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AGENDA

- Why do we use Design of Experiments (DOE)?
- Review of Classic DOE
- Custom DOE is all about
Making Designs Fit the Problem —
NOT Making Problems Fit the Designs!
- However, use Definitive Screening Designs (DSDs) — when possible!
- Quick example of creating and fitting a DSD.
- What are DSDs?
- How do we fit models for DSDs?
- When results are ambiguous, it is easy to augment DSD to RSM.
- Examples:

- Extraction 3 Data.jmp : continuous with a blocking factor, & 4 extra runs
- CO2_Process.jmp : all continuous factors, no extra runs
- Peanut Data.jmp : continuous & categorical factors, & 4 extra runs

Copyright © 2013, SAS Institute Inc. All rights reserved.



QUICKER ANSWERS,
WHY USE DOE? LOWER COSTS,
SOLVE BIGGER PROBLEMS

- More rapidly answer “what if?” questions

- Do sensitivity and trade-space analysis

- Optimize across multiple responses

- By running efficient subsets of all possible combinations,
one can — for the same resources and constraints —
solve bigger problems

- By running sequences of designs
one can be as cost effective as possible and
run no more trials than needed to get a useful answer

Copyright © 2013, SAS Institute Inc. All rights reserved.



USE JMP TRADE-OFF AND OPTIMIZATION
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SHARE RESULTS ON JMP PUBLIC OR JMP LIVE
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View optimizations
on your phone.
Scan the QR code
to launch browser,
then use finger to
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Prediction Profiler
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CLASSIC RESPONSE-SURFACE DOE IN A NUTSHELL
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POLYNOMIAL MODELS USED TO CALCULATE SURFACES

Block 1 Block 2 Block 3
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y=aptaX,tax,ta, y=aptaX,;tax,ta, y=aptaX,tax,tax,
Run this block 1st to: + 809X Xy F @q3X X3 F @p3X X + 209X Xy F @q3X X5+ @p3X,X;
(i) estimate the main effects* Run this block 2nd to: + 8, X 2+ @pX,2 + 855X,
g:)r léz(:vc:t:trzr AL G (i) repeat main effects estimate, Run this block 3rd to:

(ii) check if process has shifted
(iii) add interaction effects to
model if needed.

(i) repeat main effects estimate,
(ii) check if process has shifted
(iii) add curvature effects to
model if needed.



Number of Unique Trials or Quadratic Terms
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NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS
AND
NUMBER OF QUADRATIC MODEL TERMS
VS.
NUMBER OF CONTINUOUS FACTORS

“Unique Trials in Central Composite Design

“~Unique Trials in Box-Behnken Design

* Unique Trials in I-optimal Design with 6 df for Model Error
~~ Terms in Quadratic Model = (k+1)(k+2)/2
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Number of Continuous Factors

If generally running 3, 4 or 5-factor fractional-factorial designs...
1. How many interactions are you not investigating?
2. How many more trials needed to fit curvature?
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NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS
AND
NUMBER OF QUADRATIC MODEL TERMS
VS.
NUMBER OF CONTINUOUS FACTORS

“Unique Trials in Central Composite Design

“~Unique Trials in Box-Behnken Design

©Unique Trials in Custom Design with 6 df for Model Error
~~ Terms in Quadratic Model = (k+1)(k+2)/2

36 trial I-optimal response-surface design started
as 10-factor DSD and was then augmented with
12 more trials in 6 most important factors

2 3 4 5 6 7 8 9

Number of Continuous Factors

If generally running 3, 4 or 5-factor fractional-factorial designs...
1. How many interactions are you not investigating?

2. How many more trials needed to fit curvature?

3. Consider two stages: Definitive Screening + Augmentation



cLAssic Purposeful control of the inputs (factors) in such a way
DEFINITION OF DOE 3s to deduce their relationships (if any) with the output

(responses).
suppl. Mg St
Suppl. Lactose _ _
Suppl. Sugar Coating Supplier
APl Lot Suppl. Tale Coating Viscosity

APl Part. Dissolution

Coat Uniformity

Hardness
Friability

Mill Time Blend Time Compressor Inlet Temp
Screen Size Blend Speed Force Exhaust Temp
Spray Rate

Atom. Pressure
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ALTERNATIVE A DOE is the specific collection of trials run
DEFINITION OF DOE o support a proposed model.

