

Moving From Minitab[®] to JMP[®]: A Transition Guide

Jason Brinkley, PhD, Department of Biostatistics, East Carolina University

Table of Contents

Introduction
Our sample data set1
Importing and cleaning data2
Minitab
JMP4
Visualization
Minitab
JMP9
Descriptive statistics
Minitab
JMP14
Inference
Minitab
JMP
Design of Experiments
Minitab
JMP
Control Charts
Minitab
JMP
Other features
Discussion
Acknowledgements
Appendix 1: Minitab and JMP Menu Comparisons
(Basic Statistics)
Appendix 2: Minitab and JMP Menu Comparisons (Advanced)31

Introduction

Statistical software has become indispensable for many individuals as a primary tool for designing research studies and analyzing data. While users are typically most familiar with one software package, it is sometimes necessary to transition from one software to another.

This white paper explores the user interface and workflow differences between Minitab and JMP in an effort to ease the transition for experienced Minitab users who are moving to JMP. We will build our exploration around a few simple examples.

- **Minitab** is a graphical user interface (GUI) or "point-and-click" statistical software program that is very popular in the design and statistical analysis of data. Minitab offers a wide array of analytic tools to work with many different types of data. Users with quality control and industrial statistics backgrounds may find the interface within Minitab easy to use because of language and options that are common in those areas.
- JMP is also GUI-based analytics software developed by SAS. A major focus
 of JMP over its 25-year history has been the visual exploration and analysis of
 data. JMP offers customized tools specifically designed to help users interact
 simultaneously with visuals, analyses and data.

The most important difference between Minitab and JMP is that while they perform many of the same analyses, the two programs approach statistical analysis from different perspectives. Minitab is designed for direct analysis and contains menus organized around these specific analytic techniques. JMP, by contrast, creates a dynamic link between data and analysis that facilitates an exploratory approach. The purpose of this transition guide, ultimately, is to illustrate this difference in the context of some familiar analytical techniques.

Our sample data set

Most of the comparison will focus on a data set commonly used for teaching introductory statistics. To collect this data, students in an introductory statistics class, taught by Professor John Eccleston and Richard Wilson, PhD, at The University of Queensland, participated in a simple experiment. The students took their own resting pulse rates and then were asked to flip a coin. If the coin came up heads, they were to run in place for one minute: otherwise they sat for one minute. Then everyone took their pulse again. The resulting pulse rates and other physiological and lifestyle data are given in the data. The data can be found online at the Australasian Data and Story Library: statsci.org/data/oz/ms212.html.

Importing and cleaning data

We start by opening the data (a tab-delimited text file available at the website listed in the previous section), which can be modified into many formats but can also be directly imported into either software. Let's start with opening the file and viewing data in Minitab.

Minitab

Upon opening Minitab, you can open the text file using the Open Worksheet options under the File menu. Minitab responds well to non-native file formats such as tab- or comma-separated files and opens the data as follows:

+	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
	Height	Weight	Age	Gender	Smokes	Alcohol	Exercise	Ran	Pulse1	Pulse2	Year
1	173	57.0	18	2	2	1	2	2	86	88	93
2	179	58.0	19	2	2	1	2	1	82	150	93
3	167	62.0	18	2	2	1	1	1	96	176	93
4	195	84.0	18	1	2	1	1	2	71	73	93
5	173	64.0	18	2	2	1	3	2	90	88	93
6	184	74.0	22	1	2	1	3	1	78	141	93
7	162	57.0	20	2	2	1	2	2	68	72	93
8	169	55.0	18	2	2	1	2	2	71	77	93
9	164	56.0	19	2	2	1	1	2	68	68	93
10	168	60.0	23	1	2	1	2	1	88	150	93
11	170	75.0	20	1	2	1	1	1	76	88	93
12	178	58.0	19	1	2	2	3	2	74	76	93
13	170	68.0	22	1	1	1	2	2	70	71	93
14	187	59.0	18	1	2	1	1	2	78	82	93
15	180	72.0	18	1	2	1	2	2	69	67	93
16	185	110.0	22	1	2	1	3	2	77	73	93
17	170	56.0	19	1	2	2	3	2	64	63	93
18	180	70.0	18	1	2	1	2	1	80	146	93
19	166	56.0	21	2	1	2	2	2	83	79	93
20	155	50.0	19	2	2	2	2	2	78	79	93
21	175	60.0	19	1	2	2	3	2	88	86	93
22	140	50.0	34	2	2	2	3	1	70	98	93
23	163	55.0	20	2	2	2	3	2	78	74	93
24	182	75.0	26	1	1	1	2	2	80	76	93

A quick glance at the spreadsheet reveals 11 variables and 110 observations. We see data on height and weight (measured in cm and kg respectively), age, gender (male = 1), smoking and alcohol use (yes = 1), exercise frequency (1 = high, 2=moderate, 3=low), ran or sat status (1=ran), baseline and follow-up pulse, and year the class met.

Given that there are a handful of categorical variables in this dataset listed as numeric quantities, it can be helpful to indicate in Minitab that these variables are not to be considered as continuous numeric values. This kind of routine data cleaning and manipulation is commonplace and necessary before beginning any analysis.

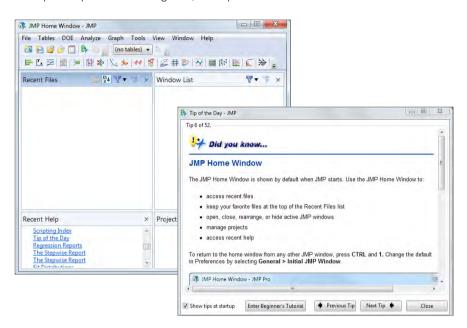
In Minitab, such changes are made by converting the numeric data to text. We start by adding a new column (Column C12) that will be labeled Gender Recode. Using the Numeric to Text option we recode all of the "1s" as Male and the "2s" as Female. You may directly overwrite the original column by selecting the same column for the Code Data From Columns and Store Coded Data in Columns fields.

ile Edit	10.00	and the second second	Stat Grap	h i	Edito	r Iools M	(indow Hel	p Assista			
8.9	時間で	Split Wo	Worksheet orksheet Worksheets		10	00					
Senior	1.	Copy Unstack Stack	Columns	* *							
+	-	Transpo	se Columns			C4	C5	C6			
	-	Sort			2	Gender	Smokes	Alcoho			
1	1 1 2	Bank.			18	2	2				
2	1.5		Delete Rows		19	2	2				
3	1	Erase Variables			18	2	2				
4	1.4	-			18	1	2	1			
5		Code	G		1.00	Numeric to					
6		Change Date/Til	Data Type	1	248						
7	A.	Concate			ite/1me						
8	10	Display			142	Text to Text					
9	8.21	104	JUU		140		Fext to Numeric Fext to Date/Time				
10		168	60.0								
11		170	75.0				to Date/Time				
12		178 58.0				Date/Time to Numeric Date/Time to Text					
13		170	68.0		1.11	Use Convers		_			
14		187	59.0		-10	oge convers	sion rable	_			
15		180	72.0		18	1	2				

	Code data from columns:	
	Gender	
	Store coded data in columns:	
	'Gender Recode'	
	Original values (eg. 1:4 12):	New:
	1	Male
	2	Female
		-
	-	
		-
		_
eia		K Can
eh		Cair

Minitab represents any character variable with a "-T" indicator at the top of the column indicator. Here, for example, we have added a column C12 that will represent the Gender Recoded variable. After this recoding Minitab will change the header of that column to C12-T to indicate that is a text-based column.

