-parametric Behrens–Fisher problem a permutation test based on the studentized rank statistic of Brunner and Munzel
is proposed. This procedure is applicable to count or ordered categorical data. By applying the central limit theorem of Janssen, it is
shown that the asymptotic permutational distribution of this test statistic is a standard normal distribution. For very small and very
different sample sizes, frequently occurring in medical and biological applications, an extensive simulation study suggests that this
permutation test works well for data from several underlying distributions. The proposed test is applied to data from a clinical trial.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many areas of applications two-sample comparisons of possibly heteroscedastic samples are frequently of interest.
A particular challenge, e.g. in medical or biological applications, is the small number of available observations.

The classical parametric approach considers the hypothesis of equal means in the presence of potentially different
variances. For underlying normal distributions various tests have been developed and were extensively studied in
literature (e.g. Smith, 1936; Welch, 1937; Satterthwaite, 1946; Cochran, 1964; Moser and Stevens, 1992). For small
samples permutation procedures have been suggested, which asymptotically keep the preassigned level (cf. Janssen,
1997; Pesarin, 2001).

In the case of non-normal data, the Wilcoxon–Mann–Whitney (WMW) test is used to compare two independent
samples (Wilcoxon, 1945; Mann and Whitney, 1947). Here, the hypothesis F1 = F2 is considered, where F1 and F2
are the distributions of the two samples. If the two distributions, however, differ in dispersion, the WMW test does not
maintain its level (Pratt, 1964). In semi-parametric models modifications of the WMW test have been described by
Fligner and Policello (1981), extending the applicability to heteroscedastic situations, and by Babu and Padmanabhan
(2002), allowing also for non-symmetric distributions. Fligner and Policello (1981) also note that their procedure is
applicable for testing the hypothesis:

∫
F1 dF2 = 1

2 . This hypothesis can equivalently be formulated using the relative
effectp=∫ F1 dF2 introduced by Mann andWhitney (1947).This effect is defined as the probability that the observations
in one sample tend to be larger (or smaller) than those in the other sample. A procedure based on this hypothesis also
admitting discrete distributions is the rank test proposed by Brunner and Munzel (2000) and its t-approximation for
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small sample sizes. This rank test can be applied in rather general models, where arbitrary distributions of the data are
allowed (only the trivial case of one-point distributions is excluded). This means that this procedure is also applicable
for the analysis of ordered categorical or count data.A likelihood ratio test for this hypothesis was presented by Troendle
(2002) and bootstrap procedures were discussed by Chen and Kianifard (2000) and Reiczigel et al. (2005).

When applying tests based on resampling methods to a Behrens–Fisher situation, it has to be noted that even under the
hypothesis the random variables are not identically distributed. In order to overcome this problem, several approaches
of data transformation are suggested when using bootstrap procedures (Efron and Tibshirani, 1993; Reiczigel et al.,
2005). A suitable transformation has to be chosen based on the nature of deviation of the data from the case of identical
distributions.

Here, we suggest a studentized permutation test based on the rank statistic of Brunner and Munzel (2000). Adopting
Janssen’s (1997) central limit theorem for studentized permutation tests, we will show asymptotic normality of this test
statistic. For small sample sizes the properties of the test will be investigated by a simulation study.

The paper is organized as follows. In Section 2 we describe the model, formulate the hypothesis, and introduce
the test statistic. The application of the central limit theorem of Janssen (1997) to the Behrens–Fisher rank statistic is
derived in Section 3. Results of a comprehensive simulation study for small sample sizes are presented in Section 4
and a real data example is considered in Section 5. The derivations of the above results are shifted to the Appendix.

2. Model, hypothesis, and test statistic

We consider two independent random samples X11, . . . , X1n1 and X21, . . . , X2n2 , where Xik
iid∼ Fi , i = 1, 2, k =

1, . . . , ni . Here, Fi = 1
2

(
F+

i + F−
i

)
denotes the normalized version of the distribution function (Ruymgaart, 1980).