= If proposed model is simple, e.g. just main effects or
1st order effects (x,, X,, X3, etc.), the design is called a
screening DOE

» Goals include rank factor importance or find a “winner” quickly
» Used with many (> 67?) factors at start of process characterization

= |[f the proposed model is more complex, e.g. the
model is 2" order so that it includes two-way
Interaction terms (x,X,, X;X3 X,X;, €tc.) and in the case
of continuous factors, squared terms (x4 x,% X2, etc.),
the design is called a response-surface DOE

» Goal is generally to develop a predictive model of the process
» Used with a few (< 6?) factors after a screening DOE

Copyright © 2013, SAS Institute Inc . All rights reserved 1.



ALTERNATIVE A DOE is the specific collection of trials run
DEFINITION OF DOE o support a proposed model.

= If proposed model is simple, e.g. just main effects or
1st order effects (x,, X,, X3, etc.), the design is called a
screening DOE

» Goals include rank factor importance or find a “winner” quickly
» Used with many (> 67?) factors at start of process characterization

= |[f the proposed model is more complex, e.g. the
model is 2" order so that it includes two-way
Interaction terms (x,X,, X;X3 X,X;, €tc.) and in the case
of continuous factors, squared terms (x4 x,% X2, etc.),
the design is called a response-surface DOE

» Goal is generally to develop a predictive model of the process
» Used with a few (< 6?) factors after a screening DOE

Definitive Screening Designs allow the fitting of second order
terms — ALL squared and potentially SOME interaction terms
— for no more work than classic screening designs.

Copyright © 2013, SAS Institute Inc . All rights reserved 1.



REAL-WORLD How many experimenters have any of these issues?
DESIGN ISSUES Most of these are NOT well treated by classic DOE

- Work with these different kinds of control variables/factors:
» Continuous/quantitative? (Finely adjustable like temperature, speed, force)

» Categorical/qualitative? (Comes in types, like material = rubber, polycarbonate, steel with
mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials...)

» Mixture/formulation? (Blend different amounts of ingredients and the process
performance is dependent on the proportions more than on the amounts)

» Blocking? (e.g. “lots” of the same raw materials, multiple “same” machines, samples get

processed in “groups” — like “eight in a tray,” run tests over multiple days — i.e. variables for
which there shouldn’t be a causal effect

- Work with combinations of these four kinds of variables?

- Certain combinations cannot be run? (too costly, unsafe, breaks the process)
- Certain factors are hard-to-change (temperature takes a day to stabilize)

- Would like to add onto existing trials? (really expensive/time consuming to run)

Copyright © 2013, SAS Institute Inc. All rights reserved.



REAL-WORLD How many experimenters have any of these issues?
DESIGN ISSUES Most of these are NOT well treated by classic DOE

- Work with these different kinds of control variables/factors:
» Continuous/quantitative? (Finely adjustable like temperature, speed, force)

» Categorical/qualitative? (Comes in types, like material = rubber, polycarbonate, steel with
mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials...)

» Mixture/formulation? (Blend different amounts of ingredients and the process
performance is dependent on the proportions more than on the amounts)

» Blocking? (e.g. “lots” of the same raw materials, multiple “same” machines, samples get
processed in “groups” — like “eight in a tray,” run tests over multiple days — i.e. variables for
which there shouldn’t be a causal effect

- Work with combinations of these four kinds of variables?

- Certain combinations cannot be run? (too costly, unsafe, breaks the process)
- Certain factors are hard-to-change (temperature takes a day to stabilize)

- Would like to add onto existing trials? (really expensive/time consuming to run)

Many of these issues prevent the use of Definitive Screening Designs.
BUT, if your factors are continuous, 2-level categorical, and/or blocking
then consider doing a DSD first.

Copyright © 2013, SAS Institute Inc. All rights reserved.



QUICK EXAMPLE Extraction 3 Data.jmp
FROM DOE GUIDE

- Uses 6 continuous factors plus blocking at 2 levels

- Add 4 extra runs DSD
- Analyze with Fit Definitive Screening (p. 276 of DOE Guide)

- Factors and Ranges shown below

Methanol Ethanol Propanol Butanol pH  Time
0 0 0 0 6

10 10 10 10 9

Copyright © 2013, SAS Institute Inc. All rights reserved.