Many experienced Minitab users are familiar with the Project Manager window and recognize the utility and versatility in using this option. Here we can use the Project Manager to change the order of values in the Gender Recode column. By default, Minitab uses numeric ordering for numeric variables (1, 2, 3, ...) and alphabetic ordering for text columns (a, b, c, ...).


In this example, the values for Gender Recode are organized as (Female, Male) with Male being used as the reference group. You can change the value ordering in the Project Manager by right-clicking on the column of interest as shown in the visuals below:

Project Manager								Value Order for
Untitled Session History ReportPad ReportPad Worksheets Contants Contants Matrices	Alcoho Exercise Ran Pulse1 Pulse2 Year	5	ption_	Count 110 110 110 110 110 110 110 110 110 11	Missing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Type N N N N N N N N N N N N N N N N N N N	Description	 Alphabetica Order of or User-specific Choose an ord Choose an ord Choose an ord Sunday, Mond. Sunday, Mond. Sunday, Mond. Sunday, Mond. Sunday, Mond. Sunday, Mond.
		Set Value Format Co Bename						Help

JMP[®]

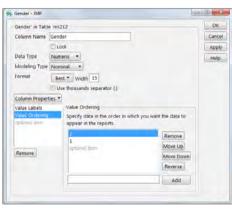
Transitioning to JMP, we open the same data and do the same manipulations. Since this is a transition guide to JMP, examine what happens when starting the program. When JMP starts, the first thing you receive is a Home Window, which manages different windows for data, logs and output. Recently used files are available on the left so that you may conveniently reopen files used in a previous session. A Tip of the Day window, with tips and pointers on using JMP, also opens.

You can open the data file by going to the Open option in the File menu. Like Minitab, JMP also opens a variety of data files, including Minitab files (if Minitab is installed on the machine).

The imported data looks very similar to what we previously saw in Minitab. One noticible difference is the lack of column numbers as headings above the variable name. JMP uses a series of displays to the left of the spreadsheet to convey variable information. The middle-left panel displays the column information and shows each of the 11 variables and the modeling type. Blue triangles denote continuous variables, red bars for nominal data and green bars for ordinal data.

Note that the variables Year and Exercise were changed to ordinal (simply click on the icon and change from continuous (blue bars) to ordinal (green bars) to make it appropriate for analysis). Likewise Gender, Smokes, Alcohol and Ran were all changed to nominal (red bars). This is an important first step in JMP, because specifying modeling types will be important for later analysis.

The bottom-left-hand box summarizes the rows, and provides additional row information that we will discuss later.


File Edit Tables	Rows Cols DOE	Analy		h Tools ∄ues∦[∦seel			Help							
•ms212 D					140		1.00	C.m.s				1.00		
Source		ID	Height	Weight	Age	Gender	Smokes	Alcohol	Exercise	Ran	Pulse1	Pulse2	Year	
	1	1	173	57	18	2	2	1	2	2	86	88	93	
Colomns (12/0)	2	2	179	58	19	2	2	1	2	1	82	150	93	
	3	3	167	62	18	2	2	1	1	1	96	176	93	
Height Weight	4	4	195	84	18	1	2	1	1	2	71	73	93	
Age	5	5	173	64	18	2	2	1	3	2	90	88	93	
Gender	6	6	184	74	22	1	2	1	3	1	78	141	93	
Smokes	7	7	162	57	20	2	2	1	2	2	68	72	93	
Alcohol	8	8	169	55	18	2	2	1	2	2	71	77	93	
de Exercise	9	9	164	56	19	2	2	1	1	2	68	68	93	
📕 Ran	10	10	168	60	23	1	2	1	2	1	88	150	93	
A Pulse1	11	11	170	75	20	1	2	1	1	1	76	88	93	
Pulse2	12	12	178	58	19	1	2	2	3	2	74	76	93	
A Year	13	13	170	68	22	1	1	1	2	2	70	71	93	
\sim	14	14	187	59	18	1	2	1	1	2	78	82	93	
Rows	15	15	180	72	18	1	2	1	2	2	69	67	93	
All rows 110 Selected 0	16	16	185	110	22	1	2	1	3	2	77	73	93	
Excluded 0	17	17	170	56	19	1	2	2	3	2	64	63	93	
Hidden (10	18	180	70	18	1	2	1	2	1	80	146	93	
Labelled (10	19	166	56	21	2	1	2	2	2	83	79	93	
	1						m							+

Unlike Minitab, there is no need to change a variable to text in JMP in order to add text information. Simply right-click on the column in question and go to Column Info.

View \	Windov	
Age	Gend	Column Info
18		Standardize Attributes
19		
10		Column Properties

From here you can adjust different features of each column. Under Column Properties we chose the Value Labels and Value Ordering options to make adjustments.

Gender' in Table	'ms212		OK
Column Name	Gender		Cance
	Lock		Apph
Data Type	Numeric *		Help
Modeling Type	Nominal *		
Format	Best * Width 15		
	Use thousands separator ()		
Column Propert	es T		
Value Labols	Value Labels		
optional item		els, and Use Value Labels is checked, wherever the column data are	
	1 = Male	Add	
Remove	2 = Female optional item	Change	
		Remove	
	Allow Ranges		
	Value		
	Label		
	Vise Value Labels		

Coming back to our data we find that the labels appear in lieu of the numeric value. The asterisk next to Gender in the Columns panel lets us know that column properties have been set.

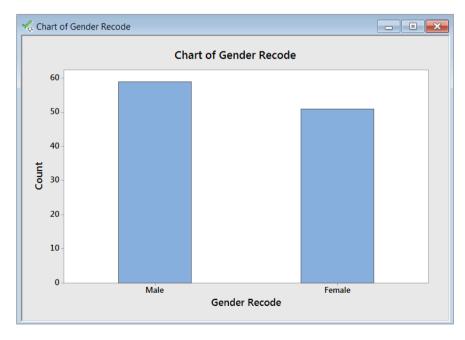
File Edit Tables	Rows	Cols DOE			h Tools			Help							
■ ms212 ■ Source	4		ID	Height	Weight	Age	Gender	Smokes	Alcohol	Exercise	Ran	Pulse1	Pulse2	Year	
		1	1	173	57	18	Female	2	1	2	2	86	88	93	
Columns (12/1)		2	2	179	58	19	Female	2	1	2	1	82	150	93	
ID ID		3	3	167	62	18	Female	2	1	1	1	96	176	93	
A Height	-	4	4	195	84	18	Male	2	1	1	2	71	73	93	
Weight		5	5	173	64	18	Female	2	1	3	2	90	88	93	
🖌 Age L Gender 🛠		6	6	184	74	22	Male	2	1	3	1	78	141	93	
Smokes		7	7	162	57	20	Female	2	1	2	2	68	72	93	

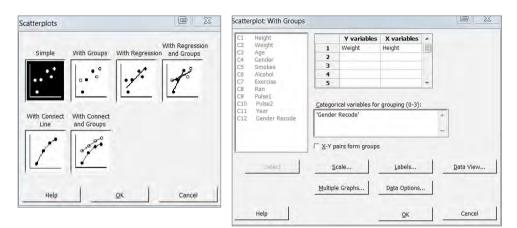
Visualization

Visualization is a powerful tool for analyzing and understanding data. The ability to easily make graphs via statistical software is one of the principal reasons why analytic software is popular. We will confine our discussion to two simple tools: bar charts and scatterplots.

