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In some designed experiments, measurements of characteristics of the experimental units may be avail-
able prior to performing the runs. If the investigators believe that these measured characteristics may have
some e↵ect on the response of interest, then it seems natural to include these characteristics as factors in
the experiment even though they are not under direct control. It may also be possible to apply multiple
runs to a given experimental unit by subdividing it into multiple pieces, each having the same character-
istics. A similar scenario involves using a person or an animal as an experimental unit multiple times but
with di↵erent treatments. Here, the measured information about the subjects may not change over the
experiment. In either of these cases, the fact that several runs employ the same experimental unit means
that the responses for those runs are correlated. This correlation, in addition to the natural variability of
the measured characteristics over the sample of available experimental units, requires new methodology for
creating optimal designs. Specifically, the methodology must choose a subset of the experimental units and
determine the number of treatments applied to each experimental unit in addition to choosing the level
combinations of the controllable factors for each run. In this article, we provide two methods for generating
optimal designs in the presence of additional information about the experimental units. The first method
fixes the number of runs performed on each experimental unit. The second method allows for varying
numbers of runs applied to each experimental unit, subject to a constraint on the total number of runs.
We discuss several illustrative examples using each method as well as a real experiment using previously
fabricated batches of polypropylene as experimental units in a study on the e↵ects of a subsequent plasma
treatment.

Key Words: Blocked Experiment; Concomitant Variable; Covariate; D-Optimality; I-Optimality; Split-Plot
Experiment; V-Optimality.

1. Introduction

PRIOR to running an experiment, an investigator
may possess information about certain character-

istics of the experimental units that could have a
substantial e↵ect on the response. It is natural to
take these characteristics into account when design-
ing the experiment and when analyzing the resulting
data. We call the factors that measure the charac-
teristics of the experimental units covariates or con-
comitant variables. The covariates may be continu-
ous or categorical. They are di↵erent from the ex-
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perimental factors in that they cannot be controlled
directly. Designing an experiment around the levels
of the covariates reduces the standard errors of the
factor-e↵ect estimates compared with an experiment
that ignores the covariate information and uses com-
plete randomization of the experimental units. In this
way, covariates are similar to blocking factors.

Because instruments often experience drift over
time as the output of a sequence of experimental
runs is measured, the design of experiments litera-
ture contains many references dealing with time as a
covariate. Joiner and Campbell (1976) gave four in-
teresting examples of experiments involving a time
trend or drift, while Hill (1960) summarized the
early literature on optimal designs in the presence
of a time trend. These optimal designs are generally
called trend-robust designs because they lead to es-
timates of the experimental factors’ e↵ects that are
insensitive to the time trend. Daniel and Wilcoxon
(1966) proposed trend-robust arrangements of both
full factorial and fractional factorial experiments.
Follow-up work, in which a trend-robust arrangement
was sought for a given set of factor level combina-
tions, was done by Cheng and Jacroux (1988), Cheng
(1990), John (1990), Cheng and Steinberg (1991),
and Mee and Romanova (2010). Atkinson and Donev
(1996) proposed an algorithm for generating general
trend-robust designs.

The general problem of covariate information in
experimental design, involving covariates other than
time, received much less attention in the literature
than the search for good experimental designs in the
presence of time-trend e↵ects. Harville (1974), Cook
and Thibodeau (1980), Nachtsheim (1989), and Goos
and Jones (2011) discussed the design of experiments
in the presence of general covariates.

A key feature of the published work on design of
experiments in the presence of covariates is that it
assumes that every experimental unit is used exactly
once and that all the responses are independent. In
this paper, we study situations where each experi-
mental unit (about which supplementary information
is available, in the form of one or more covariates)
is divisible into subunits that can undergo di↵erent
treatments. Hence, we face a design-of-experiments
problem in which multiple experimental runs involve
the same covariate values. We distinguish two sce-
narios. In the first scenario, we consider experiments
where it is desirable to use an equal number of treat-
ments for every experimental unit. In the second sce-

nario, we allow the number of treatments to di↵er
from unit to unit.

The fact that we consider experiments involv-
ing more than one treatment per experimental unit
makes our designs similar to blocked experiments.
The design of blocked experiments has received much
attention in the design-of-experiments literature (see,
for instance, Wu and Hamada (2000) for an overview
of the work on blocking factorial and fractional
factorial designs and Atkinson and Donev (1989),
Cook and Nachtsheim (1989), Goos and Vandebroek
(2001), and Goos and Donev (2006) for algorithms
on the optimal design of general blocked experiments
involving fixed and random block e↵ects). However,
covariates corresponding to the blocks are not taken
into account in any of this work. Moreover, these au-
thors always assume that there are no interactions
between the blocks and the treatment factors. In
this paper, we have covariate information for each
block, so we can model interactions involving the co-
variates and the treatments. The model in our pa-
per therefore shows some similarity with the work
of Khuri (1996), who allowed for interactions be-
tween the blocks and the experimental factors using a
random-e↵ects model. A di↵erence between Khuri’s
work and ours is that we use fixed covariates to ex-
plain the exact nature of the interactions instead of
treating the interactions as random e↵ects.

The model we consider in this paper is very simi-
lar to that used for data from split-plot experiments
in Letsinger et al. (1996), Vining et al. (2005), and
Goos et al. (2006). This is because our model in-
volves a random intercept and two types of explana-
tory variables, some of which (the covariates) are re-
lated to the larger experimental units (the blocks)
and some of which (the controlled experimental fac-
tors) are applied to the individual runs. In a split-
plot model, there is also a random intercept, and one
set of explanatory variables (the whole-plot factors)
is applied to the larger experimental units, whereas
another set (the subplot factors) is applied to the in-
dividual runs. A major di↵erence between split-plot
experiments and the experiments considered in this
paper is that, unlike the settings of the whole-plot
factors in a split-plot experiment, the values of the
covariates are not under the investigator’s control.
However, the investigator is in the position to choose
which of the available supply of experimental units
to use and to determine how many subunits of the
selected experimental units are used.

Journal of Quality Technology Vol. 47, No. 4, October 2015
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This paper is organized as follows. In Section 2,
we describe the two examples that motivated us to
study the problem of designing experiments involv-
ing covariates. In Section 3, we discuss the model we
use to analyze data from blocked experiments in the
presence of covariate information about the blocks.
In Section 4, we define the D- and the I-optimality
criteria to select designs. Next, in Section 5, we focus
on small artificial examples to clarify the di↵erence
between the two scenarios that are central to the pa-
per. Finally, we return to the two motivating exam-
ples in Section 6, and end the paper with a discussion
in Section 7.