SUMMARY OF MODERN SCREENING DOE

- Definitive Screening Designs

= Efficiently estimate main and quadratic effects for no
more and often fewer trials than traditional designs

= [f only a few factors are important the design may
collapse into a “one-shot” design that supports a
response-surface model (RSM).

= [f many factors are important (so RSM can’t be fit) the
design can be augmented to support an RSM

= Case study for a 10-variable process shows that it can

be optimized in just 23 unique trials

» Visually “model” factors

» Fit Definitive Screening

» Fit All Possible Models

» Augment design with subset of original factors




WHAT IS THE
MINIMUM # FACTORS
“COLLAPSE” TO RSM

- For 6 through at least 30 factors, it is possible to estimate the
parameters of any full quadratic model involving 3 or fewer factors with
high precision.

- For 18 factors or more, they can fit full quadratic models in any 4 factors.

- For 24 factors or more, they can fit full quadratic models in any 5 factors.

- Due to factor sparsity, one can often fit response-surface models
with more factors than these minimums.

Copyright © 2013, SAS Institute Inc. All rights reserved.
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IN ORIGINAL 2011 JQT PAPER - DESIGN SIZE IS 2M + 1
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XIAO, BAI AND LIN (JQT, 2012)

DEFINITIVE SCREENING DESIGNS FROM CONFERENCE MATRICES
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http://www.newton.ac.uk/programmes/DAE/seminars/090209001.pdf

DESIGN SIZE IS 2M + 3 FORODD M
DESIGN SIZE IS 2M + 1 FOR EVEN M

CONFERENCE MATRIX METHOD IN 2012 JQT PAPER

8-FACTOR - DSD17

7-FACTOR - DSD17

17

10
11
12

13
14
15
16
17

Both designs are orthogonal in linear and squared terms

Factor H will become a hidden Fake Factor in DSD Analysis



DEFINITIVE SCREENING DESIGNS HAVE DESIRABLE PROPERTIES

- Main effects are not confounded with 2" order effects
- Number of trials for even numbers of factors is (2m + 1)

and for odd numbers of factors itis (2m + 3)

which is equal to or smaller than a Plackett-Burman (Res Ill) or Fractional
Factorial (Res 1V) design plus center point

- There are mid-levels for each factor allowing estimation of

curvature individually - not just globally as with a PB or FF
designs plus center point

- If drop a factor, the design retains all its properties
- If a subset of factors are significant there is a good chance that
Interaction terms may also be fit

The screening design may even collapse into a response-surface

design supporting a 2"d order model in a subset of factors with which
one can optimize the process



6-FACTOR, 13-TRIAL, DEFINITIVE SCREENING DESIGN
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6-FACTOR, 12-TRIAL, PLACKETT-BURMAN DESIGN
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COLOR MAPS FOR 6-FACTOR, PLACKETT-BURMAN (LEFT)
AND DEFINITIVE SCREENING DESIGN (RIGHT)
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Including center point with Plackett-Burman, these two designs are both 13 trials
Same size BUT Definitive Screening can test for curvature in each factor



6-FACTOR, 16-TRIAL, REGULAR FRACTIONAL FACTORIAL
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COLOR MAPS FOR 6-FACTOR, FRACTIONAL FACTORIAL (LEFT)
AND DEFINITIVE SCREENING DESIGN (RIGHT)

Color Map On Correlations Color Map On Correlations
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Including center point with FF increases size to 17 trials - 13-trial Definitive
Screening Design is 4 fewer tests AND can test for curvature in each factor
Or, add 4 extra rows to DSD to improve robustness of Fitting Models



DO WE GIVE UP NOTHING?

- Relative to same size classic 2-level screening designs
= Confidence intervals increase — typically <10%
= Standard error increases — typically < 10%
= Power is reduced for main effects — typically < 10% (comparing just ME)

= Power for squared terms is “low”
- Still better than power for single center point test for curvature
- Power is same as larger Central Composite Design supporting full quadratic model
- Power increases as fewer curvature terms are evaluated — drop least important
terms (Factor Sparsity is our friend!)

ANY OTHER WEAKNESSES?

