Quality Corner

SPC: Measurement Systems Analysis, Process Capability, and Control Charts

Alisa Hunt-Lowery, MSIE, MBB

Statistical Process Control

- Methods and tools used to monitor and improve product quality by monitoring and reducing process variation
- First step to reduce variation is to understand the source:
 - 1. <u>Common</u> Cause Variation
 - Is stable over time?
 - Is a result of the system or process design?
 - Processes will have some natural level of variation over time
 - 2. Special Cause Variation
 - Is process unstable over time?
 - Is assignable to a specific event that is outside of the process?
- Process is said to be operating in statistical process control when the only sources of variation are from common causes

SPC Common Theme

Measurement Systems Analysis

MSA

- Assess the measurement system
- What is the true value? (bias/accuracy)
- What is the precision? (variation)
- Range of techniques
 - Linearity
 - Resolution
 - Stability
 - Go/no go
- Helps determine how much variation is due to the measurement system rather than from product or process variation

Sources of Variation:

Part to Part Operator Device (equipment, gage)

 $SS_{Total} = \sum (Y_i - \hat{Y})^2$

 $SS_{Total} = SS_{Part} + SS_{Measurement System}$

SS: Measure the distance from the average, square it and sum them all together.

SS is a measure of variation.

Precision Errors

- **Repeatability** the variation due to the measuring device. It is the variation observed when the same operator measures the same part repeatedly with the same device.
- **Reproducibility** the variation due to the measurement system. It is the variation observed when different operators measure the same parts using the same device.

MSA – Gage R&R Studies

$$SS_{Total} = SS_{Part} + SS_{Operator} + SS_{Gage}$$
Reproducibility

$$SS_{Total} = SS_{Part} + SS_{R\&R}$$

For a good Measurement System

* Variance SS <u>Percent (%) of Total</u> *

Crossed Versus Nested Designs

- <u>Crossed</u> designs we assume that each operator can measure the same parts that other operators measure. We also plan on having each operator measure the same part more than once, (e.g. board that can be measured again)
- <u>Nested</u> designs we assume that the part is destroyed (e.g. breaking strength test, flammability test) to obtain a measurement, therefore, for repeatability the operator must have parts that are assumed to be the "same" to obtain repeatability variation.

Example: Measuring Board Length

- Ten boards were selected that represent the expected range of the process variation (usually we want to assure at least 80% coverage).
- Three operators measured the ten parts, three times per part.

Instructions

- Select Analyze → Quality and Process →Measurement Systems Analysis
- 2. Select **Measurement** for **Y**, **Response**
- 3. Select part# for Part, Sample ID
- 4. Select **Operator** for **X**, **Grouping**
- 5. Make sure **MSA Method** is changed to **Gauge R&R**
- 6. Select OK.

-	Distribution					
y _x	Fit Y by X					
	Tabulate		s <mark>urem</mark> ent			
÷	Text Explorer		59.55			
≽	Fit Model		59.55			
	Predictive Modeling	•	59.55			
	Specialized Modeling	•	60.05			
	Screening	•	59.95			
	Multivariate Methods	•	60			
	Clustering	•	59.8	2		
	Quality and Process	•	🚟 🛛 Control Char	t Builder		
	Reliability and Survival	•	Measuremer	nt Systems Analysis		
	Consumer Research	•	IIII Variability / A	Attribute Gauge Chart		

Output

Does it look like there is variation within operator or between operators?

Instructions

- 1. Click on the red triangle next to **Variability Gauge**.
- Select Gauge Studies
 →Gauge RR
- 3. Select Crossed
- 4. Select OK.

📴 Enter/Verify Gauge R&R Specif	ications	×
Choose tolerance entry method Tolerance Interval Y	K, Sigma Multiplier [e.g. 6 gives a 99.73% spread] Tolerance Interval, USL-LSL, optional Spec Limits, optional	6
	Historical Mean, optional	
	OK	Cancel Help

Output

Look to see what % contribution of Gage R&R is. Is this an acceptable Gage R&R?