2. Motivating Examples

2.1. Scenario 1: Equal Numbers of Runs
Within Every Block

Many experiments involve subjects each of whom
tests or evaluates several products. Typical exam-
ples include shampoos, cars, credit-card o↵erings, or
wines. Our example involves the testing of running
shoes. An important quality characteristic of a run-
ning shoe is its wear. The wear is clearly a function
of the design of the running shoe. Key design factors
that drive the wear of a shoe are the sole’s thick-
ness, the shoe brand, and whether or not the shoe
has extra cushioning or shock absorption. There are,
however, also other important factors that have an
impact on the wear. First, the weekly mileage of the
runner plays a major role, as well as the runner’s
weight. Also, whether the runner’s strike point is the
heel or the midfoot is an influential factor.

The usual experimental practice is to recruit a
pool of runners to test prototype shoes. Decisions
that a↵ect the e�ciency of the experimental design
are the selection of participants from the runners in
the pool and the assignment of the prototypes to each
of the selected runners. The selection of any partic-
ular runner automatically implies a value for each of
the covariates. Hence, technically speaking, the ex-
perimenter needs to choose the covariate values from
a pool of potential covariate values and to assign sev-
eral combinations of treatment-factor levels to each
chosen covariate value.

To control cost, we require each participant in the
study to test several factor-level combinations, i.e.,
several types of shoes. This inevitably leads to sets
of correlated responses because the wear patterns for
any given runner will be more homogeneous than the
wear patterns from di↵erent runners. For logistical

reasons, we preferred to have each participant test
an equal number of shoes. The number of runners in
the study was determined by the budget and fixed in
advance.

Designing the running-shoe experiment requires
an experimental design methodology that chooses
the runners (and thus their covariate values), while
simultaneously optimizing the settings for the shoe-
design factors over the set of experimental runs.

2.2. Scenario 2: Unequal Numbers of Runs
Within Every Block

Jones and Goos (2007) and Goos and Gilmour
(2012) discuss a large polypropylene experiment in-
volving several stages. In the first stage, batches
of polypropylene plates were made. Every batch
was made according to di↵erent formulations involv-
ing the ingredients polypropylene, ethylene, ethylene
propylene diene monomer (EPDM), ethylene vinyl
acetate (EVA), lubricant, UV stabilizer, talcum, and
mica. The second stage of the experiment involved a
gas plasma treatment in an oven. The gas plasma
treatment was defined by the oven pressure, the
power utilized, the reaction time, and the type of
gas used.

The polypropylene production in the first stage of
the experiment yielded large batches of a few hun-
dred polypropylene plates (each with size 4 cm ⇥ 8
cm ⇥ 3 mm). For the initial experiment, only a few
dozen plates from each batch were required. The re-
mainder of the plates were individually packed so as
to ensure there was no loss of quality. As a result,
the investigators ended up with a stock of several
batches of polypropylene plates with di↵erent, but
known, compositions.

The stock of plates makes it possible to conduct
follow-up experiments to test, for instance, other
gas plasma treatments and other oven types on a
wide variety of plates. The goal of all the exper-
iments was to tailor the gas plasma treatment to
possible polypropylene formulations that an exist-
ing or new customer might have in mind for his/her
product. The customers included producers of mobile
phones, car manufacturers, and producers of medi-
cal devices, all of whom use polypropylene, but for
entirely di↵erent products. Obviously, di↵erent end
uses of the polypropylene impose di↵erent require-
ments on the formulation. For the success of the gas
plasma treatment company, it is of crucial impor-
tance to be able to react flexibly to the changing
needs of the customers and to accumulate knowledge
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about the interactions between the gas plasma treat-
ments and the polypropylene formulations. The large
historical stock of polypropylene plates from di↵er-
ent batches allows them to conduct many gas plasma
treatment experiments inexpensively, i.e., without
having to go through the trouble of ordering new sets
of polypropylene plates. This raised the question of
how to design the follow-up experiments in such a
way as to take into account the available informa-
tion on each batch. Here, the available information
about each batch is the polypropylene formulation,
so the ingredients of the polypropylene comprise the
matrix of covariate observations.

When discussing the optimal design of the follow-
up experiments, we observed the following:

• Even though the gas plasma treatment factors
are independently reset for every experimental
run, the runs that involve plates from the same
batch are dependent. Hence, their responses are
correlated, as are the runs in the same block of
a blocked experiment and the runs in the same
whole plot of a split-plot experiment.

• There is no limitation on the number of batches
used in each follow-up experiment because the
available batches are numerous. Also, it is as
easy to select five plates from five di↵erent
batches as it is to select five plates from a sin-
gle batch. This is because every batch is just
a box of small plates sitting on a shelf in a
warehouse. This makes the current type of ex-
periment di↵erent from a split-plot experiment
because the cost of a split-plot experiment is
primarily driven by the number of whole plots,
whereas, in the polypropylene experiment, the
experimental cost is driven by the total number
of plates used.

• There is also no realistic upper bound on the
number of plates selected from any given batch
because every batch consists of hundreds of
plates and every follow-up experiment requires
at most a few dozen plates usually from dif-
ferent batches. This is a second major di↵er-
ence between the current type of experiment
and a split-plot experiment. In a split-plot ex-
periment, the number of runs within a whole
plot is often dictated by the logistics of the ex-
periment (for instance, the size of an oven, the
number of runs that can be done in a day, or
on a plot of land).

As a result, for follow-up polypropylene ex-
periments, we need an optimal experimental de-

sign methodology that simultaneously identifies the
batches (and thus the covariate values) to use, deter-
mines the number of plates to use from each chosen
batch, and assigns the settings for the gas plasma
treatment factors to each plate. We desire the design
produced by this methodology to be the most e�-
cient possible for estimating the model e↵ects, given
that the choice of covariate values is limited.

In experiments other than the polypropylene ex-
periment, it may be desirable to limit the number of
batches. For instance, the available batches may be
spread over di↵erent geographical locations, in which
case using many batches might require a major logis-
tical cost. In such instances, it makes sense to define
an upper bound for the number of batches. Even in
that scenario, it is useful to optimize the number of
batches used because the optimal number of batches
depends to some extent on the values of the covari-
ates and is therefore not necessarily the maximum
number the budget allows.

3. Statistical Model and Analysis

In the presence of covariate information on the
blocks, the model we use for analyzing data from
experiments with b blocks, the ith of which involves
ki runs, is

Yij = f 0(ci,xij)� + �i + "ij , (1)

where Yij is the response measured at the jth run
in the ith block, ci is the vector containing the val-
ues of the covariates for block i, xij is the vector
that contains the levels of the experimental factors
at the jth run in the ith block, f(ci,xij) is the model
expansion of the two types of explanatory variables
(the covariates and the experimental factors), and �
contains the intercept, the covariates’ e↵ects, the fac-
tor e↵ects and the interaction e↵ects that are in the
model. The term �i represents the random e↵ect of
the ith block and "ij is the random error associated
with the jth run in block i. We denote the dimension
of f(ci,xij) and � by p.

