
Concatenate CSV Files Selected by User
Ingredients:

• File Input/Output
• User Input
• String manipulation
• Lists

Other Files: Directory of CSV files
Difficulty – Medium

For this recipe, we’ll keep things simple. It lets us adapt Multiple File Import so files can be
selected at runtime. The Enhanced Log will be used to capture the code associated with opening
CSV files. User input comes via the Pick File function, returning a list of file paths. We will
parse these results to extract the directory containing the files and the file names. These results will
let us make two simple changes to the Import Multiple Files function to get the results
we want. For this to work correctly, we will assume all the files have the same number of columns.

Steps:

1. Using File > Import Multiple Files, navigate to the directory that contains the files. Click
the button at the top right to get the dialog allowing directory navigation and selection.

Check the first filter and select or type in CSV. The resulting list will grey the files not
matching the filters. We won’t be able to select individual files here, it’s all or nothing.

2. Expose the code by right clicking the Source table variable in the resulting table and

selecting Edit. Copy it to a script window.

3. We will add a variable reference to access the resulting table and change two of the

function arguments. The top of the function should look similar to this:
dtFinalTbl = Multiple File Import(
 <<Set Folder(mainFolder),
 <<Set Show Hidden(0),

 <<Set Subfolders(0),
 <<Set Name Filter(fileList),

Only the first and fourth arguments have been changed, the hard coded string values are
replaced with variables.

4. We will use the Pick File function for user input. It has 7 arguments, all optional. We
want to specify the user prompt text (1), selectable file types (3), and allow the user to
choose multiple files (7). We need to use the default values for the other arguments to get
the function to work properly. Everything can go on one line, but it’s shown like this, so
the arguments stand out.
csvFiles = Pick File(

"Select the CSV files: ",
"",
{"CSV Files|csv"},
1 ,
0 ,
"",
Multiple

);

Argument 3 is a list with one or more strings taking the format:

“fileTypeText | fileTypeExtension“
fileTypeText only effects Windows (but is still required to be supplied for Macs). It supplies
the text shown in the combo box at the lower right that filters the file types.
fileTypeExtension specifies the extensions of the selectable file types in the dialog.

{"Text Files|csv;txt}

{"Text Files|csv;txt","Excel Files|xlsx","ASCII files|asc"}

5. Pick File returns a list of strings when the Multiple option is used. Each string is

the full (absolute) path to a file the user selected. A list is a composite data type, containing
zero or more items that can be of any other data type (including lists). It starts and ends
with curly brackets. Items are separated by commas. Before going on, we should check
that csvFiles contains something, if not, we can stop.
If(N Items(csvFiles) == 0,

Print("No files selected.");
Return()

);
N Items counts the number of items in the list. If there are none, “No files
selected.” is printed to the Log and the script terminates. (Technically, control would
be passed back to the script that executes this script, but since there isn’t one, processing
ends.)

6. We will need to extract the file names from each string along with the directory from which
the files came. Since all files are in the same directory, we only need to do this for one of
the items in the list. The following two lines will first locate the last backslash (i.e., the
separator of the last directory in the path) then find the path associated with that directory
lastBackslash = Contains(csvFiles[1],"/",-1);
mainFolder = Substr(csvFiles[1],1,lastBackslash);

List items are identified by position using the syntax above. The -1 argument to
Contains indicates to search starting at the end of the string. The second and third
arguments to Substr correspond to starting position and string length, respectively.

7. To extract the file names, we’ll use a loop.
fileList = "";
For Each({nextFileName},csvFiles,
 fileList ||= Substr(nextFileName,lastBackslash+1) ||";";
);

For Each first appeared in JMP 16 and can be used for Lists, Matrices, and Associative
Arrays. It is more compact and faster than its alternative, For. Its first argument appears
in curly brackets and can have 0 – 2 variable names. The first of these is used to hold
sequential values from the list starting with the first. If a second is given, it contains the
iteration number. The scope of these variables is limited to the body of the loop, an
additional benefit. The second argument is the list to be iterated over given as a variable
name or explicitly. The body of the function is used to process the items. In our case we
are building a string of file names separated by semicolons. The Substr function
returns the file name from the complete path by extracting a substring from one character
beyond the last backslash.

To loop using For, the code below can be substituted
fileList = "";
For(i=1,i<=N Items(csvFiles),i++,
 nextFileName = csvFiles[i],
 fileList ||= Substr(nextFileName,lastBackslash+1) ||";";
);

Hints for Success:
• The Source table script contains JSL for recreating a table it appears when a non JMP file is

opened or when table operations create a new table.
• Contains will search from the end of a string.
• For Each is a faster, more compact, and more robust version of For.