Minitab

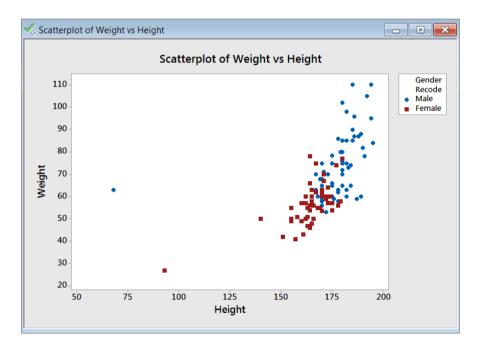
Minitab has a wide variety of visualization tools under the Graph menu. Elementary visualizations such as bar charts, histograms and scatterplots are available along with more intricate visualizations such as time series plots and bubble plots.


ile <u>E</u> d	it D <u>a</u> ta <u>C</u> a	lc <u>Stat</u>	Gra	ata Editor Tools Window	Help
	1800	12 12	24	Scatterplot	đ
	÷	海 4 -		Matrix Plot	K
				Bubble Plot	-
Sessio	in		20	Marginal Plot	_
me	212.txt ***		dh	Histogram	
1	C1	62	<u>.di.</u>	Dotplot	1
+		C2	127 19	Stem-and-Leaf	+
	Height	Weigh		Probability Plot	
1	173	57	1	Empirical CDF	
2	179	58	∇	Probability Distribution Plot	
3	167	Boxplot			
4	195	84	ŧŦ	Interval Plot	
5	173	64	<u>100</u>	Indi <u>v</u> idual Value Plot	
6	184	74	\boxtimes	Line Plot	
7	162	57		Ba <u>r</u> Chart	
8	169	55	•	Pie Chart	-
9	164	56	M	Time Series Plot	
10	168	60		<u>A</u> rea Graph	-
11	170	75		Contour Plot	-
12	178	-		3D Scatterplot	
13	170			3D Surface Plot	-

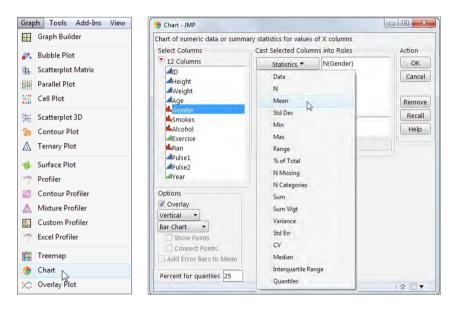

Once a visual is selected another set of windows opens to guide you through creating the necessary visualization.

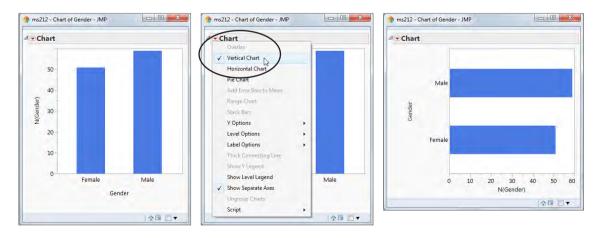
Starting with bar charts, we find the following options:

	C1 Height C2 Weight	Categorical variables		
Bars represent: Counts of unique values	C2 Weight C3 Age C4 Gender C5 Smokes C6 Alcohol C7 Exercise C8 Ran	'Gender Recode		*
Simple Cluster Stack Image: A till transformed by the state	C9 Pulse1 C10 Pulse2 C11 Year C12 Gender Recode	Chart Options Data View	Scale Multiple Graphs	Labels Data Options
	Help		<u>ок</u>	Cancel
Help <u>Q</u> K Cancel	1			


These settings create a bar chart that you can then edit further (to adjust labels, gridlines, etc.).

The story is much the same for other visualizations such as scatterplots.

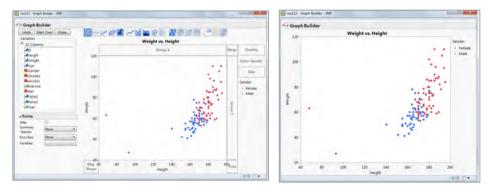

Even with the addition of complex features, the menus are intuitive for individuals who know exactly what kind of graph they wish to make.


JMP[®]

Before we look at data visualizations in JMP, recall from the introduction that JMP was designed to be interactive. Like Minitab, JMP also features an extensive Graph menu so you can select different visualizations for your data. But JMP also features contextual menus accessed via small red triangles throughout the software. These menus allow you to customize output in the moment, depending on your analytic needs.

To explore visualization in JMP, we will start with the Chart platform. Under the Chart menu you can select Gender from the Column dialog and then load it into the Roles box. Note that the Chart platform in JMP makes bar charts for raw data as well as summaries.

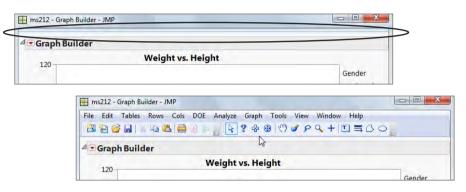
The standard output is a simple bar for each group, along with a red triangle to manipulate the output. Some options for manipulation include changing the chart from vertical to horizontal format, making pie graphs, adding percentages and manipulating the axis scale.



We begin to see the difference in the way JMP operates; rather than changing options prior to seeing the graph, you are allowed to look at the graph first and then make changes that take effect instantly.

Moving on to scatterplots, you may notice that there seems to be no listing for a twodimensional scatterplot in the Graph menu. JMP instead offers a feature called Graph Builder, which allows you to interactively build graphs appropriate for your data. Instead of preselecting a graph type and then setting the variables, JMP allows you to set the variable roles first and then select the graph that makes sense for the types of variable selected – scatterplots, bar charts, box plots, histograms, etc.

Graph Builder	-			
Undo Start Over Done	1. Co.	/것에 서너희하는 집안관람 드는		
Variables		Title		
12 Columns		Group X	Wrap	Overla
Height	-	огоор х	wrap	overia
4Weight				Color
Age			-	-
Gender Smokes				Size
Alcohol				
Exercise				
An Article 1				
Pulse2			Group	
-Year	Y.	Drag variables into drop zones		
Points			× .	
litter 🕑				
Summary None +				
mor Bars None +				
/ariables				
	Map			

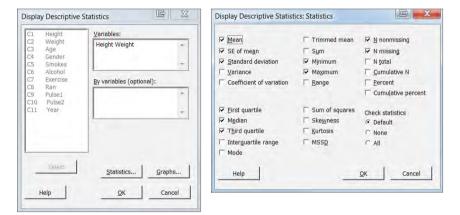

To create a color-coded scatterplot, simply click and drag Height to the X zone, Weight to the Y zone, and Gender to the Color box. Additional graph types and options (such as removing the smoother function) can be obtained by right-clicking on the graph or by clicking on the graph icons at the top. Clicking the Done (top left) button produces the finished graph.