For an experiment with sample size n and b blocks,
the model can be written in matrix notation as

Y = X� + Z� + ", (2)

where Y is the vector of responses, X represents the
n ⇥ p model matrix containing the values of the co-
variates c and the experimental factors x and their
model expansions, � is again the p-dimensional vec-
tor containing the p fixed e↵ects of the covariates and
the experimental factors in the model, Z is an n⇥ b
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matrix of zeroes and ones assigning the n runs to
the b blocks, � is the b-dimensional vector contain-
ing the random e↵ects of the b blocks, and " is the
n-dimensional vector containing the random errors.
We assume that

E(") = 0n and cov(") = �2
"In, (3)

E(�) = 0b and cov(�) = �2
�Ib, (4)

and
cov(�, ") = 0b⇥n.

Under these assumptions, the covariance matrix
of the responses, Var(Y ), is

V = �2
"In + �2

�ZZ0. (5)

When the entries of Y are grouped by block, then

V = diag(V1, . . . ,Vb), (6)

where

Vi = �2
"Iki + �2

�1ki1
0
ki

= �2
"(Iki + ⌘1ki1

0
ki

),

ki is the number of runs in block i, and the variance
ratio ⌘ = �2

�/�2
" is a measure for the extent to which

responses from runs within the same block are cor-
related. The larger ⌘, the more the responses within
one block are correlated.

When the random error terms as well as the
block e↵ects are normally distributed, the maximum-
likelihood estimator of the unknown model parame-
ter vector � is the generalized least squares (GLS)
estimator

�̂ = (X0V�1X)�1X0V�1Y , (8)

with covariance matrix

var(�̂) = (X0V�1X)�1. (9)

The information matrix for the parameter vector �
is given by

M = X0V�1X. (10)

4. Criteria for Selecting Designs

The most commonly used criterion to select exper-
imental designs is the D-optimality criterion, which
seeks designs that maximize the determinant of the
information matrix,

|M| = |X0V�1X|.

We use the D-e�ciency to compare the quality of two
designs with information matrices M1 and M2. The
D-e�ciency of a design with information matrix M1

relative to a design with information matrix M2 is
defined as

D-e�ciency =

 
|M1|
|M2|

!1/p

.

A D-e�ciency larger than one indicates that design
1 is better than design 2 in terms of the D-optimality
criterion. In general, the D-optimal design depends
on the variance ratio ⌘ through the covariance matrix
V of the responses, as does the D-e�ciency of one
design relative to another.

An I-optimal design minimizes the average predic-
tion variance

average variance

=

R
� f 0(c,x)(X0V�1X)�1f(c,x)d(c0,x0)0R

� d(c0,x0)0

(11)

over the experimental region �. Jones and Goos
(2012) show that the average prediction variance can
be calculated as

average variance

=
1R

� d(c0,x0)0
tr
⇥
(X0V�1X)�1B

⇤
, (12)

where
B =

Z
�
f(c,x)f 0(c,x)d(c0,x0)0 (13)

is the moments matrix. Expressions for the moments
matrix for quadratic models are given in Hardin and
Sloane (1991a, b), for cuboidal and spherical experi-
mental regions.

If P1 is the average prediction variance of one de-
sign and P2 is the average prediction variance of a
second design, then the I-e�ciency of the former de-
sign compared with the latter is computed as

I-e�ciency = P2/P1.

An I-e�ciency larger than one indicates that design
1 is better than design 2 in terms of the average
prediction variance. The I-optimal design and the I-
e�ciency of one design relative to another generally
depend on the variance ratio ⌘ through the covari-
ance matrix V.

A technical di�culty with finding a D- or I-
optimal design in this paper is that the matrix V
and therefore also the D- and I-optimality criteria
depend on the unknown variances �2

� and �2
" . Fortu-

nately, the optimal split-plot designs do not depend
on the absolute magnitude of these two variances, but
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only on their relative magnitude. Therefore, generat-
ing optimal split-plot designs only requires input of
the relative magnitude of �2

� and �2
" .

For the purpose of generating an optimal design,
an educated guess of the variance ratio ⌘ = �2

�/�2
" is

usually good enough, because a design that is opti-
mal for one variance ratio is generally also optimal
for a broad range of variance ratios around the speci-
fied one. Moreover, whenever di↵erent variance ratios
lead to di↵erent designs, the quality of these designs
is almost identical. Goos (2002) recommends using
a variance ratio of one for finding optimal split-plot
designs in the absence of detailed a priori informa-
tion about it. We therefore use an ⌘ value of one to
generate D- and I-optimal designs in this article. A
computationally more demanding approach to deal
with the dependence of optimal designs on the vari-
ance ratio ⌘, which properly accounts for uncertainty
about the exact ⌘ value, is described by Mylona et
al. (2014).

We computed D- and I-optimal designs in the
presence of covariates using a new algorithm. The key
feature of the algorithm is that it combines a point-
exchange procedure with a coordinate-exchange pro-
cedure. The algorithm uses a point-exchange proce-
dure to optimize the values of the covariates c that
have to be chosen from a predefined list of pos-
sible covariate values. This list of covariate values
acts as a set of candidate points and necessitates a
point-exchange algorithm (see, for instance, Fedorov
(1972), Cook and Nachtsheim (1980), and Goos and
Vandebroek (2003)). To optimize the settings of the
experimental factors x, we use a coordinate-exchange
algorithm (see, for instance, Meyer and Nachtsheim
(1995) and Jones and Goos (2007)).

For Scenario 1 in Section 2, our algorithm gen-
erates designs for a fixed number of blocks b and a
fixed number of runs k = k1 = · · · = kb within the
blocks and, given b and k, it optimizes the treat-
ment factor level combinations within every block.
The algorithm is therefore similar to the algorithms
of Goos and Vandebroek (2001, 2003), which seek op-
timal blocked/split-plot designs with given numbers
of blocks/whole plots and runs per block/whole plot.
For Scenario 2 in Section 2, our algorithm also opti-
mizes the number of blocks and the number of runs
within a block. Therefore, our algorithm for that sce-
nario resembles the algorithms of Goos and Vande-
broek (2004) and Kessels et al. (2008), which deal
with finding optimal numbers of whole plots/blocks
as well as optimal whole-plot sizes/block sizes for

split-plot and blocked experiments with given num-
bers of runs.

5. Proof-of-Concept Examples

In this section, we discuss several small, artificial
examples to demonstrate the key concepts. For each
scenario, the initial focus is on D-optimal designs
for main-e↵ects models and models including two-
factor interactions. Later, we turn our attention to-
ward models involving quadratic e↵ects, for which we
compute D- and I-optimal designs.