- Factor range for screening may not include optimum
= So, follow on design will be over different ranges — really can’'t augment
= This is more likely with early product development than with designs testing
mature systems



PB12+CP

Estimation Efficiency

Fractional Increase Relative Std Error

Parameter in Cl Length
Intercept 0
X1 0.041
X2 0.041
X3 0.041
X4 0.041
X5 0.041
X6 0.041

DSD13

Estimation Efficiency

of Parameters
0.277
0.289
0.289
0.289
0.289
0.289
0.289

Fractional Increase Relative Std Error

Parameter in Cl Length
Intercept 0
X1 0.14
X2 0.14
X3 0.14
X4 + 10%..
X5 0.14
X6 0.14

of Parameters
0.277

0.316

0.316

0.316

+ 9%0.316
0.316

0.316

CONFIDENCE INTERVAL, STANDARD ERROR &
MAIN EFFECTS POWER FOR 6-FACTOR DESIGNS:

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.85
X1 1 0.821
X2 1 0.821
X3 1 0.821
X4 1 0.821
X5 1 0.821
X6 1 0.821

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.85
X1 1 0.75
X2 1 0.75
X3 1 0.75
X4 - 9% 1 0.75
X5 1 0.75

X6 1 0.75

PLACKETT-BURMAN 12 + CP
DEFINITIVE SCREENING DESIGN 13
FRACTIONAL-FACTORIAL 16 + CP
DEFINITIVE SCREENING DESIGN 17

FF16+CP

Estimation Efficiency

Fractional Increase Relative Std Error

Parameter in Cl Length
Intercept 0
X1 0.031
X2 0.031
X3 0.031
X4 0.031
X5 0.031
X6 0.031

DSD17

Estimation Efficiency

of Parameters
0.243

0.25

0.25

0.25

0.25

0.25

0.25

Fractional Increase Relative Std Error

Parameter in Cl Length
Intercept 0
X1 0.102
X2 0.102
X3 0.102
X4 + 7% 0.102
X5 0.102
X6 0.102

of Parameters
0.243

0.267

0.267

0.267

+ 70/00.267
0.267

0.267

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0959
X1 1 0.949
X2 1 0.949
X3 1 0949
X4 1 0.949
X5 1 0949
X6 1 0949

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0959
X1 1 0.92
X2 1 0.92
X3 1 0.92
X4 = 3%1 0.92
X5 1 0.92
X6 1 0.92



QUADRATIC TERM POWER FOR 6-FACTOR DESIGNS - SCREENING & RSM

Quadratic Power vs. Number Unique Trials for Various 6-Factor Designs

1.0
0.9 Design Name: Box-Behnken 49
Number Unique Trials: 49
Quadratic Power: 0.61
Design Type: Response Surface
0.8
Design Name: Central Composite in Cube 45
Number Unique Trials: 45
07 Quadratic Power: 0.32
' Design Type: Response Surface
Design Name: DSD17 Augmented to I-opt 34
Number Unique Trials: 34
06 Quadratic Power: 0.58
g Design Type: Response Surface
&
2 05 Design Name: (2 X DSD13) 26
£ Number Unique Trials: 26
] Quadratic Power: 0.49
o Design Type: Screening
0.4
Design Name: DSD 21
Number Unique Trials: 21
Quadratic Power: 0.26
03 Design Type: Screening

Design Name: DSD 17

Number Unique Trials: 17
0.2 Quadratic Power: 0.21

Design Type: Screening

Design Name: DSD 13
Number Unique Trials: 13
Quadratic Power: 0.1
Design Type: Screening

0.0
0 5 10 15 20 25 30 35 40 45 50 55

Number Unique Trials

Design Type MM Screening  [MMlResponse Surface



QUADRATIC TERM POWER FOR TEN 6-FACTOR DESIGNS - SCREENING & RSM

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.073
X1 1 0.196
X2 1 0.196
X3 1 0.196
X4 Ds D 1 3 1 0.196
X5 1 0.196
X6 1 0.196
X1*X1 1 0.096
X2*X2 -1 0.096
X3*X3 1 0.096
X4+X4 0.10 -1 0.096
X5*X5 1 0.096
X6*X6 -1 0.096
Power Analysis
Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.13
X1 1 0.789
X2 1 0789
X 0.789
XiP B 1 2 + c 1 0.789
X5 1 0.789
X6 1 0.789
X1*X1 1 0.124

