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Fig. 3 Train/test time (in sec) for Email spam detection 

Fig. 4 Accuracy comparison for SMS and Email spam detection
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Fig. 5 ROC plots for SMS and Email spam detection 

results even better than the hybrid models [9]. RF scores 0.99 ROC value in both 
model (with and without feature selection/extraction) for SMS spam detection. For 
MNB, improved 0.984 ROC value is achieved with feature selection/extraction than 
the 0.982 ROC value without feature selection/extraction for SMS spam detection. 
For Email spam detection, RF scores 0.98 ROC value for in both model (with and 
without feature selection/extraction). Also , MNB score 0.994 ROC value with fea-
ture selection/extraction as compared to 0.987 ROC value without feature selec-
tion/extraction. Further Fig. 5 represents the plot for ROC for spam detection in 
SMS and Email with feature selection/extraction. 

5 Conclusions and Future Work 

After experimentation on the selected state-of-the-art, various conclusions are drawn. 
It is concluded that by selecting appropriate feature selection/extraction techniques, 
the overall performance of the spam detection model can be improved. RF achieved 
98.7% accuracy for spam detection in SMS domain and 98.43 for spam detection 
in Email domain. Also MNB with feature selection and extraction has accuracy of 
97.8% and 97.96% for spam detection in SMS and Email domain, respectively. For 
spam detection in SMS domain, based on all evaluation measures it can be concluded 
that RF outperformed over other techniques and can be followed for spam detection. 
MNB perform better in SMS domain with less time to train and test the model. Thus, 
it can be used as spam detection technique in Email domain. Also, it can be concluded
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from Figs. 2 and 3 that time taken for training the model with and without feature 
selection/extraction varies for SMS and Email spam detection and can be seen in 
result of different evaluation measures used. As a future work, hybrid methods and 
evolutionary computing-based algorithms can be followed for spam detection for 
SMS and Email domains. 
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