5.1. Scenario 1

5.1.1. A Categorical Covariate

Consider an experimental study involving two
continuous experimental factors, x1 and x2, and a
single two-level categorical covariate, say gender. As-
sume that a large pool of potential participants is
available, but the budget allows for eight participants
and two experimental runs per participant. If the in-
terest is in a main-e↵ects model

Yij = �0 + �1ci + �2x1ij + �3x2ij + �i + "ij , (14)

where c is the coded covariate (�1 for males, 1
for females), then the D-optimal design uses four
males and four females. Each participant either tests
the factor level combinations (x1, x2) = (�1, 1) and
(x1, x2) = (1,�1), or the factor level combinations
(x1, x2) = (�1,�1) and (x1, x2) = (1, 1). The result-
ing design, which is shown in Figure 1, is orthogonal.
Assuming that �2

" = �2
� = 1, the design has a diago-

nal information matrix equal to

M = diag(16/3, 16/3, 16, 16),

FIGURE 1. D-Optimal Design Involving Blocks of Size
Two and Two Experimental Factors x1 and x2 for a Main-
E↵ects Model with One Two-Level Categorical Covariate,
Gender.
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FIGURE 2. D-Optimal Design Involving Blocks of Size Three and Two Experimental Factors x1 and x2 for a Main-E↵ects
Model with One Two-Level Categorical Covariate, Gender.

where the diagonal elements correspond to the inter-
cept and the main e↵ects of the covariate and the
two experimental factors. The fact that the last two
diagonal elements equal 16, the total number of runs,
shows that no information is lost concerning the main
e↵ects of x1 and x2 due to the blocking.

Now, consider a situation where three experimen-
tal runs are possible for each of the eight participants,
yielding a total of 24 experimental runs. A D-optimal
design for that situation is shown in Figure 2. Every
block of that design involves the 22 factorial design in
x1 and x2 minus one point. The overall projection of
the design, obtained by ignoring the blocks, involves
six replicates of the 22 factorial design. The overall
projection for each gender results in three replicates
of the 22 design. The design results in a diagonal
information matrix,

M = diag(6, 6, 22, 22),

which implies that all model e↵ects can be estimated
independently. This is remarkable given the blocks
of size three, which makes it impossible to have an
orthogonal two-level design. The nonorthogonality of
the design can be seen from the fact that the last
two diagonal elements of the information matrix are
smaller than the number of runs, 24.

5.1.2. Two Quantitative Covariates

Consider an experimental study involving two
continuous experimental factors, x1 and x2, and two
quantitative covariates, c1 and c2. The model of in-
terest involves the main e↵ects and second-order in-
teractions involving x1, x2, c1, and c2,

Yij = �0 + �1c1i + �2c2i + �3x1ij + �4x2ij

+ �5c1ic2i + �6c1ix1ij + �7c1ix2ij + �8c2ix1ij

+ �9c2ix2ij + �10x1ijx2ij + �i + "ij . (15)

The set of covariate values involves 16 draws from a
bivariate uniform distribution on the [�1, 1]⇥ [�1, 1]
square. This set is shown in Figure 3.

In this section, we assume that eight blocks of
three runs each are desired and therefore compute
a D-optimal design involving eight blocks of size
three. The design we obtained is shown as design 1 in
the left pane of Table 1. The covariate combinations
shown by means of a square in Figure 3 are the ones
selected by the D-optimal design, while the filled cir-
cles indicate those not selected. A key result is that
the combinations of covariate values selected in the
D-optimal design are located close to the vertices of
the square in Figure 3. So our algorithm for finding
a D-optimal design picks the covariate combinations
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FIGURE 3. Scatter Plot of the Values for the Two Quan-
titative Covariates c1 and c2 in Section 5.1.2. Squares indi-
cate the covariate combinations selected by the D-optimal
24-run design with eight blocks of size 3 (labeled design
1 in Table 1), while filled circles correspond to covariate
combinations that are not used in the D-optimal design.

that are closest to the factor level combinations of a
22 design in the covariates.

5.2. Scenario 2

5.2.1. Model with Main E↵ects and Interactions

Consider again an experimental study involving
24 runs, two continuous experimental factors, x1 and
x2, and two quantitative covariates, c1 and c2, and
assume the model of interest is given by Equation
(15). As the set of covariate values, we utilize the
set of 16 draws from a bivariate uniform distribu-
tion on the square [�1, 1] ⇥ [�1, 1] shown in Figure
3. Now, however, we neither impose a fixed number
of blocks nor a fixed number of runs per block. In-
stead, we seek the optimal number of blocks and the
optimal numbers of runs in those blocks. Because we
start from 16 combinations of covariate values, the
maximum number of blocks in this study is 16. The

TABLE 1. D-Optimal Designs for a Model with Main E↵ects and Second-Order Interactions Involving Two
Quantitative Covariates, c1 and c2, and Two Quantitative Experimental Factors, x1 and x2

Design 1 Design 2 Design 3

Block c1 c2 x1 x2 Block c1 c2 x1 x2 Block c1 c2 x1 x2

1 �0.73 �0.55 �1 �1 1 �0.73 �0.55 �1 �1 1 �0.73 �0.55 �1 �1
1 �0.73 �0.55 �1 1 1 �0.73 �0.55 �1 1 1 �0.73 �0.55 �1 1
1 �0.73 �0.55 1 �1 1 �0.73 �0.55 1 �1 1 �0.73 �0.55 1 �1
2 �0.52 0.98 �1 �1 1 �0.73 �0.55 1 1 1 �0.73 �0.55 1 1
2 �0.52 0.98 1 �1 2 �0.52 0.98 �1 �1 2 �0.52 0.98 �1 �1
2 �0.52 0.98 1 1 2 �0.52 0.98 �1 1 2 �0.52 0.98 �1 1
3 �0.48 0.54 �1 1 2 �0.52 0.98 1 �1 2 �0.52 0.98 1 �1
3 �0.48 0.54 1 �1 2 �0.52 0.98 1 1 2 �0.52 0.98 1 1
3 �0.48 0.54 1 1 3 �0.48 0.54 �1 �1 3 �0.28 �0.69 �1 �1
4 �0.28 �0.69 �1 �1 3 �0.48 0.54 1 1 3 �0.28 �0.69 1 1
4 �0.28 �0.69 �1 1 4 �0.28 �0.69 �1 1 4 0.48 �0.82 �1 1
4 �0.28 �0.69 1 1 4 �0.28 �0.69 1 �1 4 0.48 �0.82 1 �1
5 0.48 �0.82 �1 �1 5 0.48 �0.82 �1 �1 5 0.84 �0.79 �1 �1
5 0.48 �0.82 1 �1 5 0.48 �0.82 1 1 5 0.84 �0.79 �1 1
5 0.48 �0.82 1 1 6 0.84 �0.79 �1 �1 5 0.84 �0.79 1 �1
6 0.84 �0.79 �1 1 6 0.84 �0.79 �1 1 5 0.84 �0.79 1 1
6 0.84 �0.79 1 �1 6 0.84 �0.79 1 �1 6 0.91 0.31 �1 �1
6 0.84 �0.79 1 1 6 0.84 �0.79 1 1 6 0.91 0.31 1 1
7 0.91 0.31 �1 �1 7 0.91 0.31 �1 1 7 0.92 0.92 �1 �1
7 0.91 0.31 �1 1 7 0.91 0.31 1 �1 7 0.92 0.92 �1 1
7 0.91 0.31 1 1 8 0.92 0.92 �1 �1 7 0.92 0.92 �1 1
8 0.92 0.92 �1 �1 8 0.92 0.92 �1 1 7 0.92 0.92 1 �1
8 0.92 0.92 �1 1 8 0.92 0.92 1 �1 7 0.92 0.92 1 �1
8 0.92 0.92 1 �1 8 0.92 0.92 1 1 7 0.92 0.92 1 1
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FIGURE 4. D-E�ciencies of the D-Optimal Designs with
Numbers of Blocks Ranging from 4 to 16, Relative to the
Design with 16 Blocks.