Process Capability

Driving into a Garage

Process Spread: Too Much Variation

Process is Not Centered: Creating Defects

Ideal: Centered and On Target

LSL=59.75" T=60" USL=60.25"

Capability Analysis

- Is my process capable of meeting specifications?
- Compare Voice of the Customer (Specifications) [USL-LSL] to Voice of the Process (Process Distribution) [6σ]
- Specifications:

Internal, External; one-sided, two-sided

$$\hat{\sigma}_{\text{short-term}} = \frac{\overline{R}}{d_2} \qquad \qquad \hat{\sigma}_{\text{long-term}} = \sum_{i=0}^{N} \sqrt{\frac{(X_i - \overline{X})^2}{N - 1}}$$

$$C_p = \frac{(\text{USL} - \text{LSL})}{6 * \hat{\sigma}_{\text{short-term}}} \qquad \qquad P_p = \frac{(\text{USL} - \text{LSL})}{6 * \hat{\sigma}_{\text{long-term}}}$$

$$Cp_k = \frac{Min (\text{USL} - \overline{X}, \overline{X} - \text{LSL})}{3 * \hat{\sigma}_{\text{short-term}}} \qquad \qquad Pp_k = \frac{Min (\text{USL} - \overline{X}, \overline{X} - \text{LSL})}{3 * \hat{\sigma}_{\text{long-term}}}$$

What are Good Process Capability Indices?

• It varies by industry, but generally anything higher than 1 is acceptable

Ср	Parts Per Million Defects
1.00	66,813
1.33	6,210
1.50	1,350
1.67	233
1.83	32
2.00	3.4

Assumptions

- Stable(No special cause variation)
- Process is normally distributed

o Non-Normal distributions (Weibull, Gamma, Exponential, etc...) can be fit

Process Capability Example

- 1. Open the data table JMP Length.jmp
- 2. Select Analyze→ Distribution
- 3. Select Length for Y, Columns
- 4. Select OK.

Process Capability Example

- 1. Click on the red triangle beside **Length**
- Select Continuous Fit
 →Fit Normal
- Click on the red triangle beside Fitted Normal Distribution→Select Goodness of Fit

~	Density Curve	Std Error	Lower 95
	Diagnostic Plots	0.0060436	1.33710
	Save Columns) 0.0175152	0.03424
	Goodness of Fit	Tests the goodnes	ss of fit for thi
	Fix Parameters	distribution again	st the data.
	Process Capability	231	
	Remove Fit	365	

Example: Length

Fitted Normal Distribution											
Parameter		Est	imate	Std	Error	Low	er 95%	Upper	95%		
Location	μ	59.8	87387	0.01	35685	59.8	860793	59.9 [°]	13981		
Dispersion	σ	0.0	95944	0.03	14502	0.0	504657	0.099	97013		
Measures											
-2*LogLikeli	ho	od -	93.505	24							
AICc		-	89.249	92							
BIC		-	85.681	19							
⊿ Goodnes	55-	of-F	it Tes	t							
			w	Pr	ob <w< th=""><th></th><th></th><th></th><th></th></w<>						
Shapiro-Wilk 0.			818584	0	.6325						
				A2	Prob	> A2					
Anderson-	0.382	8 <mark>168</mark>	0.3	910							

Is the data normal? What's next?

Process Capability Example

Is this process capable?

Control Charts

Control Charts

- Control Charts are used to monitor, control, and improve process performance over time
- Sophisticated time run chart
- What do they detect?

 Changes in process average
 Changes in process variation
 Different sources of variation

- Benefits of Control Charts:
 - 1. Control Limits can distinguish 'signals' (special cause) from 'noise' (common cause)
 - 2. Allow you to evaluate the stability around the mean
 - 3. Allows for better decisions regarding process improvements balance between acting when not necessary (overcontrol) vs. failing to act when necessary
 - 4. Control Limits are based on what the process is, not what it should be

Control Limits

- Control Charts use limits to identify signs of trouble, or special cause variation that is not due to chance.
- These limits are expressed as lines plotted above (upper control limit) and below (lower control limit) the central tendency of the process.
- Plot points that fall outside of the limits indicate potential trouble