The Fi’s may be arbitrary distributions (only the trivial one-point distributions are excluded). Let N = n1 + n2 denote
the total number of observations.

To allow for non-continuous distribution functions, we consider the extension of the relative effect (Mann and
Whitney, 1947) to the discontinuous case, namely

p = P (X11 < X21) + 1

2
P (X11 = X21) =

∫
F1 dF2.

This effect describes a tendency towards larger values of one random variable with respect to the other. The random
variable X11 is then said to tend to be smaller (larger) than X21 if p > 1

2 (p < 1
2 ). Thus, the hypothesis of no treatment

effect (no tendency) can be expressed as

H0 : p = 1
2 .

We note that this hypothesis includes the parametric hypothesis of equal means in the presence of potentially unequal
variances as a special case, when the underlying distributions are normal.

A natural estimator p̂ of p is obtained by replacing the distribution functions Fi(x) with their empirical counterparts
F̂i(x). An unbiased and consistent estimator of p is then given by

p̂ =
∫

F̂1 dF̂2 = 1

N

(
R2. − R1.

)+ 1

2
, Ri. = 1

ni

ni∑
k=1

Rik ,

where Rik = rank (Xik) denotes the (mid-)rank of Xik among all N observations. To test the hypothesis, H0 : p = 1
2 , we

consider the statistic KN =√
N(p̂− 1

2 ). The asymptotic distribution of KN is derived by considering an asymptotically
equivalent statistic of independent random variables, which follows from the so-called asymptotic equivalence theorem
(see, e.g. Brunner and Munzel, 2002). If N → ∞ such that N/ni �N0 < ∞, i = 1, 2, then

√
N (p̂ − p) �

√
N
(
Y 2. − Y 1. + 1 − 2p

)
, Y i. = 1

ni

ni∑
k=1

Yik ,

where the unobservable random variables Y1k = F2 (X1k) and Y2k = F1 (X2k) are the so-called asymptotic rank
transforms (ARTs). The symbol � denotes asymptotic equivalence, i.e. the difference of the two sequences on the left-
and right-hand sides of � converges to 0 in probability.
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By assumption, theARTs, Yik, k=1, . . . , ni, i=1, 2, are uniformly bounded, independent and identically distributed
random variables with variances �2

1=Var (F2 (X11)) and �2
2=Var (F1 (X21)), respectively. If �2

1, �2
2 > 0, then by applying

the central limit theorem, it follows under H0 that

KN

�N

=
√

N

�N

(
p̂ − 1

2

)
(1)

has, asymptotically, a standard normal distribution where

�2
N = N

n1n2

(
n1�

2
2 + n2�

2
1

)
is unknown and has to be estimated consistently from the data. Brunner and Munzel (2002) derive a consistent estimator
V 2

N of �2
N , namely

V 2
N = N

(
1

n2
�̂2

1 + 1

n1
�̂2

2

)
,

where

�̂2
i = 1

ni − 1

ni∑
k=1

(
Rik − R

(i)
ik − Ri. + ni + 1

2

)2

.

Here, Rik is the overall rank of Xik among all N observations and R
(i)
ik is the internal rank of Xik among the ni

observations Xi1, . . . , Xini
within group i, i = 1, 2. Replacing �N in (1) by VN , we finally obtain the test statistic

TN = R2. − R1.

VN

√
n1n2

N
, (2)

which has, asymptotically, a standard normal distribution under H0.
As noted above, the normality of TN only holds asymptotically. Simulation studies showed that quite large sample

sizes are necessary to get a satisfactory approximation. In many medical and biological applications, however, the
number of available observations may be rather small. Moreover, it is often not appropriate to make any assumptions
of continuity for the distribution functions. Brunner and Munzel (2000), for example, suggested to approximate the
distribution of the test statistic TN by a tf̂ -distribution. The degrees of freedom f̂ is derived as in the parametric case
by a Satterthwaite–Smith–Welch approximation and estimated by

f̂ =
(∑2

i=1�̂
2
i / (N − ni)

)2

∑2
i=1

(̂
�2

i / (N − ni)
)2

/ (ni − 1)
.