minimum number is 4, to ensure estimability of the
main e↵ects of the two covariates and the interaction
involving them.

We generated D-optimal 24-run designs with num-
bers of blocks ranging from 4 to 16 and display the
D-e�ciencies of the resulting designs in Figure 4
(where the D-e�ciencies are relative to the 16-block
design). The figure shows that the D-optimal design
with eight blocks outperforms all others, and that
it is 16.3% more e�cient than the design with 16
blocks. Remarkably, the D-optimal design with eight
blocks does not involve equal numbers of runs in each
block, despite the fact that the number of blocks,
8, is a divisor of the number of runs, 24. Instead,
the D-optimal 8-block design involves four blocks of
four runs each and four blocks of two runs each. The
complete design is shown as design 2 in the middle
pane of Table 1. One feature of the design is that
it has even block sizes, allowing it to be orthogo-
nally blocked for the main e↵ects. The selected co-
variate combinations, along with the corresponding
block sizes, are shown in Figure 5. The block sizes are
symbolized using crosses and plus signs: the crosses
indicate covariate combinations that correspond to
blocks of four runs and the plus signs indicate co-
variate combinations corresponding to blocks of two
runs.

We compared the D-optimal design with four
blocks of size 4 and four blocks of size 2 to the D-
optimal design with 8 blocks of size 3, shown as de-
sign 1 in the left pane of Table 1. The 8-block design
with equal block sizes is about 7% less D-e�cient
than the 8-block design with unequal block sizes.
A resemblance between both 8-block designs is that

C1

C
2

FIGURE 5. Scatter Plot of the Values for the Two Quan-
titative Covariates c1 and c2 in Section 5.2.1. Crosses in-
dicate the covariate combinations corresponding to blocks
of four runs in the D-optimal 24-run design with eight un-
equally sized blocks (labeled design 2 in Table 1), while plus
signs correspond to blocks of two runs and filled circles cor-
respond to covariate combinations that are not used in the
D-optimal design.

they use the same set of eight covariate combinations.
This can be seen by comparing Figures 3 and 5. One
reason why the design with equal block sizes is less
e�cient is that it is not orthogonally blocked for the
main e↵ects of x1 and x2, due to its odd block size.

The optimal block sizes in the D-optimal design
are only two units apart. In some of the D-optimal
designs we obtained, the block sizes were even more
heterogeneous than that. The D-optimal design with
seven blocks, shown as design 3 in the right pane
of Table 1, has one block involving six runs, three
blocks involving four runs, and three blocks involv-
ing two runs. As shown in Figure 4, this design is
only 1% less D-e�cient than the design with eight
unequally sized blocks. It uses the same covariate
combinations as the two 8-block designs, except for
(c1, c2) = (�0.48, 0.54).

5.2.2. Full Quadratic Model

Consider a 20-run experiment involving three
quantitative experimental factors, x1, x2, and x3,
and one quantitative covariate, c. Assume that the
covariate’s values are �1, 0, and 1 and that each of
these three values occurs four times in the pool of co-
variates. The model of interest is the full quadratic
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TABLE 2. I-Optimal Design for the Full Quadratic Model
Involving One Quantitative Covariate, c, and Three
Quantitative Experimental Factors, x1, x2, and x3,

in Section 5.2.2

Block c x1 x2 x3

1 0 1 1 �1
1 0 0 0 1
1 0 �1 �1 �1
2 �1 �1 �1 1
2 �1 1 1 1
2 �1 1 �1 �1
2 �1 �1 1 0
3 1 �1 0 �1
3 1 1 0 1
3 1 0 �1 0
4 1 0 1 0
4 1 1 �1 �1
4 1 �1 �1 1
5 �1 0 1 �1
5 �1 1 0 0
6 0 0 0 0
7 0 0 0 0
7 0 1 �1 1
7 0 �1 1 1
8 0 0 0 0

model in x1, x2, x3, and c,

Yij = �0 + �1ci + �2x1ij + �3x2ij + �4x3ij + �5c
2
i

+ �6x
2
1ij + �7x

2
2ij + �8x

2
3ij + �9cix1ij

+ �10cix2ij + �11cix3ij + �12x1ijx2ij

+ �13x1ijx3ij + �14x2ijx3ij + �i + "ij .

Given that the pool of covariates consists of 12
possible blocks and that the model is full quadratic,
the minimum and maximum numbers of blocks are
3 and 12. We therefore computed I-optimal designs
with any numbers of blocks ranging from 3 to 12.
It turns out that the I-optimal number of blocks is
eight. The corresponding design has an average vari-
ance of prediction of 0.733. In terms of I-e�ciency,
the 8-block design is 2% better than the I-optimal
design with the maximum number of blocks, 12.
That design has an average variance of prediction
of 0.748. The I-optimal 8-block design is displayed
in Table 2. The design involves one block of four
runs, four blocks of three runs, one block of two

runs, and two blocks with just one run. The two
blocks with just one run involve the center point
(x1, x2, x3) = (0, 0, 0) at the middle level of the co-
variate.

5.2.3. A Mixture-Process Variable Model

In some cases, a stock of several mixtures is avail-
able for experimentation. In that case, the covariate
values are the proportions of the ingredients com-
posing the mixture and sum to one. Finding a D-
optimal design for a model containing the covariates
as well as some experimental factors then requires
the use of a mixture-process variable model (Cornell
(2002), Smith (2005)). We computed 21-run I- and
D-optimal designs involving three ingredient propor-
tions, c1, c2, and c3 (the covariates), and two quanti-
tative factors, x1 and x2, for the following mixture-
process variable model:

Yij = �1c1i + �2c2i + �3c3i + �4c1ic2i + �5c1ic3i

+ �6c2ic3i + �7c1ix1ij + �8c2ix1ij + �9c3ix1ij

+ �10c1ix2ij + �11c2ix2ij + �12c3ix2ij

+ �13x1ijx2ij + �14x
2
1ij + �15x

2
2ij + �i + "ij .

