Machine Learning & JMP What Is It, and Do We Do It?

Copyright © SAS Institute Inc. All rights reserved.

Spoiler Alert: Yes, we do!

And we always have!

What is Machine Learning?

• According to Wikipedia:

"Machine learning is the study of computer algorithms that improve automatically through experience."

- ?!?!?
- From Encyclopaedia Britannica:
 "Machine learning, in <u>artificial intelligence</u> (a subject within <u>computer</u> <u>science</u>), discipline concerned with the implementation of computer <u>software</u> that can learn autonomously."

My Definition

• Machine Learning is the current buzz-phrase meant to encompass the computer algorithms used to make decisions, predictions, or classifications based on data.

Why Machine Learning? What's it good for, anyway?

- Categorize people or things
- Predict likely outcomes
- Identify previously unknown patterns or relationships
- Detect anomalous or unexpected behaviors
- All this is done using various algorithms written for different types of tasks

Types of Machine Learning Supervised vs Unsupervised

- Example inputs and outputs provided; algorithm determines relationship(s)
- Decision Trees
- Neural Networks
- Random Forests
- Regression
- Support Vector Machines
- K-Nearest Neighbors
- Naïve Bayes

- Example inputs, but no outputs; algorithm does all the work
- Clustering
- Self-Organizing Maps
- Association Analysis
- Singular Value Decomposition
 - JMP uses SVD as part of several routines – prominently in Text Explorer

Types of Machine Learning Supervised vs Unsupervised

- Example inputs and outputs provided; algorithm determines relationship(s)
- Decision Trees
- Neural Networks
- Random Forests
- Regression
- Support Vector Machines
- K-Nearest Neighbors
- Naïve Bayes

- Example inputs, but no outputs; algorithm does all the work
- Clustering
- Self-Organizing Maps
- Association Analysis
- Singular Value Decomposition
 - JMP uses SVD as part of several routines

Types of Machine Learning Supervised vs Unsupervised

- Example inputs and outputs provided; algorithm determines relationship(s)
- Decision Trees
- Neural Networks
- Random Forests
- Regression
- Support Vector Machines
- K-Nearest Neighbors
- Naïve Bayes

- Example inputs, but no outputs; algorithm does all the work
- Clustering
- Self-Organizing Maps
- Association Analysis
- Singular Value Decomposition
 - JMP uses SVD as part of several routines – prominently in Text Explorer

The (Possible) Trade-Off Accuracy vs Interpretability

- I can walk through the path of the Decision Tree to make a prediction, but there's no "meaning" behind the cut-offs.
- The coefficients in an SVM model have no meaning; they are just used to obtain the predicted outcome.
- Can produce models with very high predictive accuracy.

- Regression models provide model coefficients that have inherently interpretable meaning.
- "This model says that if I increase this input by 1 unit, my response will go up 10 units!"
- Lasso and Elastic Net in GenReg bring a Machine Learning mindset to an explainable regression model.
- As discussed by Galit Schmueli, this is the Explain vs Predict problem.

Does lack of interpretability matter? Maybe...it depends on the use case

- If the algorithm accurately predicts future events or gives desired outcomes, maybe that's all that matters.
- If stakeholders want to have more concrete answers as to how to "improve their score", an explainable model may be preferred.
- The key for any model is whether can you put the output into action.

Computers win; goodbye human analysts Not so fast...

- There are lots of algorithms; which one(s) are best for this problem?
- What data should be included or excluded?
- Where is the point of diminishing returns?
- Are there inherent biases in the model?
- When should the model be updated?

Demo Time Supervised Learning

- Two older machine learning platforms have been updated recently K-Nearest Neighbors and Naïve Bayes
- A brand new platform Support Vector Machines (SVM)
 - Not to be confused with Structural Equation Modeling (SEM)

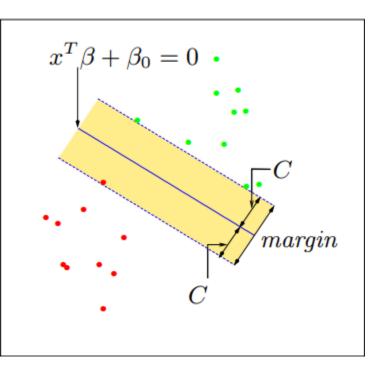
Naïve Bayes

- Strong assumption that predictors are independent
- Calculates probability of class membership based on conditional probabilities given the level of the predictors
- Efficient algorithm; inefficient results (in my experience)

4	✓ ▼ Naive Bayes									
⊿ Session Win?										
	⊿ Training Set									
	Mi			fication						
	Count	t		Rate	Misclassifications					
	296	j		0.38851	115					
⊿ Confusion Matrix										
Training Set										
	Actual		cted							
	Session	Cou	int							
	Win?	0	1							
	0	37	86							
	1	29	144							

K-Nearest Neighbors

- Predicts responses based on observations "nearby"
- Distances measured by Euclidean distance
- Continuous response average of the k-nearest
- Categorical response most frequent of the k-nearest


K Nearest Neighbors								
Session Win?								
⊿ Training Set								
		Misclassification						
K	Count	Rate	Misclassifications					
1	296	0.47635	141					
2	296	0.51689	153					
3	296	0.46959	139					
4	296	0.49324	146					
5	296	0.49324	146					
6	296	0.48649	144					
7	296	0.44257	131					
8	296	0.46284	137					
9	296	0.43919	130					
10	296	0.45270	134					
			-					

⊿ Confusion Matrix for Best K=9

Training Set						
Actual Predicted						
Session	Count					
Win?	0	1				
0	45	78				
1	52	121				

Support Vector Machines

- Maximum Margin Classifier
- Maximizes the space around the classification line to separate the classes
- Distance metric in the "Kernel"
 - Linear Kernel Euclidean distance
 - RBF Kernel Gaussian similarity measure
- Parameters of the kernel need to be chosen

References

- Wikipedia. 2020. Machine Learning. <u>https://en.wikipedia.org/wiki/Machine_learning</u>. [Online: Accessed 18-May-2020].
- Encyclopaedia Britannica. 2020. Machine Learning. <u>https://www.britannica.com/technology/machine-learning</u>. [Online: Accessed 18-May-2020].
- Shmueli, G. 2010. *To Explain or To Predict?*, Statistical Science **25**, no. 3, 289–310.

Thank you!

jmp.com

Copyright © SAS Institute Inc. All rights reserved.