Western Electric Rules: How they detect changes

Test 1	One point beyond Zone A (upper or lower)	Detects a shift in the mean, an increase in the standard deviation, or a single aberration in the process. For interpreting Test 1, any dispersion chart (R, S, or MR) can be used to rule out increases in variation.	Test 5	Two out of three points in a row i or beyond Zone A and the point itself is in or beyond Zone A; the points must be on the same side (upper or lower)	in Detects a shift in the process average or increase in the standard deviation. Any two out of three two points provide a positive test.		
Test 2	Nine points in a row in a single (upper or lower) side of Zone C or beyond	Detects a shift in the process mean.	Test 6	Four out of five points in a row in beyond Zone B and the point itse is in or beyond Zone B; the four points must be on the same side	or Detects a shift in the process mean. Any four out of five points provide a positive test.		
Test 3	Six points in a row steadily increasing or decreasing (anywhe	Detects a trend or drift in the process mean. ere	Test 7	(upper or lower)	Detects stratification of subgroups when the		
Test 4	on the chart) Fourteen points in a row alternati	ng Detects systematic effects such as two alternately		above and below the center line	observations in a single subgroup come from various sources with different means. Also detects a reduction in variation.		
	chart)		Test 8	Eight points in a row on both sides of the center line with none in Zones C	Detects stratification of subgroups when the observations in one subgroup come from a single source, but subgroups come from different sources with different means		

What Type of Chart?

Continuous

- IR: n=1
- *X*̄-R: 2<n<9
- *X*̄-S: n≥10

Discrete

- np: sample size constant/counting defectives
- p: sample size not constant/counting defectives
- c: sample size constant/counting defects
- u: sample size not constant/counting defects

	Chart for Averages			Chart for Standard Deviations					Chart for Ranges							
Observations in	Factors for Control Limits		Facto Cente	Factors for Center Line Fa			actors for Control Limits			ors for er Line		Factors for Control Limits				
Sample, n	A	<i>A</i> ₂	<i>A</i> ₃	<i>C</i> ₄	1/c ₄	B ₃	<i>B</i> ₄	B ₅	<i>B</i> ₆	<i>d</i> ₂	1/d ₂	d_3	D_1	D_2	D_3	D ₄
2	2.121	1.880	2.659	0.7979	1.2533	0	3.267	0	2.606	1.128	0.8865	0.853	0	3.686	0	3.267
3	1.732	1.023	1.954	0.8862	1.1284	0	2.568	0	2.276	1.693	0.5907	0.888	0	4.358	0	2.575
4	1.500	0.729	1.628	0.9213	1.0854	0	2.266	0	2.088	2.059	0.4857	0.880	0	4.698	0	2.282
5	1.342	0.577	1.427	0.9400	1.0638	0	2.089	0	1.964	2.326	0.4299	0.864	0	4.918	0	2.115
6	1.225	0.483	1.287	0.9515	1.0510	0.030	1.970	0.029	1.874	2.534	0.3946	0.848	0	5.078	0	2.004
7	1.134	0.419	1.182	0.9594	1.0423	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.204	5.204	0.076	1.924
8	1.061	0.373	1.099	0.9650	1.0363	0.185	1.815	0.179	1.751	2.847	0.3512	0.820	0.388	5.306	0.136	1.864
9	1.000	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.970	0.3367	0.808	0.547	5.393	0.184	1.816
10	0.949	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.223	1 777
11	0.905	0.285	0.927	0.9754	1.0252	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.811	5.535	0.256	1.744
12	0.866	0.266	0.886	0.9776	1.0229	0.354	1.646	0.346	1.610	3.258	0.3069	0.778	0.922	5.594	0.283	1.717
13	0.832	0.249	0.850	0.9794	1.0210	0.382	1.618	0.374	1.585	3.336	0.2998	0.770	1.025	5.647	0.307	1.693
14	0.802	0.235	0.817	0.9810	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.763	1.118	5.696	0.328	1.672
15	0.775	0.223	0.789	0.9823	1.0180	0.428	1.572	0.421	1.544	3.472	0.2880	0.756	1.203	5.741	0.347	1.653
16	0.750	0.212	0.763	0.9835	1.0168	0.448	1.552	0.440	1.526	3.532	0.2831	0.750	1.282	5.782	0.363	1.637
17	0.728	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.511	3.588	0.2787	0.744	1.356	5.820	0.378	1.622
18	0.707	0.194	0.718	0.9854	1.0148	0.482	1.518	0.475	1.496	3.640	0.2747	0.739	1.424	5.856	0.391	1.608
19	0.688	0.187	0.698	0.9862	1.0140	0.497	1.503	0.490	1.483	3.689	0.2711	0.734	1.487	5.891	0.403	1.597
20	0.671	0.180	0.680	0.9869	1.0133	0.510	1.490	0.504	1.470	3.735	0.2677	0.729	1.549	5.921	0.415	1.585
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	1.605	5.951	0.425	1.575
22	0.640	0.167	0.647	0.9882	1.0119	0.534	1.466	0.528	1.448	3.819	0.2618	0.720	1.659	5.979	0.434	1.566
23	0.626	0.162	0.633	0.9887	1.0114	0.545	1.455	0.539	1.438	3.858	0.2592	0.716	1.710	6.006	0.443	1.557
24	0.612	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	1.759	6.031	0.451	1.548
25	0.600	0.153	0.606	0.9896	1.0105	0.565	1.435	0.559	1.420	3.931	0.2544	0.708	1.806	6.056	0.459	1.541

For n > 25.