0.12

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.13
X1 1 0.796
X2 1 0.796
X3 1 079
X4 Ds D 1 7 1 079
X5 1 0796
X6 1 0.796
X1*X1 1 0211
X2*X2 -1 0.211
X3*X3 1 0.211
X4*X4 0.21 -1 0211
X5*X5 1 0211
X6*X6 -1 0.211
Power Analysis
Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.146
X1 1 0944
X2 1 0944
X3 0.944
X4FF16+CH 0.944
X5 1 0944
X6 1 0944
X1*X1 1 0.14

0.14

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.159
X1 1 0.959
X2 1 0.959
X3 1 0959
X4 Ds Dz 1 1 0959
X5 1 0.959
X6 1 0.959
X1*X1 1 0.261
X2*X2 -1 0.261
X3*X3 1 0.261
X4*X4 0.26 -1 0.261
X5*X5 1 0.261
X6*X6 -1 0.261
Power Analysis
Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.839
X1 1 1
X2 1 1
* CCD45 '
X4 1 1
X5 1 1
X6 1 1
X1*X1 1 0.321
X2*X2 1 0321
X3*X3 0132 1 0321
X4*X4 1 0321
X5*X5 1 0321
X6*X6 1 0321

Power Analysis

Significance Level 0.05

Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.259
X1 1 0.985
X2 1 0.985
1

X3 2X 0.985
X4 1 0.985
X5 Ds D 1 3 1 0.985

X6 1 0985
X1*X1 1 0488
X2*X2 -1 0.488
X3*X3 0.49 1 0488
X4*X4 -1 0488
X5*X5 1 0488
X6*X6 -1 0488

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.164
X1 1 0997
X2 1 0997
X3 1 0997
X4 B B49 1 0997
X5 1 0997
X6 1 0.997
X1*X1 1 0.608
X2*X2 -1 0.608
X3*X3 0-61 1 0.608
X4*X4 -1 0.608
X5*X5 1 0.608
X6*X6 -1 0.608

Power Analysis

Significance Level 0.05
Anticipated RMSE 1
Anticipated
Parameter Coefficients Power
Intercept 1 0.39
X1 1 0.994
xAUGMENT 0%

0.996

WDSD17 TO oo
© 1-OPT34 °=

0.993
X1*X1 1 0.583
X2*X2 -1 0.587
X3*X3 0.58 1 0.568
X4*X4 -1 0.623
X5*X5 1 0574
X6*X6 -1 0.559

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.466
X1 1 0995
X2 1 0.991
X3 1 0992
X4 I-OPT34‘I 0.995
X5 1 0.989
X6 1 0.991
X1*X1 1 0.597
X2*X2 -1 0.659
x3x3 (0.63 1 0693
X4*X4 -1 0.631
X5*X5 1 0.594
X6*X6 -1 0.621



POWER FOR 6 MAIN EFFECTS & 6 QUADRATIC TERMS
FOR ALL TERMS VS. ONE QUAD TERM AT A TIME

Power Analysis

Significance Level 0.05

Anticipated RMSE 1
Anticipated

Parameter Coefficients

Intercept

X1

X2

X3

« DSD13
X5

X6
X1*X1
X2*X2
X3*X3
X4*X4
X5*X5
X6*X6

0.10

' ' '
- a2 A 4 a4 A A A g

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients
Intercept 1
X1 1
X2 1
X3 1
X4 DSD1 7 1
X5 1
X6 1
X1*X1 1
X2*X2 1
X3*X3 1
X4*X4 1
X5*X5 1
X6*X6 1

0.21

Power
0.073
0.196
0.196
0.196
0.196
0.196
0.196
0.096
0.096
0.096
0.096
0.096
0.096

Power
0.13
0.796
0.796
0.796
0.796
0.796
0.796
0.211
0.211
0.211
0.211
0.211
0.211

Power Analysis

Significance Level 0.05

Anticipated RMSE 1
Anticipated

Parameter Coefficients

Intercept

X1

X2

. DSD13

X6
X1*X1

- a A A A A a

0.24

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients
Intercept 1
X1 1
X2 1
X3 1
X4 DSD1 7 1
X5 1
X6 1
X1*X1 1

0.29

Power
0.291
0.716
0.716
0.716
0.716
0.716
0.716
0.236

Power
0.341
0.913
0.913
0.913
0.913
0.913
0.913

0.29

Power Analysis

Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.13
X1 1 0.789
X2 1 0.789
X3 0.789
X4PB1 2+cp1 0.789
X5 1 0.789
X6 1 0.789
X1*X1 1 0124