Graph Builder gives you many other options to overlay and stratify data. Additional options for each graph element are available at the bottom left. JMP also has a Map Shape option, which can be used in Graph Builder to create easy visuals that involve maps such as US state data or geocoded data. The JMP approach to data visualization

shines in applications such as Graph Builder, where you have multiple options for interactively exploring data.

After you customize your graph, you can save it in a number of graph formats or export as HTML or PowerPoint. You can also copy and paste it into many outside programs such as Microsoft Word. All JMP output can be copied this way, but the options for saving, editing and copying are hidden by default. New users need to be aware that in Windows you must click on a thin strip at the top of the output to get the hidden menu and toolbars to appear. This option can be changed in the preferences and JMP software points out this hidden dialog after the initial installation.

From Graph Builder, we can begin to see how the dynamic linkage in JMP separates it from Minitab. You can click on individual points in these graphs and select them for dynamic analysis. In Minitab we only observed the possible outliers in the graph, and options exist (e.g., the brush tool) to help identify those points, but JMP allows you to easily highlight those individual points and see them in the data and/or other output.


		1		3 BA #8	\$# 24 I		一個唱	6							
ms212	D 4				hand			2000	in a	a			2019		
Source			ID		Weight	Age	Gender	Smokes	Alcohol	Exercise	Ran	Pulsel	Pulse2	Year	
	-	92	92	186		×212 - 0	Graph Build	ler - IMP	-		- 0		132	97	
Columns (12/0)		93	93	178		OLIL I	orapin bana					-	80	98	
ID	_	94	94	170	1	Const	. P. da						84	98	
Height		95	95	165	-	Grapi	Builde						68	98	
Weight		96	96	164		120-	Weig	ght vs. H	leight				120	98	
Age Gender *		97	97	180		440				2.5	Gende	er	144	-98	
Smokes		98	98	170						- 63	· Fe	male	64	98	
Alcohol		99	99	155		100				1.04.4	- M		87	98	
Exercise		100	100	165			-			1.30			120	98	
Ran		101	101	168	ž	80	/	1		1.12.2			70	98	
Pulse1		102) 102	68	Weight	1	Row:		\	Sec. 1			136	98	
Pulse2		103	103	170		60	 Height)	127.			120	98	
Year		104	104	179			Weig	ht: 63	Sec. 24	100			168	98	
	-	105	105	163		40	-		1.40				125	98	
Rows		106	106	93		-							120	98	
elected	*	107	107	161									89	98	
elected	1	108	108	182		20-	0 80	100 120	140 16	0 180 2	200		84	98	
idden	0	109	109	170					ight 10	~ 100 1			64	98	
abelled	0	110	110	185	1 10	ws select	ted			-	25	-	68	98	

Descriptive statistics

Descriptive statistics is at the heart of any good statistical analysis, and when performed properly, provides insight beyond what is seen in visualizations alone. This section will focus on univariate descriptions of continuous data and creating custom tables. Suppose we want to continue to study the variables Height, Weight and Gender along with Alcohol Use.

Minitab

To obtain basic descriptive statistics for quantitative variables like Height and Weight, you may use the Display Descriptive Statistics option in the Basic Statistics option of the Stat menu. In the example below, you can see how to generate simple descriptive statistics for both Height and Weight:

The statistics requested are displayed in a session window.

Descriptive Statistics: Height, Weight										
Variable	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Height	110	0	171.58	1.53	16.08	68.00	165.00	172.50	180.00	195.00
Weight	110	0	66.33	1.45	15.16	27.00	56.00	63.00	75.00	110.00

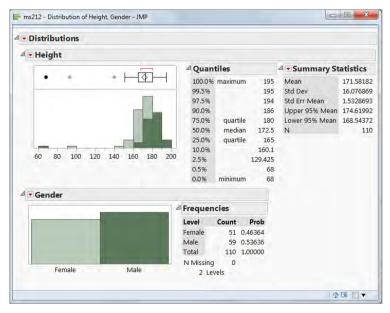
Minitab has an extensive set of options for creating tables for categorical variables. The Tally Individual Variables option creates univariate output that lists the levels and relative frequencies of individual variables. The Cross Tabulation and Chi-Square option provides two-way table analysis to explore associations between two group variables. The last option, Descriptive Statistics, provides summary statistics for quantitative data across multiple levels of some grouping variable.

Tables	W	<u>T</u> ally Individual Variables
Nonparametrics	x²	Chi-Square Test for Association
Equivalence Tests	11 11 11 11 11 11	 Cross Tabulation and Chi-Square
Power and Sample Size		Chi-Square <u>G</u> oodness-of-Fit Test (One Variable)
	••	Chi-Square Goodness-of-Fit Test (One Variable)
	x	Descriptive Statistics

Exploring the Descriptive Statistics feature further you can see the selections needed to find the mean and median weights (in kg) across genders. The tables are straightforward for individuals who know precisely what output is required.

C1 Height	Categorical variables:		
22 Weight 23 Age 24 Gender 25 Smokes 26 Alcohol 27 Exercise 28 Ran 29 Pulse1 210 Pulse2 211 Year 212 Gender Recode	For rows: For columns: Gender Recode For layers: Frequencies are in: Categorical Variables Associated Variables	C1 Height C2 Weight C3 Age C4 Gender C5 Smokes C6 Alcohol C7 Exercise C8 Ran C9 Pulse1 C10 Pulse2 C11 Year	cs: Summaries for Associated Variables Associated variables: Weight ✓ Weight ✓ Means Standard deviations ✓ Medians Data Multimums N nonmissing Maximums N nonmissing N missing
Help	ОК	Help	Sums Proportion of observations equal to: Proportion of observations between two numbers Minimum Maximum OK Cancel

As before, these results are also displayed in the session window.


Tabulate	Tabulated Statistics: Gender Recode									
Columns:	Gender	Recode								
Male	Female	All								
74.75 73 59	56.60 56 51	63								
Cell Con	tents:	Weight Weight								

JMP[®]

Similar to the Descriptive Statistics option in Minitab, JMP has the Distribution option to obtain simple univariate descriptive output. The Distribution option is found in the Analyze menu. We start by selecting Height and Gender and continue to see that JMP uses the red triangles as a way of manipulating output after we have selected the variables we want to study.

Select Columns	Cast Selected	Columns into Roles —	Action
12 Columns ID Height Weight	Y, Columns	Height Gender optional	OK Cancel
Age Gender	Weight	optional numeric	Remove
S mokes	Freq	optional numeric	Recall
Alcohol Exercise	Ву	optional	Help
✓Pulse1 ✓Pulse2 ✓Year			

This is a standard distribution output. The default view is vertical, but we've used the Stack option under the top red triangle to display a horizontal view. JMP produces quantiles and summary statistics for continuous variables as well as a 95 percent confidence interval for the mean. For categorical variables, JMP provides a table of frequencies. You also get appropriate graphs alongside the statistical results. In this screenshot, the male subgroup has been selected to highlight the interactivity between different graphs.



The output here is in stark contrast to typical Minitab output. In Minitab, you must obtain different descriptive output for different variable types (quantitative vs. groups) using different mechanisms. JMP has the option to put all descriptive statistics in the same output window for you to explore.

