
Run a Platform without Knowing the Number or Names of Columns
Ingredients:
• Expression handling

Sample Data Tables: Cars 1993
Difficulty – Hard
Video Length – 4:25

A common practice is to run a regular analysis using data where the number or names of the inputs
differ. This recipe provides a general method for getting columns into an analysis platform without
knowing how many there are or their names. This is accomplished through the power of expression
handling.

Steps:

1. Start with the following three lines
Names Default to Here(1);

tblRef = Current Data Table();
colList = tblRef << Get Column Names();

This code scopes the variables created within the script to this script window, creates a
reference to the current table, and gets a list of column references, respectively.

2. Open a data table with at least one continuous, one ordinal, and one nominal column. The
Cars 1993 sample data table can be used. Run Distribution with one of each of these types
of columns. Because the report output differs depending on column type, the platform may
treat them differently. Save the script to a script window.

3. The output should look similar to this
Distribution(
 Nominal Distribution(Column(:Vehicle Category)),
 Continuous Distribution(Column(:Fuel Tank Capacity))
);

Distribution treats all categorical (Ordinal and Nominal) columns identically. This is the
case for most platforms.

4. Create an expression for the empty platform message
distributionExpr = Expr(Distribution());

5. Loop over each column and insert into the expression created in the step above, an expression
corresponding to the column analysis. The column analysis expression can be taken from the
code saved after Distribution was run interactively. Substitute will be used to build the
column analysis expressions. The value returned from Substitute is then inserted into
the main expression.
For(i=1,i<=N Items(colList),i++,
 If(Column(tblRef,colList[i]) << Get Modeling Type == "Continuous",
 nextColExpr = Substitute(
 Expr(Continuous Distribution(Column(col))),
 Expr(col), colList[i]
);
 ,//ELSE
 nextColExpr = Substitute(
 Expr(Nominal Distribution(Column(col))),

 Expr(col), colList[i]
);
);
 Insert Into(distributionExpr,Name Expr(nextColExpr));
);

When Substitute is used for expression handling it takes an odd number of arguments.
The first argument corresponds to the expression into which substitutions are made.
Substitute evaluates its first argument; we’ll need the Expr function to treat it as an
expression. The remaining pairs of arguments give the expression within the first argument
to be replaced and the value to use. Name Expr is used to keep nextColExpr from
evaluating when inserted into the main expression.

6. At the end of the loop, insert the argument into the Distribution expression. Use Name
Expr, so the contents of the variable nextColExpr are inserted as an expression and not
fully evaluated.

7. When the Distribution expression is complete, create an expression explicitly
messaging the data table then evaluate it.
Eval(
 Substitute(
 Expr(tblRef << anExpr),
 Expr(anExpr),Name Expr(distributionExpr)
)
);

Name Expr is needed for the value of anExpr because we want its contents as an
expression not its evaluated value. Leaving it off would cause the expression in
distributionExpr to evaluate prematurely, before being explicitly sent to the data
table. This would not cause a problem in the current script because the current data table has
not changed. To see how this could go wrong and what would happen, remove Name Expr
from the third argument and insert

Open("$SAMPLE_DATA/BIG CLASS.JMP");
after creating the variable for the current data table. Run the code. The Big Class data table
will open but the report window will not be created. An error message will be written to the
log indicating that the data table does not recognize the message.

The code below shows an alternative more succinct way of looping through the columns.

For(i=1,i<=N Items(colList),i++,
 If(Column(tblRef,colList[i]) << Modeling Type == "Continuous",
 nextExpr = Expr(Continuous Distribution(Column(col))),
 nextExpr = Expr(Nominal Distribution(Column(col)))
);
 nextColExpr = Substitute(Name Expr(nextExpr),Expr(col), colList[i]);
 Insert Into(distributionExpr,Name Expr(nextColExpr));
);

Name Expr is used with the first argument to Substitute because we want to use the value
stored in nextExpr, not (literally) nextExpr, which is what Expr(nextExpr) would
return.

Hints for Success:
• Expression handling is a difficult topic. The more example you see, the more you should

understand.

• Substitute can be used to build expressions. The first argument holds the expression and
the remaining argument pairs hold the expression to replace and the value to use.

• Expr and Name Expr can be used to control evaluation. The contents of Expr are taken
literally, as is the once evaluated contents of Name Expr.

• Eval can be used to evaluate an expression.
•