Two other methods recommended for this rather general setting are the likelihood ratio test described by Troendle
(2002) and a bootstrap test by Reiczigel et al. (2005). The likelihood ratio approach of Troendle is a recursive method
reducing the numerical problem to one dimension and thus making a numerical solution actually feasible. A detailed
description of the testing procedure can be found in Troendle (2002). The bootstrap test of Reiczigel et al. (2005) is based
on the rank Welch test. Their simulation study suggests that this bootstrap test behaves similar to the t-approximation
of Brunner and Munzel.

Simulation studies show that the above procedures have shortcomings in attaining the preassigned type I error if
the underlying distributions show deviations from symmetry or if sample size is small. Troendle’s likelihood ratio
procedure, e.g. behaves somewhat liberal for bimodal distributions and the bootstrap test of Reiczigel et al. (2005)
tends to become slightly conservative, especially for small sample sizes. The t-approximation, however, gets a little
liberal when using two-sided tests at the 5% level.

Because of these problems we suggest the application of a permutation test in this situation. In the parametric setting
Janssen (1997) proposed to base a permutation test for the Behrens–Fisher problem on a studentized test statistic.
This idea dates back to Neuhaus (1993), who applied it to survival problems. Here, we want to adopt this idea to the
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standardized rank statistic TN by calculating a permutation test based on this statistic. That means we base the decision,
to accept or reject the hypothesis, on the permutational distribution of the statistic TN .

Consider all permutations of N elements � ∈ SN which are uniformly distributed according to some probability
measure P ∗ independent of Xik, i = 1, 2, k = 1, . . . , ni . The vectors of permuted random variables are denoted by
X�, R�, and R(1)

� , R(2)
� , where

X� = (
X�(11), . . . , X�(1n1), X�(21), . . . , X�(2n2)

)
,

R� = (
R�(11), . . . , R�(1n1), R�(21), . . . , R�(2n2)

)
,

R(i)
� =

(
R

(i)
�(i1), . . . , R

(i)
�(ini )

)
, i = 1, 2.

When replacing the original observations by the permuted observations, the recalculated variance and test statistic will
be referred to as T ∗

N and V ∗
N

2, where

T ∗
N = TN

(
R�, R(1)

� , R(2)
�

)
, V ∗

N
2 = V 2

N

(
R�, R(1)

� , R(2)
�

)
.

By applying a permutation to the observations, their assignment to the groups is changed and with this the values of
the internal ranks. Thus, for each permutation the variance V ∗

N
2 has to be recalculated in order to obtain the new value

of the test statistic T ∗
N . The p-value of the corresponding test is then given by the proportion of permutations where the

value of the test statistic of the original observations TN is smaller or equal to the value of the test statistic calculated
of the permuted observations T ∗

N . If we conduct nsim = #S permutations with � ∈ S ⊂ SN we get for the p-value
p = #

{
� ∈ S|TN �T ∗

N

}
/nsim.

In the next section we will show that the permutational distribution of our studentized statistic is asymptotically
normal by applying the central limit theorem of Janssen (1997). Small sample properties of the permutation test and
the other three procedures mentioned are analysed in Section 4 by a simulation study.

3. The studentized permutational procedure

In this section we apply the central limit theorem of Janssen (1997) for the conditional permutation distribution of
linear studentized test statistics to show that our permutation test asymptotically maintains its preassigned level. We
note that this theorem does not assume independence of the random variables and, thus, can be applied to the rank
statistic TN given in (2) (cf. Janssen, 1997). To this end, we rewrite TN as

TN = Z2. − Z1.√
1
N

∑
i

∑
k (N − ni) / (ni − 1) (N/ (N − ni))

2(Zik − Zi.