Using the red triangles for customization, other descriptive measures can be obtained and different distributions can be fit to the data. Options include box plots, normal quantile plots, CDF plots and distribution fits. In addition to added options for descriptive analyses, the summary statistics output contains a red triangle for additional descriptive statistics (skewness, kurtosis, trimmed means, etc.).

Being able to work with the output interactively allows you to fit a variety of theoretical distributions to the data (e.g., normal, exponential, Poisson, binomial, normal mixtures, etc.) and assess their relative fit to the data.

For tabular views of descriptive statistics, JMP provides the Tabulate platform under the Analyze menu. The Tabulate option can build a table interactively, with use and output that is similar in spirit to Graph Builder. You can see computations and output as you customize your table. In addition, the interactive table can be turned off in favor of a traditional dialog if you want to make a very specific output.

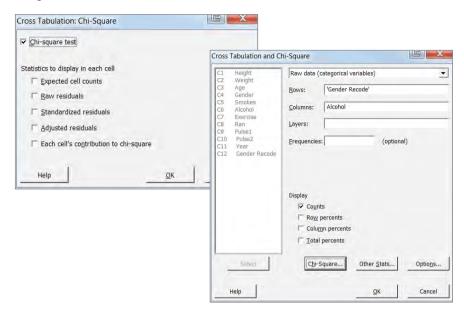
Here we can drag Gender to the column drop zone and then click and drag weight to the row drop zone. Next, we add mean and median as the statistics of choice to obtain the following output (decimals set to two for means with the Change Format option).

Gender				Gend	er			Gend	er
Female	Male			Female	Male			Female	Male
51	59	Weight	Sum	2886.5	4410	Weight	N	51	59
· · · · ·							Mean	56.60	74.75
							Median	56	73

Inference

We now move on from descriptive statistics to general inference between two variables. We will focus on two sample t-tests and chi-square tests of association. In addition to these common methods, both Minitab and JMP have many other great analytic features for descriptive and inferential statistics.

Minitab


Suppose that we want to test whether the average heights significantly differ between men and women. The standard independent samples t-test is a popular option in Minitab, which is found under the Two-Sample t for the Mean in the Basic Stats heading of the Stat menu. Here we can specify one continuous measurement and determine if the mean value of that measurement significantly differs between two groups.

C1 Height C2 Weight C3 Age C4 Gender C5 Smokes C6 Alcohol C7 Exercise C8 Ran C9 Pulse1 C10 Pulse2 C11 Year C2 Gender Recode	Both samples are in one column Samples: Height Sample IDs: Gender Recode	-
Select	Optio <u>n</u> s	<u>G</u> raphs
Help	<u>о</u> к	Cancel

We see that there is a significant difference between the heights of the males and females within this dataset. In Minitab, the unequal variances option is the default and you can specify equal variances in the menu options.

Two-Sample T-Test and CI: Height, Gender Recode									
Two-sample T for Height									
Gender Recode N Mean StDev SE Mean Male 59 177.7 16.3 2.1 Female 51 164.5 12.7 1.8									
Difference = μ (Male) - μ (Female) Estimate for difference: 13.22 95% CI for difference: (7.74, 18.70) T-Test of difference = 0 (vs \neq): T-Value = 4.78	P-Value = 0.000 DF = 106								

Likewise, the calculation of cross-tabulations and chi-square tests for association are straightforward.

There is no significant association between gender and alcohol use (p = 0.165).

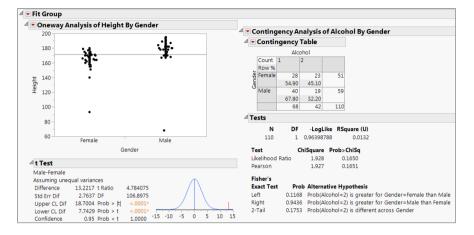
```
Tabulated Statistics: Gender Recode, Alcohol
                      Columns: Alcohol
Rows: Gender Recode
               2 All
           1
          40
             19
                   59
Male
Female
          28
             23
                   51
All
          68
              42
                  110
Cell Contents:
                    Count
Pearson Chi-Square = 1.927, DF = 1, P-Value = 0.165
Likelihood Ratio Chi-Square = 1.928, DF = 1, P-Value = 0.165
```

As we have seen with other analyses, Minitab supports easy access for individual tests in situations where the analyst knows *exactly* which type of analysis is important and appropriate.

JMP[®]

In this case, we again see differences in the JMP paradigm for dynamic analysis. Both the t-test and chi-square test are performed using the same platform: the Fit Y by X option under the Analyze menu. We also start to see the importance of specifying variable types.

In the dialog below, note that Gender is listed in the X, Factor column to associate with two responses – Height and Alcohol. JMP software uses the modeling type (Nominal, Ordinal, Continuous) as the mechanism for determining the default output. Also note that the dialog is set up to analyze both the relationship between Gender/Height and Gender/Alcohol. There is no need to run two separate analyses to make these comparisons.



Using the red triangle options, we can easily produce the output below.

Here, we see the main idea in the JMP paradigm. That is, to provide basic output and let you decide to explore different analytic techniques. Need a t-test? That option is available here, and the resulting output is shown on the left in the figure below. Nonparametric options are also available if you discover that the data is skewed in one of the groups being analyzed.

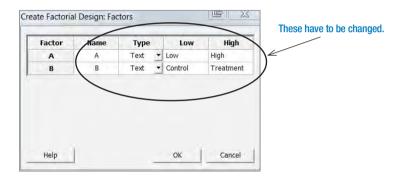
Likewise, the analysis of the association between gender and alcohol starts off as more general. Both likelihood ratio and traditional Pearson chi-square statistics (and p-values) are provided along with Fisher's exact test in two by two tables (shown on the right in the figure below). But additional options such as odds ratios or trend tests are available via the red triangles, which help customize output.

Note that an important option in all analysis dialogs is the recall button, which will repopulate the dialog window with the choices made previously. So if you accidently close the wrong output, it can easily be retrieved.

The key point when transitioning from Minitab is that Minitab offers different menu items for each analysis. By contrast, JMP is data-focused and provides context-specific output that you can explore interactively and determine which analytic technique is most appropriate or insightful.

Design of Experiments

A key feature for many Minitab users is the use of the Design of Experiments (DOE) platform. The DOE menus in both Minitab and JMP provide a wide array of features that allow you to create a randomized data table to perform experiments and record data for later analysis. There are many different potential designs available in both software packages. Here, we will design a simple factorial experiment with two factors: A (two levels – high and low) and B (two levels – control and treatment) and three replications of all combinations. A full factorial design here will be 2x2 times 3 runs = 12 total runs.

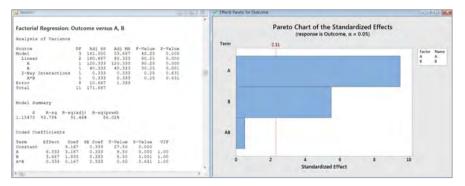

Minitab

To create this design in Minitab, we choose Create Factorial Design in the DOE menu and start by using the default generators and specify a full factorial design with two blocks for Gender.