0.12

Power Analysis
Significance Level 0.05
Anticipated RMSE 1

Anticipated
Parameter Coefficients Power
Intercept 1 0.146
X1 1 0944
X2 1 0.944
X3 1 0944
wFF16+CP (..
X5 1 0944
X6 1 0944
X1*X1 1 0.14

0.14



July 22, 2010 DEFINITIVE SCREENING CASE STUDY

Secretary Chu Announces Six Projects to
Convert Captured CO2 Emissions from
Industrial Sources into Useful Products

$106 Million Recovery Act Investment will Reduce CO2
Emissions and Mitigate Climate Change

Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six
projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from
industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with
$106 million from the American Recovery and Reinvestment Act -matched with $156 million in
private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an
inexpensive raw material that can help reduce carbon dioxide emissions while producing useful
by-products that Americans can use.

"These innovative projects convert carbon pollution from a climate threat to an economic
resource," said Secretary Chu. "This is part of our broad commitment to unleash the American
innovation machine and build the thriving, clean energy economy of the future."
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6-FACTOR DEFINITIVE SCREENING DESIGN, PROJECTION IN ALL 2-FACTOR
COMBINATIONS (LEFT) AND PROJECTION IN FIRST THREE FACTORS (RIGHT)

Scatterplot 3D

Scatterplot Matrix
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0.5 |

0 A
0.5 A
14

11
0.5 1
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Data Columns |/A B C



10-FACTOR DEFINITIVE SCREENING DESIGN, PROJECTION IN ALL 2-FACTOR
COMBINATIONS (LEFT) AND PROJECTION IN FIRST THREE FACTORS (RIGHT)
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FACTOR, 21-TRIAL,

DEFINITIVE SCREENING DESIGN

COLOR MAP FOR 10-

[Color Map On Correlations
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Yield @ Time t
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Y VS X PLOTS OF
DATA FOR EACH X

Graph Builder

Yield @ Time t vs. Range
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SQRT(Y) VS X
PLOTS OF DATA FOR
EACH X

Graph Builder
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ACTUAL BY PREDICTED PLOT FOR FINAL 3-FACTOR MODEL
FOR THE 24 DESIGN TRIALS

Actual by Predicted Plot
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PREDICTING WITH BEST 3-FACTOR AND 4-FACTOR MODELS
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Distributions
Yield @ Time t

SETTINGS OF BEST OBSERVATION OF YIELD = 12.96

Distributions
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ACTUAL BY PREDICTED PLOT FOR FINAL 3-FACTOR MODEL
FOR THE 24 DESIGN TRIALS AND 4 VERIFICATION TRIALS

Actual by Predicted Plot
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DISCOVERY SUMMIT
VIDEO INTRO TO
FIT DEFINITIVE
SCREENING

- 2017 JMP Discovery Summit presentation by Brad Jones on
» Simulating Responses and Fitting Definitive Screening Designs - IMP User
Community

Copyright © 2013, SAS Institute Inc. All rights reserved.


https://community.jmp.com/t5/Discovery-Summit-2017/Simulating-Responses-and-Fitting-Definitive-Screening-Designs/ta-p/44056

MAIN EFFECT
RANKING OF NEW DEFINITIVE SCREENING ANALYSIS METHOD

FACTORS
Effect Summary
Source LogWorth PValue
A ez 0 0.02387
B 1.568 7 0.02705
C 0.515 1 0.30541
F 02390 0.57657
J 01690 0.673802
G 01580 0.69271
H 0.141] 0.72136
E 01410 0.72231
I 0.071] 0.84905
D 0.061) 0.86836

- Treat factors D and | as the dummy factors to be used for error
estimates in Definitive Screening Fit



DSD FIT OUTPUT
WITH FACTORS D & |
USED FOR ERROR

NEW DEFINITIVE SCREENING ANALYSIS METHOD

Stage 1 - Main Effect Estimates Stage 2 - Even Order Effect Estimates Combined Model Parameter Estimates