)2
√

n1n2

N

=
∑

i

∑
kcikZik√∑

i

∑
k (N/ (N − ni)) (1/(ni − 1))

(
Zik − Zi.

)2 with cik =

⎧⎪⎨⎪⎩
−
√

n1n2

N

1

n1
, i = 1,√

n1n2

N

1

n2
, i = 2,

(3)

where

Zik = 1

N

(
Rik − R

(i)
ik − N − ni

2

)
(4)

and

Zi. = 1

N

(
Ri. − ni + 1

2
− N − ni

2

)
= 1

N

(
Ri. − N + 1

2

)
.

We note that the random variables Zik are uniformly bounded by 1
2 , i.e. P(|Zik| > 1

2 ) = 0.
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For the central limit theorem of Janssen (1997) to hold, a couple of conditions on the coefficients and the variance
estimator of the test statistic have to be fulfilled. If these conditions are met, Janssen proves that there exists a constant
�2 > 0 such that

sup
t∈R

(|P ∗(TN(R�)� t |R) − �(t/�)|) P→ 0,

where � denotes the standard normal distribution function. One possible choice of such conditions is

2∑
i=1

ni∑
k=1

c2
ik = 1 ∀N ∈ N, (5)

2∑
i=1

ni∑
k=1

cik = 0 ∀N ∈ N, (6)

max
i,k

|cik| → 0 if N → ∞, (7)

lim
N→∞ inf

1

N

2∑
i=1

ni∑
k=1

(
Zik − Z··

)2
> 0 P -a.s. (8)

∃� > 0 : 1

N

2∑
i=1

ni∑
k=1

(
Zik − Z··

)2
V ∗−1

N

P×P ∗−→ �2 if N → ∞, (9)

lim
N→∞ sup

1

N

2∑
i=1

ni∑
k=1

(
Zik − Z··

)2
1[d,∞)

(∣∣Zik − Z··
∣∣) −→ 0 P -a.s. d → ∞. (10)

Conditions (5)–(7) follow immediately from the linear representation of TN as given in (3). The validity of the remaining
conditions, which involve some detailed mathematical derivations, are presented in the Appendix.

For the above conditions to hold, the variances �̃2
1 =Var

(
F̂2 (X11)

)
and �̃2

2 =Var
(
F̂1 (X21)

)
must be strictly positive.

In addition we assume that there exists some � ∈ (0, 1) such that

n1

N

N→∞−→ � ⇒ n2

N

N→∞−→ 1 − �.

4. Simulation results

A comprehensive simulation study was conducted to evaluate the small sample properties of the studentized permu-
tation test derived in the previous sections. Level and power were simulated using data from two normal distributions,
two bimodal distributions and, to see the influence of skewed distributions, a normal against a �2

3-distribution. To study
the influence of very small and very different sample sizes, simulations were performed for sample sizes

(n1, n2) ∈ {(15, 15), (15, 7), (7, 15), (7, 7)}.
To analyse the power of the tests, the mean, �, of one sample in each distributional setting was shifted by 0.5 and 1,
respectively. For simulating the level � was set to 0.

• Two normal distributions Nn1

(
0, �2

1

)
, Nn2

(
�, �2

2

)
: Different variances were used for the two samples, where the

larger variance was applied to the larger as well as to the smaller sample.(
�2

1, �
2
2

)
∈ {(1, 1), (1, 2), (1, 4)}.
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Fig. 1. Densities of two bimodal distributions under hypothesis p = 1
2 .

• Two bimodal distributions: Distributions were derived from the combination of two normal distributions each. The
choice of the expectations, the variances, and the proportion of the mixing parts ensure p = 1

2 if � = 0 (cf. Fig. 1).