<u>D</u> OE	<u>F</u> actorial	口 <u>C</u> reate Factorial Design
Control Charts	<u>R</u> esponse Surface ►	befine Custom Factorial Design
Quality Tools	Mi <u>x</u> ture	ロ <u>S</u> elect Optimal Design
Reliability/Survival	Taguchi	Pre-Process Responses for Analyze Variability

Create Factorial Design			Create Factorial Des	sign: Desig	gns	
Type of Design			Designs	Runs	Resolution	2^(k-p)
2-level factorial (default generato)	rs) (2 to 15	factors)	Full factorial	4	Full	2^2
C 2-level factorial (specify generato	rs) (2 to 15	factors)				
C 2-level split-plot (hard-to-change	factors) (2 to 7 f	actors)				
C Plackett-Burman design	(2 to 47	factors)				
C General full factorial design	(2 to 15	factors)				
Number of factors: 2 -	Display Availa	able Designs	Number of center po	ints per blo	ock: 0 💌]
	Designs	Pactors	Number of replicates	s for corner	points: 3 💌]
	Options	Results	Number of blocks:	1	•	
Help	ОК	Cancel	Help		ОК	Cancel

Next we specify the levels for our factors A and B.

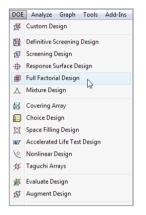

From this we obtain a worksheet populated with the 12 experimental runs, which are in a randomized order and ready for experimenters to collect their data.

🛄 Wo	rksheet 1 ***						
÷	C1	C2	C3	C4	C5-T	C6-T	C7 🗧
	StdOrder	RunOrder	CenterPt	Blocks	Α	В	Outcome
1	1	1	1	1	Low	Control	4
2	5	2	1	1	Low	Control	4
3	3	3	1	1	Low	Treatment	8
4	10	4	1	1	High	Control	10
5	6	5	1	1	High	Control	10
6	12	6	1	1	High	Treatment	12
7	8	7	1	1	High	Treatment	15
8	2	8	1	1	High	Control	11
9	9	9	1	1	Low	Control	5
10	11	10	1	1	Low	Treatment	8
11	4	11	1	1	High	Treatment	16
12	7	12	1	1	Low	Treatment	7

Suppose that we add a worksheet column for Outcome with some simple results to illustrate potential results (column C7 above). Minitab users have the option of letting the software analyze the collected data with the appropriate method (here, an analysis of variance model).

	-		_	
<u>D</u> OE	JL	<u>F</u> actorial	Ц	Create Factorial Design
Control Charts		Response Surface	г	Define Custom Factorial Design
Quality Tools		Mi <u>x</u> ture	п	Select Optimal Design
Reliability/Survival		Taguchi	▦	Pre-Process Responses for Analyze Variability
Multivariate	1			
	토	Modify Design	μп	<u>A</u> nalyze Factorial Design
Time Series	4	Display Design	п	Analyze Variability
Tablas		<u>Display Design</u>	-	Analyze vanability

This analysis produces the following output:



Here we see that there is a significant main effect for both A and B but no significant interaction. Minitab gives ANOVA output, the regression-based coefficients and the appropriate inferential tests.

JMP[®]

Design of experiments is considered important enough to warrant its own menu heading in JMP. Here we also see a greater array of potential design options. JMP provides not only basic textbook (classical) designs, but also a very large array of novel and custom designs.

Note that selecting the Sample Size and Power option brings up a separate dialog for performing those calculations.

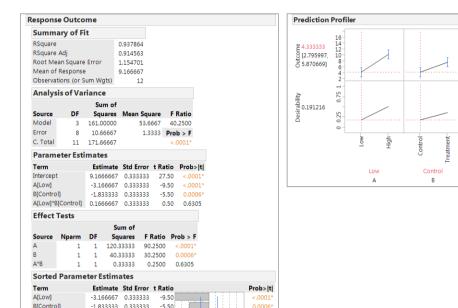
Here we will replicate the factorial design in the last section. Recall the simple factorial experiment with two factors: A (two levels – high and low) and B (two levels – control and treatment) and three replications of all combinations. We start by selecting the Full Factorial Design option.

We have renamed the Response Name to "Outcome" and added two Categorical Factors with two levels (A and B). We have also renamed all the factors and levels to correspond with our naming convention and have asked for three replicates.

Add Response Response Outcome		Responses			
0.4	Name Goal	Lower Limit	Upper Limit	Importance	
optional item	Maximiz	ce ,			
⊿ Factors					Important Tip: In JMP, the term "Replicates
				indicates additional sets of runs. So if you want three total observations for each	
Continuous *		dd N Factors 1			
Name	Role	Values	Case		
LA B	Categorical	Low	High		combination of factor levels, then specify
B	Categorical	Control	Treatment		two replicates here (plus the original).
			/		
2x2 Factorial					
		- /	-		
Output Options	(C				
Output Options Run Order:	Randomize	•			
Output Options Run Order: Number of Runs		4			
Output Options Run Order: Number of Runs Number of Center	er Points:	4			
Output Options Run Order: Number of Runs Number of Centr Number of Repli	er Points:	4			
Output Options Run Order: Number of Runs Number of Cent Number of Repli Make Table	er Points:	4			
Output Options Run Order: Number of Runs Number of Centr Number of Repli	er Points:	4			
Output Options Run Order: Number of Runs Number of Cent Number of Repli Make Table	er Points:	4			

Again by filling in the Outcome variable with values that match the Minitab data set, we have a complete data set for analysis. Like Minitab, JMP provides an easy-to-use mechanism for analyzing the results of designed experiments by attaching script files in the upper-left-hand corner of the data table that performs the appropriate analysis for the chosen design.

ile Edit Tables	Rows Cols				n Tools View an-®la⊳ana ⊞⊳ ⊞	Window Help	
2x2 Factorial	DA	•	Pattern	A	B	Outcome	8.
Screening		1	21	High	Control	10	
Model		2	22	High	Treatment	12	
DOE Dialog		3	12	Low	Treatment	8	
Columns (4/0)	-	4	22	High	Treatment	15	
Pattern @	-	5	21	High	Control	10	
A*		6	11	Low	Control	4	
B*	-	7	12	Low	Treatment	8	
Outcome *		8	11	Low	Control	4	
Rows	-	9	12	Low	Treatment	7	
I rows	12	10	11	Low	Control	5	
elected	0	11	21	High	Control	11	
cluded	0	12	22	High	Treatment	16	
dden	0						
belled	0						
			*		115		


1

By clicking on the Run Script option beside the red triangle by Model we obtain the Fit Model dialog prepared for analysis. Here the Emphasis was changed to Effect Screening to obtain the output shown below:

Select Columns	Pick Role Varia	bles	Personality:	Standard Least Squar
4 Columns		Dutcome	Emphasis:	Effect Screening
ul-Pattern ul-A	opt	ional		2
■B ■Outcome	Weight	ht optional numeric		Help Run
Cutcome	Freq	ional numeric	Recall	Keep dialog open
	By	ional	Remove	
	-Construct Mod	el Effects		
	Add	B		
	Cross			
	Nest			
	Macros *			
	Degree 2			
	Attributes 📼			
	Transform 💌 No Intercep			

The results here are consistent with the Minitab output with a handful of slight differences (below, left). Note that the ANOVA tests are separated out into the traditional ANOVA table and the effects table for individual effect tests. The parameter estimates table shows which level of each factor is being estimated in the model. So, here the high level of variable A and the treatment level of variable B are the reference groups.