Term Estimate Std Error tRatio Prob:>|t| Term Estimate S5td Error t Ratio Term Estimate 5td Error tRatio Prob>[t|
A -2.05 0.2228 -2 <0001 Intercept 86310 0.6421 13442 Intercept 8.6319 0,507 14514 <00017
B -2.015 0.2228 9.3 =« 17 A*B 1.2645 0.2968 4.2608 0.002) A -2.05 0.2608 -7.86
C -0.855 0.2228 -3.839 0.0050° B*C 0.9481 0.3036 3.1232 0.0168 B -2.015 0.2608 -7.726
F -0.427 0.2228 -1.916 0.0917 B*F 0.5687 0.3036 1.8733 0.1032 C -0.855 0.2608 -3.279
r g C*F 0.9163 0.3213 2.8517 0.0246* F -0.427 0.2608 -1.637
:thf:;gt'c Ov;'é';; B"B 475 07043 -6.753 0.0003 A"B 12645 02749 4.6006
oF o Statistic  Value B°C 0.0481 02812 23722
RMISE 1.7435 B*F 0.5687 0.2812 20227
DF ! 7 C*F 0.9163 0.2976 3.0791
B*B -4.756 0.6523 -7.282
Statistic  Value
RMSE 1.1516
DF 14
Make Model | Run Model
Main Effects Plot
O ® o |e ® ® ® ®
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Actual by Predicted Plot
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ANALYSIS STRATEGIES FOR WHEN YOU DON’T HAVE THE
NEW DEFINITIVE SCREENING ANALYSIS METHOD

- Conservative — start by treating designs like traditional screening
= Fit main effects only — DSD is orthogonal in main effects
= Then fit ME + squared effects — DSD is orthogonal in squared terms too
= *Use factor sparsity and effect heredity principles to propose final models

= Use transformation to make error more uniform
» square-root identified in plot of SSE vs. A for Box-Cox transformation (i.e. A = 0.5)

- Aggressive — use stepwise regression to pick “best” subsets of terms
= Use AlICc & BIC stopping criteria and pick “simpler model” — Occam’s razor
= Use max K-Fold R-square as stopping rule to pick model (no checkpoints)
= Use max validation R-square for checkpoints as stopping rule to pick model
= Fit ALL possible models

*Factor sparsity states only a few variables will be active in a factorial DOE
Effect heredity states significant interactions will only occur if at least one parent is active
Pg. 112 , Wu & Hamada, “Experiments, Planning, Analysis and Parameter Design Optimization”



ALL ANALYSES FACTOR F APPEARS
RANK FACTORS TO BE MOST LIKELY
A,B& CASTOP3 FOURTH FACTOR

- Linear terms only — fourth factor is F

- Linear + Squared terms — fourth factor is D

- Stepwise with min AICc stopping rule — fourth factor is F

- Stepwise with max K-Fold R-Square stopping rule — fourth factor is F

- Stepwise with max Validation R-Square as stopping rule — fourth factor is F
- All possible models — fourth factor is G

- When D & F are in same 5-factor (with A, B, & C) stepwise model, D drops out
- When G & F are in same 5-factor (with A, B, & C) stepwise model, G drops out
- When D & G are in same 5-factor (with A, B, & C) stepwise model, both drop out

- There is an important difference between saying, “Factor F has no effect.” and,
“Given the amount of data taken an effect for factor F was not detected.”

- Augmenting design to support 6-factor quadratic model in A, B, C, D, F & G will
= help resolve the relative contributions of D, F & G
= increase the power for all — but especially - the squared terms

Copyright © 2013, SAS Institute Inc. All rights reserved.



CONSERVATIVE
ANALYSIS

Sorted Parameter Estimates

Term Estimate

A
B
C
F
J
G
H
E
I
D

-2.023428
-2.030884
-0.844283
-0.453239
0.3462584
0.3230058
0.2867159
-0.287384
-0.155204
0.1332841

Std Error t Ratio Prob>|t|
0791305 -256 |, | i | 00239+
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TRANSFORMATIONS
SQRT, LOG, & NONE

Actual by Predicted Plot Actual by Predicted Plot Actual by Predicted Plot
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Yield @ Time t Actua
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Yield @ Time t Actua

O 5 10 15 20 O 5 10 15 20 O 5 10 15 20

Yield @ Time t Predicted Yield @ Time t Predicted Yield @ Time t Predicted
P<.0001 RSq=0.83 P<.0001 RSq=0.82 P<.0001 RSq=0.79
RMSE=0.4163 RMSE=0.4509 RMSE=1.9387