F1 = 7
10Nn1(4, 1) + 3

10Nn1(8, 1),

F2 = 3
10Nn2(2.07 + �, 2) + 7

10Nn2(3(2.07 + �), 2).

• A normal distribution F1 =N
(
�0 + �, �2

)
against one �2-distribution F2 = �2

3(0): Simulations showed that p = 1
2

is fulfilled when a normal distribution with expectation �0 = 2.5745 and variance �2 = 2 is used.

For comparison, the level and power of the t-approximation by Brunner and Munzel (2000), the bootstrap test of
Reiczigel et al. (2005) as well as the likelihood ratio test of Troendle (2002) were simulated. Furthermore, “reliability
bounds”

(
	low, 	up

)
were calculated for the empirical level 	̃ of the simulated tests such that

P(	low � 	̃�	up) = 0.95.

Since the number of all possible permutations (bootstrap samples) and, thus, the simulation time increases rapidly
with sample size, only 10,000 random permutations (bootstrap samples) were performed for each test. The level and
power calculations are based on 10,000 simulation runs. Due to long computing times the likelihood ratio test was only
evaluated at nominal level of 	 = 0.05.

When the variance estimator V 2
N was 0, i.e. if all the observations in one group had lower ranks than the observations

in the other group, it was replaced by some reasonable small value larger than 0, thus leading to a conservative test
decision for the permutation test and the t-approximation in this case. This lower bound of V 2

N is attained when
exactly two observations, one of each sample, take the same value, whereas the other observations of the two samples
are completely separated and have no ties. Hence, the lowest value of the variance estimator V 2

N larger than 0 is
N/(2n1n2). The simulations for the permutation test, the bootstrap test, and the t-approximation were conducted in
SAS IML 9.1. For the likelihood ratio test Dr. Troendle kindly provided his FORTRAN 77 simulation program. All
tests are performed as two-sided test.

When analysing two normal distributions with equal variances for sample size 15 in both groups all three tests keep
the level, as their level curves follow the lines of the upper (t-approximation) or lower (bootstrap test) reliability bound
or run within these bounds (permutation test). If the sample size is reduced in one sample only, the t-approximation
becomes a little anti-conservative, whereas the curves of the other two tests almost stay the same. When there are
only seven observations in both groups the level curve of the permutation test follows the upper reliability bound, the
curve of the bootstrap test runs somewhat below the lower bound and the t-approximation is liberal. If the variance
in the second sample is 2 and samples size is 7 in both groups (cf. Fig. 2(a)) the empirical level of the permutations
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Fig. 2. Two normal distributions. Figures show nominal against empirical levels where �2
1 = 1, �2

2 = 2, solid lines indicating the reliability bounds.
Simulated levels and power are displayed in (d) for 	 = 5%, where bold letters indicate levels within the reliability bounds: (a) n1 = n2 = 7, (b)
n1 = 7, n2 = 15, (c) n1 = 15, n2 = 7 and (d) n1 = 15, n2 = 7.

test is for all levels within the reliability bounds, whereas the curve of the bootstrap test is a little conservative. For
different sample sizes in the two groups the level curve of the permutation test gets close to the lower (Fig. 2(b)) or
upper (Fig. 2(c)) reliability bound, respectively. For the larger variance occurring in the larger group, the bootstrap test
is slightly conservative (Fig. 2(b)), whereas in the opposite situation its level curve runs within the reliability bounds
for nominal levels up to 5%, crossing the lower bound there and staying just below for all higher levels (Fig. 2(c)).
The t-approximation is slightly liberal in all three settings for nominal levels up to 6% and has level within or very
close to the reliability region above that. For variance 4, the observed effects fortify, where the bootstrap test shows
the smallest changes. Fig. 2(d) compares all four tests at 	 = 5% regarding level and power, where bold letters indicate
that the empirical level is within the reliability bounds. We present the case of sample sizes n1 = 15 and n2 = 7, where
the smaller sample has variance 2. In this case the level of the permutation and bootstrap test lies within the reliability
bounds. All four tests have comparable power under the two alternative settings.