(16)

As the set of covariate values for this example, we
used a duplicated simplex-centroid design on a con-
strained mixture region defined by the inequality

0.2  xi  0.4,

for i = 1, 2, 3. Hence, the set of covariates in-
volves seven di↵erent combinations of covariate val-
ues twice. These seven combinations are shown in
Figure 6. The duplication of the seven mixtures cor-
responds to a scenario in which 14 di↵erent batches
are available, some of which have an identical for-
mulation but have been prepared at di↵erent points
in time or in di↵erent production plants. We assume
that multiple samples can be taken from each batch
for experimentation.

The 21-run I- and D-optimal designs we obtained
are shown side by side in Table 3. The I-optimal de-
sign involves 11 blocks, whereas the D-optimal design
has 12 blocks. Both designs have multiple blocks of
size 1. The I-optimal design has four such blocks and
the D-optimal design has six such blocks. So, only one
sample is taken from several of the available batches.
In addition to the four blocks of size 1, the I-optimal
design has four blocks of size 2 and three blocks of
size 3. In addition to the six blocks of size 1, the D-
optimal design has four blocks of size 2, one block of
size 3, and one block of size 4. So, both designs in-
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FIGURE 6. Covariate Values Used for the Optimal De-
signs for the Mixture-Process Variable Model in Section
5.2.3.

volve heterogeneous block sizes and neither of them
utilizes the 14 available batches. A major di↵erence
between the D-optimal design and the I-optimal de-
sign is that the former does not use the covariate
combination (c1, c2, c3) = (0.333, 0.333, 0.333). The
I-optimal design in Table 3 results in an average vari-
ance of prediction of 0.692, while the D-optimal de-
sign gives an average variance of prediction of 0.850.
Hence, the D-optimal design has an I-e�ciency of
81.4%. The D-e�ciency of the I-optimal design is
84.1%.

During our search for the I- and D-optimal designs
in Table 3, we also computed D-optimal designs with
other numbers of blocks. It turns out that the D-
optimal 10-block, 11-block, 13-block, and 14-block
designs are less than 1% less D-e�cient than the 12-
block design. Similarly, the I-optimal 12-block, 13-
block, and 14-block designs perform nearly as well as
the I-optimal 11-block design. The practical implica-

TABLE 3. I- and D-Optimal Designs for the Mixture-Process Variable Model Involving Three Quantitative Covariates
c1, c2, and c3 (Composing the Mixture) and Two Quantitative Experimental Factors x1 and

x2 (the Process Variables) in Section 5.2.3

I-optimal design D-optimal design

Block c1 c2 c3 x1 x2 Block c1 c2 c3 x1 x2

1 0.200 0.400 0.400 1 �1 1 0.200 0.400 0.400 1 �1
1 0.200 0.400 0.400 0 1 1 0.200 0.400 0.400 �1 1
1 0.200 0.400 0.400 �1 0 2 0.200 0.400 0.400 1 1
2 0.300 0.300 0.400 0 �1 2 0.200 0.400 0.400 �1 �1
2 0.300 0.300 0.400 1 1 3 0.300 0.300 0.400 0 1
3 0.300 0.300 0.400 �1 0 4 0.300 0.300 0.400 1 0
4 0.300 0.400 0.300 0 0 5 0.300 0.400 0.300 �1 1
4 0.300 0.400 0.300 �1 1 6 0.300 0.400 0.300 0 0
5 0.300 0.400 0.300 1 0 7 0.400 0.200 0.400 1 �1
5 0.300 0.400 0.300 �1 �1 7 0.400 0.200 0.400 �1 �1
6 0.333 0.333 0.333 0 0 7 0.400 0.200 0.400 �1 1
7 0.333 0.333 0.333 0 0 7 0.400 0.200 0.400 0 0
8 0.400 0.200 0.400 0 1 8 0.400 0.200 0.400 1 1
8 0.400 0.200 0.400 �1 �1 8 0.400 0.200 0.400 0 �1
8 0.400 0.200 0.400 1 �1 8 0.400 0.200 0.400 �1 0
9 0.400 0.300 0.300 �1 1 9 0.400 0.300 0.300 1 0
9 0.400 0.300 0.300 1 0 10 0.400 0.300 0.300 0 1
10 0.400 0.300 0.300 0 �1 11 0.400 0.400 0.200 1 �1
11 0.400 0.400 0.200 �1 0 11 0.400 0.400 0.200 �1 1
11 0.400 0.400 0.200 1 1 12 0.400 0.400 0.200 �1 �1
11 0.400 0.400 0.200 1 �1 12 0.400 0.400 0.200 1 1
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TABLE 4. D-Optimal Design for the Running-Shoe Experiment Involving Eight Runners Testing Three Shoes Each

Runner Mileage Weight Strike point Thickness Brand Cushioning

1 16 146 Midfoot �1 1 �1
1 16 146 Midfoot 1 �1 1
1 16 146 Midfoot �1 1 1

2 33 146 Midfoot �1 1 1
2 33 146 Midfoot �1 �1 �1
2 33 146 Midfoot 1 1 �1

3 16 146 Heel �1 1 �1
3 16 146 Heel 1 �1 1
3 16 146 Heel �1 �1 �1

4 37 141 Heel �1 1 1
4 37 141 Heel 1 �1 �1
4 37 141 Heel �1 �1 1

5 28 138 Midfoot 1 1 �1
5 28 138 Midfoot �1 �1 �1
5 28 138 Midfoot 1 �1 1

6 15 150 Heel 1 1 �1
6 15 150 Heel 1 1 1
6 15 150 Heel �1 �1 �1

7 32 139 Heel �1 1 1
7 32 139 Heel 1 �1 1
7 32 139 Heel 1 1 �1

8 23 152 Midfoot �1 �1 1
8 23 152 Midfoot 1 1 1
8 23 152 Midfoot 1 �1 �1

tion of this result is that the investigator may choose
the number of blocks for logistical convenience.

6. The Motivating Examples Revisited

6.1. Running-Shoe Example

For the running-shoe experiment, we need to cre-
ate a D-optimal design involving 24 runs and eight
runners for estimating a main-e↵ects model in three
covariates and three experimental factors. The eight
runners have to be selected from a pool of 100. The
available covariate information consists of the run-
ners’ weekly mileage, their weight, and their strike
point. The strike point is a categorical covariate with

two levels, ‘heel’ and ‘midfoot’. The two quantitative
covariates, mileage and weight, have a substantial
negative correlation of �0.6736. The weekly mileage
ranges from 15 to 37 and the weight ranges from 138
to 152 pounds. We provide the covariate values for
each of the 100 available runners in the supplemen-
tary materials available at http://www.asq.org/pub/
jqt/. The three experimental factors in the running-
shoe experiment are thickness, brand, and cushion-
ing. The latter two experimental factors are two-level
categorical factors.