In addition, by specifying the Effect Screening option in the Fit Model dialog we obtain the Prediction Profiler, which is a handy tool for determining the predicted outcome for each combination of factors in our experiment. This tool becomes especially useful with very large models where it is not immediately clear how the variables work together in providing model-based estimates of outcomes.

0.5

Desirability

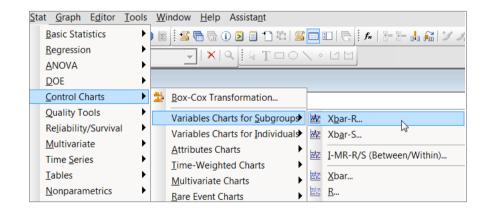
Control Charts

A[Low]*B[Control] 0.1666667 0.333333

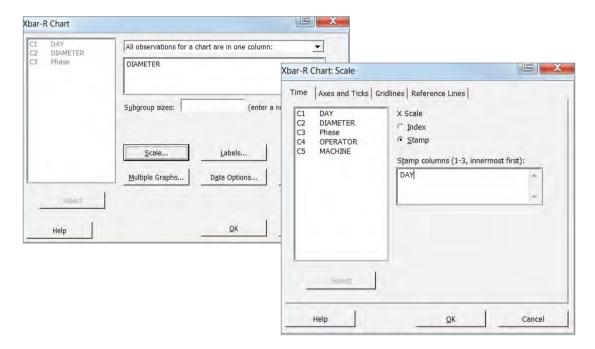
0.50

Minitab is an industry leader in the visualization and analysis of quality control data. Quality control comes with its own set of unique visualizations, and some users may fear that a transition to JMP would mean sacrificing functionality in this key area. So let's consider another example where data from a company that manufactures catheters, blood transfusion tubes and other tubing for medical applications.

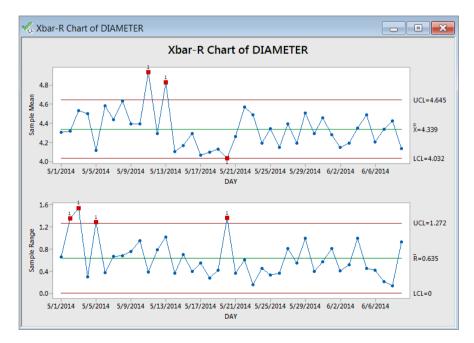
0.6305


In this case we would use control charts to ensure that the process is in control and ultimately minimize the scrap produced. In this example, the first prototype runs for nominal 4.4 mm tubing occurred between May 1 and May 20, 2014 (Phase 1). The second prototype, after some adjustments, occurred between May 21 and June 9, 2014 (Phase 2). To examine the differences between Minitab and JMP in this area we will consider a simple but unique feature in quality control, the Xbar and R chart.

Minitab

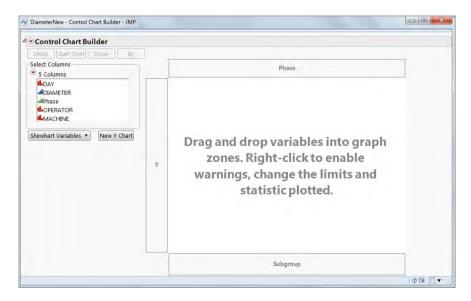

The data are straightforward, with day and diameter values for 240 observations. A subset of the data, collected on May 1 and May 2, is shown below:

🛄 Dia	💭 DiameterNew ***									
÷	C1-D	C2	C3	C4-T	C5-T					
	DAY	DIAMETER	Phase	OPERATOR	MACHINE					
1	5/1/2014	3.97951	1	DRJ	A386					
2	5/1/2014	4.25553	1	DRJ	A386					
3	5/1/2014	4.61697	1	DRJ	A386					
4	5/1/2014	3.98198	1	DRJ	A386					
5	5/1/2014	4.63753	1	DRJ	A386					
6	5/1/2014	4.34473	1	DRJ	A386					
7	5/2/2014	3.72676	1	CMB	A386					
8	5/2/2014	4.41562	1	CMB	A386					
9	5/2/2014	4.45219	1	CMB	A386					
10	5/2/2014	5.02473	1	СМВ	A386					
11	5/2/2014	3.67288	1	CMB	A386					
12	5/2/2014	4.61782	1	CMB	A386					

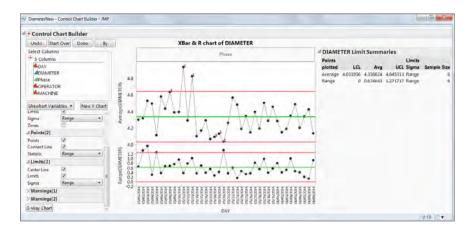

An Xbar and R chart may provide a convenient visual for identifying whether there are any unusual observations. Minitab users can find the Xbar-R option under the Control Charts section of the Stat menu.

Here we can easily examine diameter values across measurement days by configuring the dialog. Additional options for Scale allow the Day column to also act as the x-axis scale variable.

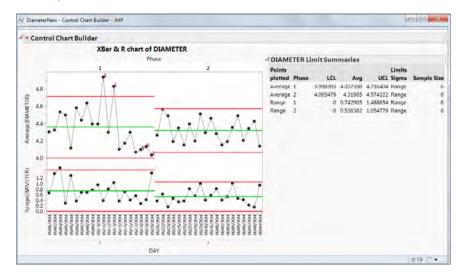
The standard Minitab output is produced, and we see that the mean diameter is 4.339 with LCL=4.032 and UCL=4.645. Minitab identifies three dates with unusual mean values. The range chart also gives a mean and LCL/UCL values. It also identifies four dates for which unusual observations occur.



JMP®


In JMP, options for control charts and other quality tools are located in the Quality and Process section of the Analyze menu.

P	Distribution	日昭	19.				
1×	Fit Y by X			OPERATO	MACHIN		
N	Matched Pairs	ER	Phase	R	E		
-	Tabulate	3.98	1	DRJ	A386		
1001	rabulate	4.26	1	DRJ	A386		
3	Fit Model	4.62	1	DRJ	A386		
	Modeling	3.98	1	DRJ	A386		
	and the second se	4.64	1	DRJ	A386		
	Multivariate Methods	4.34	1	DRJ	A386		
	Quality and Process	+ ++ 0	ontrol Ch	art Builder			
	Reliability and Survival	•	leasurem	ent Systems A			
	Consumer Research	• 111 V	ariability /	Attribute Gau			
11	05/02/2014		apability				
12	05/02/2014	-					
13	05/03/2014	0	ontrol Ch	art		Run Chart	
14	05/03/2014	IC P	areto Plot				XBar
15	05/03/2014					-	IR
16	05/03/2014	>> 0	liagram				P
17	05/03/2014	4.64	1	RMM	A386		
18	05/03/2014	5.07	1	RMM	A386		NP
19	05/04/2014	4.37	1	MKS	A386		c
20	05/04/2014	4.33	1	MKS	A386		U
21	05/04/2014	4.63	1	MKS	A386		UWMA
22	05/04/2014	4.63	1	MKS	A386		EWMA
23	05/04/2014	4.50	1	MKS	A386		
24	05/04/2014	4.54	1	MKS	A386		CUSUM
25	05/05/2014	4.90	1	RMM	A386		Presummarize
26	05/05/2014	3.69	1	RMM	A386		Levey Jennings
27	05/05/2014	3.61	1	RMM	A386		Multivariate Control Chart
28	05/05/2014	4.14	1	RMM	A386		wultivariate Control Chart


While there is an option for creating Xbar and R or S charts in the Control Chart section (shown above), a relatively new innovation is the Control Chart Builder. In keeping with a common theme of data exploration, Control Chart Builder acts like a Graph Builder for quality control data. This option makes it easy for you to interactively build a control chart of interest.