The influence of changing variances is illustrated in Fig. 3.As expected, the power decreases as the variance increases.
Furthermore, if the larger variance is observed in the smaller sample, the power is smaller than in the opposite situation.
Though the power of the permutation test is lower than the power of the t-approximation and the likelihood ratio test
when the larger variance occurs in the larger sample, its power is comparable to the liberal t-approximation in the
opposite situation.

If the underlying distributions are very differently shaped, e.g. bimodal, it can be seen from Fig. 4 that the
t-approximation and the permutation test behave very similar as with underlying normal distributions. For samples
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Fig. 4. Two bimodal distributions. Figures show nominal against empirical levels, solid lines indicating the reliability bounds. Simulated levels and
power are displayed in (d) for 	 = 5%, where bold letters indicate levels within the reliability bounds: (a) n1 = n2 = 7, (b) n1 = 7, n2 = 15, (c)
n1 = 15, n2 = 7 and (d) n1 = 15, n2 = 7.
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Fig. 5. One normal against one �2
3-distribution. Figures show nominal against empirical levels, solid lines indicating the reliability bounds. Simulated

levels and power are displayed in (d) for 	=5%, where bold letters indicate levels within the reliability bounds: (a) n1 =n2 =7, (b) n1 =7, n2 =15,
(c) n1 = 15, n2 = 7 and (d) n1 = 15, n2 = 7.

size 7 in both groups the level curve of the bootstrap test also looks very similar as in the normal case (Fig. 4(a)).
For sample sizes 7 in one group and 15 in the other group its curve runs within the reliability bounds (cf. Fig. 4(b)
and (c)). The powers given in Fig. 4(d) are calculated with n1 = 15 and n2 = 7. Under H0 the likelihood ratio test
and the t-approximation are somewhat liberal. Power values are very close for the permutation and bootstrap test. The
likelihood ratio test has the lowest power despite its slight liberality.

Considering one symmetric against one skewed distribution, i.e. one normal against one �2-distribution, t-approxi-
mation and permutation test again have the same properties as with two normal distributions (Fig. 5). The level curve
of the bootstrap test is also very similar as in the normal case for sample size 7 in both groups (Fig. 5(a)). For seven
observations derived from a normal distribution and 15 observations derived from a �2

3-distribution its level curve runs
along the lower reliability bound. In the opposite case the level attains values within the reliabilty bounds up to a
nominal level of 6% and just below the lower bound afterwards. Fig. 5(d) shows that for n1 = 15 and n2 = 7 only the
t-approximation is somewhat liberal. When comparing the power all tests achieve similar values.

5. Example

To illustrate the behaviour of the studentized permutation test the pain score data from the shoulder tip pain trial
reported by Lumley (1996) were reanalysed. The score takes values from 1 (low pain) up to 5 (high pain) and was



K. Neubert, E. Brunner / Computational Statistics & Data Analysis 51 (2007) 5192–5204 5201

Table 1
Data of the shoulder tip pain trial

Treatment Pain scores

Y 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1
N 3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4

Table 2
p-values for the shoulder tip pain trial

�Perm �Boot �t-approx �LR

0.0075 0.0019 0.0058 0.0078

measured on the third day after a surgery in 25 female patients. The patients were randomly assigned to two treatments:
14 patients receiving the active treatment (Y) and 11 patients receiving a control treatment (N). The data are listed in
Table 1.

To facilitate comparisons with the likelihood ratio test suggested by Troendle (2002), two-sided tests were used,
i.e. the t-approximation was recalculated as a two-sided test. As reported in Brunner and Munzel (2000), the rank means
are R1. = 9.82 (treatment) and R2. = 17.05 (control) and the estimator of the relative effect becomes p̂ = 0.789.