The D-optimal design is shown in Table 4. The D-
optimal selection of eight runners out of the pool of
100 available runners is graphically shown in Figure
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Heel Midfoot
Strike

FIGURE 7. Scatter Plots Showing the Covariate Values
in the Running-Shoe Example. Plus signs indicate the eight
runners appearing in the D-optimal design.

7. In the figure, the plus signs indicate the selected
runners, whereas the filled circles indicate those not
selected. From the figure, it can be seen that half
of the selected runners land on their heels and that
the other half of them land on their midfoot. Also,
the selected runners have extreme values for the two
quantitative covariates, mileage and weight. For the
subset of eight selected runners, the correlation be-
tween mileage and weight is still �0.6020.

Due to the strong negative correlation between the
mileage and the weight of the selected runners, the
information matrix corresponding to the D-optimal
design is not diagonal. Assuming that �2

" = �2
� = 1,

Matrix A is the information matrix and its determi-
nant is 2.096⇥106. Matrix B, the variance–covariance
matrix of the estimates shows that, with the D-
optimal design, almost all pairs of parameter esti-
mates are either uncorrelated or nearly uncorrelated.
Note that the first row and column of the informa-
tion matrix and the variance–covariance matrix cor-
respond to the intercept and that the next ones cor-
respond to the weekly mileage, weight, strike point,
thickness, brand, and cushioning. The levels of strike
point, brand, and cushioning were coded as �1 and
1. The meaning of the diagonal lower-right 4⇥4 sub-
matrix is that the estimates of the main e↵ects of
the experimental factors thickness, brand, and cush-
ioning are uncorrelated and that these factors are
orthogonal to the categorical covariate strike point.

6.2. Polypropylene Example

Consider an experiment focusing on the 23
polypropylene formulations without EVA listed in
Goos and Jones (2011), where the interest is in three
quantitative experimental factors (reaction time, gas
flow rate, and power), in addition to the two quan-
titative covariates (the proportion of EPDM and
the proportion of ethylene in the formulation). The

MATRIX A

2
66666664

6 �0.545 �0.214 0 0 0 0
�0.545 3.347 �1.782 0 �0.091 �0.182 0.364
�0.214 �1.782 2.724 �0.643 0 0.143 �0.071

0 0 �0.643 6 0 0 0
0 �0.091 0 0 22 0 0
0 �0.182 0.143 0 0 22 0
0 0.364 �0.071 0 0 0 22

3
77777775

MATRIX B

2
66666664

0.174 0.056 0.051 0.006 0 0 �0.001
0.056 0.484 0.329 0.035 0.002 0.002 �0.007
0.051 0.329 0.602 0.064 0.001 �0.001 �0.003
0.006 0.035 0.064 0.174 0 0 0
0 0.002 0.001 0 0.045 0 0
0 0.002 �0.001 0 0 0.045 0
�0.001 �0.007 �0.003 0 0 0 0.046

3
77777775

Vol. 47, No. 4, October 2015 www.asq.org



mss # 2067.tex; art. # 01; 47(4)

314 BRADLEY JONES AND PETER GOOS

FIGURE 8. Selected and Nonselected Combinations of
Covariate Values in the Optimal Designs for the Polypropy-
lene Experiment with Two Quantitative Covariates and a
Full Quadratic Model. A square indicates a selected combi-
nation with block size 5. A plus indicates a selected combi-
nation with block size 4. A cross indicates a selected com-
bination with block size 3. A triangle indicates a selected
combination with block size 2 and a diamond indicates a
selected combination with block size 1. Filled circles indi-
cate nonselected combinations.

model of interest is the full quadratic model in the
five variables, involving 21 parameters.

We generated I- and D-optimal 30-run designs for

this model, with the number of blocks ranging from 7
(the minimum required for the covariates’ e↵ects and
the variance of the block e↵ects to be estimable) to
23 (the number of boxes with polypropylene formu-
lations available). The I-optimal design option has
15 blocks, whereas the D-optimal design only has
9 blocks. In both designs, the blocks have unequal
sizes. The I-optimal design has two blocks of size 4,
three blocks of size 3, three blocks of size 2, and seven
blocks of size 1. The D-optimal design has one block
of size 5, five blocks of size 4, one block of size 3, no
blocks of size 2, and two blocks of size 1.

Figure 8 shows which covariate combinations cor-
respond to large blocks, which combinations corre-
spond to small blocks, and which combinations are
not selected in the I- and D-optimal designs. In the
figure, filled circles represent combinations of covari-
ate values that were not selected in the optimal de-
signs. The I-optimal design clearly involves a larger
number of covariate combinations in the center of
the experimental region than the D-optimal design.
These centrally located combinations are all indi-
cated using a diamond or a triangle, meaning that
the corresponding block size is only 1 or 2. This re-
sult is in line with the results of Jones and Goos
(2012), who compared D- and I-optimal split-plot de-
signs and observed that I-optimal split-plot designs
tend to involve larger numbers of center runs for the
full quadratic model.

The largest number of selected combinations of co-
variates values in the I- and D-optimal designs for the
polypropylene example are located near the edges of
the experimental region. The block sizes correspond-
ing to these combinations are 2, 3, 4, and 5. These
block sizes are indicated using a triangle, a cross, a
plus, and a square, respectively.

While Figure 8 focuses on the covariates, Table 5
presents the complete I- and D-optimal designs for
the polypropylene experiment and the full quadratic
model. The I-optimal design involves three center
runs in the factors time, flow, and power, whereas
the D-optimal design involves only center run. The
I-optimal design visits the middle level of the factors
time, flow, and power 10, 9, and 9 times, respectively.
For the D-optimal design, the frequency with which
the middle level of the factors time, flow, and power
appears is 5, 6, and 6, respectively.