Introduction to Statistical Quality Control, 4th Ed. Montgomery, pg. 761

$$A = \frac{3}{\sqrt{n}} \qquad A_3 = \frac{3}{c_4\sqrt{n}} \qquad c_4 \approx \frac{4(n-1)}{4n-3}$$
$$B_3 = 1 - \frac{3}{c_4\sqrt{2(n-1)}} \qquad B_4 = 1 + \frac{3}{c_4\sqrt{2(n-1)}}$$
$$B_5 = c_4 - \frac{3}{\sqrt{2(n-1)}} \qquad B_6 = c_4 + \frac{3}{\sqrt{2(n-1)}}$$

Example-Cont'd

- 1. Open Length.jmp.
- Select Analyze → Quality and Process → Control Chart Builder.
- Drag Length for Y and Observation to Subgroup.
- 4. Select OK.

Analy	yze Graph Tools Add-Ins	View	Window	Help
₽.	Distribution			
y _x	Fit Y by X			
1	Tabulate			
1	Text Explorer			
≽	Fit Model			
	Predictive Modeling			
	Specialized Modeling			
	Screening •			
	Multivariate Methods	-		
	Clustering •	-		
Enat cont	Clustering	e 🖌	Control Cl	nart Builder

Control Chart Builder	
Undo Start Over Done By	
■2 Columns	
Length	Phase
Observation	
Shewhart Variables Vew Y Chart	
Three Way Control Chart	
Y	
	Cubaroun
	Subgroup

Example

- Right click on top chart and select
 Warnings→Tests
 →All Tests.
- 2. Click Done.

Example

You decide to count the number of product returns over the last month from varying production lot sizes.

Which control chart would you use? Is it in control?

Open Returns.jmp

Example-Cont'd

- 1. Open Returns.xlsx
- 2. Select Analyze→Quality and Process→ Control Chart → P.
- 3. Select **Defectives** for **Process.**
- 4. Select **N** for **Sample Size**.
- 5. Select OK.

Tables	Rows Cols DUE	Analyze	Grap y	on loois	View	Window	нер	
	Fit Y by X Matched Pairs		N					
	Tabulate		51	i				
≽■	Fit Model		48	3				
	Modeling Multivariate Method	s >	50 50 44)) 4				
	Quality and Process	•	**	Control Chart Builder Measurement Systems Analysis Variability / Attribute Gauge Chart				
	Reliability and Surviv Consumer Research	ral >	łihi 1					
	13	6	M	Process Ca	pabilit	<i>(</i>		
Ru	n Chart			Control Ch	art			
XB IR	ar	í.	Pareto Plot	t				
Р			Diagram Charts the proportions of					
NP			nor sam	conforming	items	in subgro	up	

😤 Control Chart - JMP Pro			-		×
P Control Chart					
Select Columns	-Cast Columns i	nto Roles		Action	
Columns Defectives	Process	Process Defectives optional numeric		0	K
A N	Sample Label	optional		Can	icei
Parameters —	Phase	optional		Remove	ove
 KSigma Alpha 	Ву	optional		Rec	all
3	Sample Size	Ν		He	lp
	Constant Size: Specify Stats	Delete Stats		Get L	imits pability
] 🔻

Summary

- SPC looks at variation
- MSA assesses the measurement system
- Process capability assesses whether meeting customer specifications
- Control charts identify whether process is stable and in control

Just in case you were wondering....

For more information, please check out the free SAS Training course, <u>Statistical Thinking</u> <u>for Industrial Problem Solving</u>

Statistical Thinking for Industrial Problem Solving A free online statistics course

In virtually every field, deriving insights from data is central to problem solving, innovation and growth. But without an understanding of which approaches to use, and how to interpret and communicate results, the best opportunities will remain undiscovered.

That's why we created Statistical Thinking for Industrial Problem Solving. This online statistics course is available - for free - to anyone interested in building practical skills in using data to solve problems