All four tests reject the hypothesis H0 : p = 1
2 at 	 = 5% (Table 2).

6. Conclusion

The studentized permutation test based on the two-sample rank statistic of Brunner and Munzel (2000) presented
here seems to be a robust and widely applicable method. Our simulations showed that this permutation test is robust
against deviations from symmetry of the underlying distributions, e.g. when the distributions are skewed or bimodal.
The level is maintained quite well under the hypothesis and a high power is achieved in alternative settings even if the
sample sizes are small (down to 7 per group) or very different (e.g. n1 = 7, n2 = 15). Other methods proposed for
small samples have comparable properties but show tendencies to somewhat liberal (t-approximation) or conservative
(bootstrap test) behaviour, especially for very small sample sizes. These effects may be due to the variance estimators
used. For the t-approximation, e.g. the variance estimator used is adopted from the parametric case. The bootstrap test of
Reiczigel et al. (2005), on the other hand, is based on Welch’s statistic using the corresponding variance estimator. Level
and power of the likelihood ratio test is comparable to that of the permutation test, however, for underlying bimodal
distributions it becomes slightly liberal and for sample size 7 in both samples the maximum likelihood estimator was
not computable for up to 173 out of the 10,000 simulation runs. Asymptotically, the permutational distribution of the
studentized test statistic is a normal distribution.

Since only trivial assumptions are necessary regarding the underlying distribution of the data, this permutation test is
also applicable to count or ordered categorical data. A macro in SAS-IML will be provided on the website http://www.
ams.med.uni-goettingen.de/de/sof/.

Appendix A

Following the lines of the derivations in Janssen (1997), it will be shown that the conditions (8)–(10) given in

Section 3 are fulfilled by the random variables Zik = (1/N)
(
Rik − R

(i)
ik − (N − ni) /2

)
as defined in (4).

Verification of (8): For the mean we obtain

Z.. = 1

N

∑
i

∑
k

Zik = 1

N

(
n1Z1. + n2Z2.

)
= 1

N

(
1

N

∑
i

∑
k

Rik − (n1 + n2)(N + 1)

2N

)
= 0. (A.1)

http://www.ams.med.uni-goettingen.de/de/sof/
http://www.ams.med.uni-goettingen.de/de/sof/
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Note that

E(Zik) = N − ni

N

(∫
Fj dFi − 1

2

)
= N − ni

N

(
p̃i − 1

2

)
,

Var(Zik) =
(

N − ni

N

)2

Var
(
F̂j (Xik)

)=
(

N − ni

N

)2

�̃2
i > 0,

where i �= j = 1, 2. Thus, we can write Zik = ((N − ni) /N)
(
p̃i − 1

2 + �̃i
ik

)
, where 
ik are iid random variables

with expectation 0 and variance 1. Then we obtain

1

N

∑
i

∑
k

Z2
ik = 1

N

[
n1∑

k=1

(n2

N

)2
(

p̃1 − 1

2
+ �̃1
1.

)2

+
n2∑

k=1

(n1

N

)2
(

p̃2 − 1

2
+ �̃2
2.

)2
]

P -a.s.−→ �(1 − �)

[
(1 − �)

(
p̃2

1 − p̃1 + 1

4
+ �̃2

1

)
+ �

(
p̃2

2 − p̃2 + 1

4
+ �̃2

2

)]
=: �̃ as N → ∞. (A.2)

To verify (8) it remains to show that the limit �̃ is strictly positive. Note that

p̃2
i − p̃i =

∫
Fj dFi

(∫
Fj dFi − 1

)
= −p(1 − p).

Thus, it follows that

�̃ = �(1 − �)
[
(−p)(1 − p) + 1

4 + (1 − �)̃�2
1 + �̃�2

2

]
.