We simply click and drag Diameter to the Y zone to produce a standard Individuals and Moving Range chart. By dragging Day to the Subgroup zone, JMP produces an XBar and R chart. Tests for special causes and other options are found by right-clicking on the graph, and additional customization is available via the options to the left.

In addition, you can easily add phases or a hierarchical structure to the control chart. When you have finished customizing the control chart, clicking on Done will yield the finished product.

Other features

For those transitioning from Minitab to JMP who are interested in features unique to JMP, there are several options available. JMP comes standard with data mining tools, such as decision trees and neural networks, which are not available in Minitab. While they are advanced features that require some additional reading or training, they can add a completely new level to your data analysis. JMP has features for creating reports, dashboards, add-ins and custom applications that are very popular in many different industries. As we stated earlier, the Graph Builder in JMP contains a mechanism for

easily developing graphics that involve map or geographic data. JMP also has data customization tools such as a column viewer and a data filter, which allow you to work with specific parts or subsets of data without actually creating separate data files.

One key difference between Minitab and JMP is the format for regression modeling procedures. In Minitab each type of regression (ordinary least squares, logistic, partial least squares, etc.) has a separate dialog under the regression area of the Stat menu. In JMP all regression models are found in the Fit Model area under the Analyze menu. Users start by putting together their preferred outcome and predictor variables and then specifying what type of model they wish to build. Options include all those found in Minitab along with additional models such as zero-inflated count and penalized regression models (in JMP Pro), parametric survival models and so on.

Discussion

Both Minitab and JMP do a great job of analyzing data. The purpose of this guide is to transition users who are familiar with Minitab to creating graphics and performing analysis in JMP. Throughout this guide we have used examples that are independent of either software. Looking across the different platforms and analyses we see a pattern in the overall differences between JMP and Minitab. Minitab is focused on specific analytic methods, with different menus and features corresponding to those methods. JMP, in contrast, dynamically links the data, graphics and output file in order to provide interactive visualizations and analyses. Users start with a general area of analysis and then are allowed to customize output to add different features, graphics or analytic options as needed. This dynamic link between data and output makes exploring unusual observations very simple, and the interactivity of features such as Graph Builder, Data Filter and Column Switcher allow users to create and update visuals in real time.

Finally, interested readers should look at the appendices to this guide with tables that have direct side-by-side comparisons for obtaining basic statistics (Appendix 1) and running some of the more advanced analyses (Appendix 2) in both Minitab and JMP. Note that these appendices do not list all available features or analyses.

Acknowledgements

Special thanks to Mia Stephens and Ben Covington from the JMP Academic and Marketing teams for their edits and insights on all drafts of this document. Also thanks to Ledi Trutna from the JMP Education team, who developed the menu comparison tables found in the Appendix.

Appendix 1: Minitab and JMP Menu Comparisons (Basic Statistics)

Minitab Basic Stat Menu	JMP Platform/Option	JMP Menu Under Analyze > Distribution
Display Descriptive Statistics Store Descriptive Statistics Graphical Summary One Sample Z One Sample t 1 Variance Normality Test	Shown in Analyze > Distribution, or use Col > Columns Viewer Script > Save script to Table Shown in Analyze > Distribution or Graph > Graph Builder Test Mean Test Mean Test Std Dev Continuous Fit > Normal, then Goodness of Fit	✓ Distributions ✓ Heicht Display Options ✓ Histogram Options ✓ Normal Quantile Plot ✓ Outlier Box Plot Quantile Box Plot Stem and Leaf CDF Plot Test Mean Test Std Dev Confidence Interval Tolerance Interval Tolerance Interval Capability Analysis Continuous Fit Discrete Fit Save P
1 Proportion 2 Proportions	Analyze > Distribution, then Test Probabilities Analyze > Fit Y by X (for nominal or ordinal data, does tests for independence or heterogeneity)	Distributions Display Options Histogram Options Mosaic Plot Order By Test Probabilities Confidence Interval Save Remove
Correlation Covariance and Multiple Correlations	Analyze > Fit Y by X, use the Density Ellipse option under the red triangle Analyze > Multivariate Methods > Multivariate	
Normality Test Outlier Test	Analyze > Distribution, Continuous Fit > Normal Outlier boxplot shown under Analyze > Distribution, or Cols > Modeling Utilities > Explore Outliers (new in JMP 12.	
Goodness of Fit Test for Poisson	Analyze > Distribution, Discrete Fit > Poisson Fitted Poisson > Goodness of Fit (Count Data Only)	

If You Want This Analysis	Minitab Command	Then Try This in JMP®	
Distribution With Summary Statistics	Stat > Basic Statistics > Graphical Summary	Analyze > Distribution	
One Sample T Test	Stat > Basic Statistics > One Sample T Test	Analyze > Distribution	
Two Sample T Test	Stat > Basic Statistics > Two Sample T Test	Analyze > Fit Y by X	
Paired t	Stat > Basic Statistics > Paired t	Analyze > Matched Pairs	
Normality Check	Stat > Basic Statistics > Normality Test	Analyze > Distribution Fit Distribution > Normal, Goodness of Fit	
Simple Linear Regression	Stat > Regression > Fitted Line Plot	Analyze > Fit Y by X	
ANOVA	Stat > ANOVA > One-Way	Analyze > Fit Y by X	
Test for Equal Variances	Stat > ANOVA > Test for Equal Variances	Analyze > Fit Y by X	
Control Chart	Stat > Control Charts > Variables Charts for Individuals > I-MR	Analyze > Quality and Process > Control Chart Builder	
Variability Chart	Stat > Quality Tools > Multi-Vari Chart	Analyze > Quality and Process > Variability/Attribute Gauge Chart	
Capability	Stat > Quality Tools > Capability Analysis > Normal	Analyze > Distribution Capability Analysis	
Box Plot	Graph > Box Plot	Analyze > Distribution for one variable or Analyze > Fit Y by X for boxplots by groups	
Many Scatterplots	Graph > Matrix Plot	Graph > Scatterplot Matrix	

Appendix 2: Minitab and JMP[®] Menu Comparisons (Advanced)

About SAS and JMP®

JMP is a software solution from SAS that was first launched in 1989. John Sall, SAS co-founder and Executive Vice President, is the chief architect of JMP. SAS is the leader in business analytics software and services, and the largest independent vendor in the business intelligence market. Through innovative solutions, SAS helps customers at more than 65,000 sites improve performance and deliver value by making better decisions faster. Since 1976 SAS has been giving customers around the world THE POWER TO KNOW[®].

SAS Institute Inc. World Headquarters

+1 919 677 8000

JMP is a software solution from SAS. To learn more about SAS, visit **sas.com** For JMP sales in the US and Canada, call 877 594 6567 or go to **jmp.com** SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. (© indicates USA registration. Other brand and product names are trademarks of their respective companies. 107464_S133813.0215