Table 6 lists the I- and D-e�ciencies of all designs
we constructed in our search for the overall I- and D-
optimal designs, along with the average variance of
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TABLE 5. I- and D-Optimal Designs for a Polypropylene Experiment Involving Two Quantitative Covariates (EPDM and
Ethylene), Three Quantitative Experimental Factors (Time, Flow, and Power) and a Full Quadratic Model

I-optimal design D-optimal design

Block EPDM Ethyl. Time Flow Power Block EPDM Ethyl. Time Flow Power

1 0.01 0.02 �1 1 �1 1 0.01 0.02 1 �1 0
1 0.01 0.02 0 1 0 1 0.01 0.02 �1 1 �1
1 0.01 0.02 1 �1 �1 1 0.01 0.02 �1 �1 1
2 0.01 0.06 0 0 1 1 0.01 0.02 1 0 1
3 0.01 0.09 �1 �1 0 2 0.01 0.06 ��1 �1 0
3 0.01 0.09 1 1 �1 2 0.01 0.06 0 1 1
4 0.03 0.11 0 0 0 2 0.01 0.06 1 0 �1
4 0.03 0.11 �1 1 1 3 0.01 0.09 1 1 0
5 0.04 0.00 0 0 0 3 0.01 0.09 0 �1 �1
5 0.04 0.00 �1 �1 1 3 0.01 0.09 1 �1 1
5 0.04 0.00 1 1 1 3 0.01 0.09 �1 0 1
6 0.04 0.06 1 0 0 4 0.04 0.00 1 �1 �1
7 0.04 0.06 0 1 �1 4 0.04 0.00 0 �1 1
8 0.05 0.14 0 1 0 4 0.04 0.00 1 1 1
8 0.05 0.14 1 �1 1 4 0.04 0.00 �1 0 0
8 0.05 0.14 �1 0 �1 5 0.05 0.14 1 1 �1
9 0.06 0.09 0 �1 �1 5 0.05 0.14 �1 �1 �1
10 0.07 0.02 0 1 �1 5 0.05 0.14 �1 1 1
11 0.07 0.05 �1 0 0 5 0.05 0.14 1 �1 1
12 0.07 0.07 0 0 1 6 0.06 0.09 �1 1 0
12 0.07 0.07 1 1 0 7 0.07 0.07 0 0 �1
13 0.09 0.02 1 0 �1 8 0.09 0.02 �1 �1 �1
13 0.09 0.02 1 �1 1 8 0.09 0.02 �1 1 1
13 0.09 0.02 �1 �1 �1 8 0.09 0.02 1 �1 1
13 0.09 0.02 �1 1 1 8 0.09 0.02 1 1 �1
14 0.09 0.10 0 0 0 9 0.10 0.13 1 1 1
15 0.10 0.13 �1 �1 1 9 0.10 0.13 �1 �1 1
15 0.10 0.13 1 �1 �1 9 0.10 0.13 1 �1 �1
15 0.10 0.13 1 1 1 9 0.10 0.13 �1 1 �1
15 0.10 0.13 �1 1 �1 9 0.10 0.13 0 0 0

prediction for the I-optimal designs and the determi-
nant of the information matrix for the D-optimal de-
signs. The e�ciencies show that restricting the num-
ber of blocks to 15 in case the I-optimality criterion is
preferred and to 9 in case the D-optimality criterion
is preferred results in substantially higher e�ciencies
than when all 23 available combinations of the co-
variate values would be used. The gain in I-e�ciency
is 11.2%, while the gain in D-e�ciency is 35.3%.

7. Discussion

When setting up experiments, it is desirable to
use all available information. In this article, we show

how to take advantage of covariate information that
is available about potential participants in a study
or about batches of materials or mixtures that might
be used. One main challenge then is to select the
participants or batches to be used in the experiment.
Motivated by two practical examples, we distinguish
between a scenario in which it is convenient to use
each participant or batch equally often and a scenario
in which there is no such constraint.

In general terms, we deal with the design of
blocked experiments, where certain properties of the
blocks have been measured using one or more cat-
egorical or quantitative variables, called covariates.
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TABLE 6. I- and D-E�ciencies for the I- and D-Optimal Designs for the Polypropylene Experiment

Number Average variance Determinant of
of blocks of prediction I-e�ciency information matrix D-e�ciency

7 1.1439 0.852 9.9635E+17 1.335
8 1.0239 0.952 1.1470E+18 1.343
9 0.9577 1.018 1.3325E+18 1.353

10 0.9309 1.047 1.1475E+18 1.344
11 0.9211 1.058 9.3051E+17 1.330
12 0.9064 1.075 8.3749E+17 1.324
13 0.8809 1.106 6.2721E+17 1.305
14 0.8884 1.097 5.2843E+17 1.295
15 0.8762 1.112 3.3504E+17 1.267
16 0.8870 1.099 2.6868E+17 1.254
17 0.8924 1.092 1.4911E+17 1.219
18 0.8931 1.091 8.2315E+16 1.185
19 0.9092 1.072 4.2793E+16 1.149
20 0.9253 1.053 3.2954E+16 1.135
21 0.9436 1.033 1.1977E+16 1.081
22 0.9727 1.002 6.1154E+15 1.047
23 0.9745 1.000 2.3260E+15 1.000

The approach we propose allows the experimenter to
quantify the impact of the covariates on the response
and also to estimate possible interactions between
the covariates and the experimental factors. There-
fore, our approach relaxes the traditional assumption
that there are no interactions between the blocking
factor of an experiment and the experimental factors.
This is possible because we treat the block e↵ects as
random e↵ects. Therefore, our model is similar to
that for data from split-plot experiments.

Using various proof-of-concept examples and an
actual polypropylene experiment, we show that, in
many situations, it is better to use blocks with un-
equal numbers of runs than equally sized blocks. In
the polypropylene example, carrying out an experi-
ment with unequally sized blocks is as convenient as
carrying out an experiment with equally sized blocks.
Moreover, the cost of the polypropylene experiment
is independent of the number of blocks. In some prac-
tical situations, however, it may be desirable to limit
the number of blocks for logistical or cost reasons. In
that case, it still makes sense to use our methodology
because it may be better to use fewer blocks than the
budget allows.

The computation of I-optimal designs in the pres-
ence of covariate information requires some serious
consideration of the region of interest. If the avail-

able covariate values cover the region of interest well,
then it makes sense to compute the average vari-
ance of prediction of any given design over the re-
gion covered by the covariates. If, however, the region
of interest is di↵erent from the area covered by the
covariate values, the region over which to compute
the average prediction variance has to be redefined.
If, for instance, an I-optimal design were desired for
the running-shoe example and predictions need to be
made for heavy-weight runners with a large weekly
mileage and low-weight runners with a low weekly
mileage, then the region over which to compute the
average prediction variance should be larger than if
these types of runners would not be considered.

We supply JMP Scripting Language (JSL) scripts
for each algorithm in the supplementary materials. In
general, the algorithm allowing for unequally sized
blocks generates designs that are more statistically
e�cient. Use of the algorithm for equally sized blocks
should be limited to cases where logistical consider-
ations demand a fixed number of experimental units
combined with a fixed number of runs for each ex-
perimental unit.

In cases similar to the running-shoe example, it
could be that the correlations of observations within
a subject might not be constant as it is in our models.
One possibility is that an AR(1) structure for the
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correlation might be desirable in some cases. This is
an area under current investigation.
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