Since p ∈ [0, 1
2 ] ⇒ −p(1 − p) + 1

4 ∈ [0, 1
4 ]. Furthermore, �̃2

i > 0 and � ∈ (0, 1) by assumption such that finally
�̃ > 0, which proves (8).

Verification of (9): To calculate the conditional permutation distribution of V 2
N , consider the following decomposition

V 2
N = W1 − W 2

2 − W 2
3 , where

W1 = N

n2

1

n1 − 1

n1∑
k=1

Z2
1k + N

n1

1

n2 − 1

n2∑
k=1

Z2
2k ,

W2 =
√

N

n2

n1

n1 − 1
Z1., W3 =

√
N

n1

n2

n2 − 1
Z2..

Thus, we can derive the distribution for each part separately by calculating the conditional expectations and variances.
Let W ∗

i denote the above expression calculated from the permuted observations. Starting with W ∗
2 and W ∗

3 we obtain
by (A.1)

E(W ∗
2 |R) =

√
N

n2

n1

n1 − 1
Z.. = 0, E

(
W ∗

3 |R)=
√

N

n1

n2

n2 − 1
Z.. = 0.

To calculate the variances, we apply the variance formula of Hájek and Ŝidák (1967, p. 61):

W2 =
∑

i

∑
k

m2ikZik where m2ik =
{√

N

n2

n1

n1 − 1

1

n1
, i = 1,

0, i = 2,

Var(W ∗
2 |R) =

∑
i

∑
k

(m2ik − m2..)
2 1

N − 1

∑
i

∑
k

(
Zik − Z..

)2
= 1

n1 − 1

N

N − 1

(
1

N

∑
i

∑
k

Z2
ik − Z

2
..

)
P -a.s.−→ 0 as N → ∞.
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Thus W ∗
2 → 0 in P ⊗ P ∗ probability. Analogously we obtain the same result for W ∗

3 . To derive the conditional
distribution for W ∗

1 we use the following representation:

W1 =
∑

i

∑
k

dikZ
2
ik where dik =

⎧⎪⎨⎪⎩
N

n2

1

n1 − 1
, i = 1,

N

n1

1

n2 − 1
, i = 2.

It is easily seen that, Nd.. → 1/(�(1 − �)) as N → ∞. Using (A.2) the conditional expectation of W ∗
1 is given by

E(W ∗
1 |R) =

∑
i

∑
k

dik

1

N

∑
i

∑
k

Z2
ik

P -a.s.−→ 1

�(1 − �)
�̃ as N → ∞.

Again using (II.3.1.c) in Hájek and Ŝidák (1967), we obtain for the conditional variance

Var(W ∗
1 |R) =

∑
i

∑
k

(
dik − d..

)2 1

N − 1

∑
i

∑
k

(
Z2

ik − 1

N

∑
i

∑
k

Z2
ik

)2

.

Further, Z4
ik is bounded by C = 1/24:

Z4
ik =

(
N − ni

N

(
Ŷik − 1

2

))4

=
(

N − ni

N

)4

C�C.

Noting that
∑

i

∑
k

(
dik − d..

)2 → 0 as N → ∞, we obtain

Var(W ∗
1 |R)

P -a.s.−→ 0 as N → ∞.

Thus, W ∗
1 → �̃/(�(1 − �)) in P ⊗ P ∗ probability. Combining these results, it follows that

V ∗2
N = W ∗

1 − W ∗2
2 − W ∗2

3
P⊗P ∗−→ 1

�(1 − �)
�̃ as N → ∞.

Finally, we obtain the following limit for the ratio of sequences in condition (9):

(1/N)
∑

i

∑
k

(
Zik − Z..

)2
V ∗2

N

P⊗P ∗−→ �(1 − �) = �2 as N → ∞.

Verification of (10): Consider∣∣Zik − Z..

∣∣= |Zik| ∈ [0, 1
2

]
.

Thus, the above expression is bounded by 1
2 yielding that the limit in (10) is 0 P -a.s. as d → ∞.
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