Summary of Fit Summary of Fit Summary of Fit

RSquare 0.825967 RSquare 0.823029 RSquare 0.789957
RSquare Adj 0.789328 RSquare Adj 0.785772 RSquare Adj 0.745738
Root Mean Square Error 0.416337 Root Mean Square Error 0.450888 Root Mean Square Error 1.938688
Mean of Response 1.983747 Mean of Response 1.151951 Mean of Response 472375

Observations (or Sum Wgts 24 Observations (or Sum Wgts 24 Observations (or Sum Wgts 24



PLOTS OF
RESIDUALS FOR
DIFFERENT
TRANSFORMATIONS

Model fit was reduced quadratic in A, B & C:
Yield = Intercept + A+ B + C + B*B + A*B + B*C

Distributions

Studentized Resid Sqrt(Yield @ Time t) 2
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164128 -0.67 00 067 128164

02 4 6 0.03 0.14 0.35 0.650.8 0.91
Count Normal Quantile Plot

~ Normal(-0.0045,1.03596)
Fitted Normal
Parameter Estimates
Type Parameter Estimate Lower 95% Upper 95%
Location -0.004478 -0.441926 0.4329688
Dispersio © 1.0359592 0.8051616 1.4532028
-2log(Likelihood) = 68.8047829349136
Goodness-of-Fit Test
Shapiro-Wilk W Test
W Prob<W
0.972241 0.7224

Note: Ho = The data is from the Normal
distribution. Small p-values reject Ho.

Studentized Resid Log(Yield @ Time t)

2.5
2
15
1
05 ——
0
-0.5
-1
-1.5
-2
-2.5

1 __ 14128 067 00 067 128164
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Count Normal Quantile Plot

~ Normal(-0.008,1.03586)

Fitted Normal

Parameter Estimates

Type Parameter Estimate Lower 95% Upper 95%
Location -0.007981 -0.445387 0.4294258
Dispersio o 1.035863 0.8050868 1.4530679
-2log(Likelihood) = 68.8003267780461

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W
0.992406 0.9994

Note: Ho = The data is from the Normal
distribution. Small p-values reject Ho.

Studentized Resid Yield @ Time t
2.5
2
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1
0.5
0
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0.03 0.14 035 0.650.8 091

02 4 6
Count Normal Quantile Plot

" Normal(-0.0003,1.0284)
Fitted Normal

Parameter Estimates

Type Parameter Estimate Lower 95% Upper 95%
Location -0.000276  -0.434534 0.4339807
Dispersio o 1.0284046 0.79929 1.4426054

-2log(Likelihood) = 68.4534641248215
Goodness-of-Fit Test
Shapiro-Wilk W Test
W Prob<W
0.918997 0.0555

Note: Ho = The data is from the Normal
distribution. Small p-values reject Ho.



Sorted Parameter Estimates

Term Estimate

B*B  -1.218717 0.182702
A -0.496169 0.075133
B -0.481867 0.075133
@ -0.240181 0.075133
A*B 0.2306449 0.078918
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STEPWISE MODELS:
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AGGRESSIVE
ANALYSES

- Stepwise using Main Effects and Squared Effects for all factors
= Will show just the use of AICc & BIC stopping criteria —
all stepwise approaches yield very similar results

- Stepwise using full 10-factor, 66-term quadratic model

1 intercept + 10 ME + 10 SQ + 45 2FI| (2-factor interactions)

= Use AICc & BIC stopping criteria and pick “simpler model” — Occam’s razor
= Use max K-Fold R-square as stopping rule to pick model (no checkpoints)

= Use max validation R-square for checkpoints as stopping rule to pick model
= Fit ALL possible models



USE MIN AIC OR BIC

Criterion Histor
CRITERION AS y
STOPPING RULE 200 . AlC +
. BIC x
2 150 L
21 TERMS, ME + SQ o ¥ x £ ox x x X X
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USE MIN AIC OR BIC Criterion History

CRITERION AS o ] A s
STOPPING RULE o 100 . BIC
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USE MIN AIC OR BIC Criterion History
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USE MIN AIC OR BIC Criterion History
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USE MAX K-FOLD
R-SQUARE AS
STOPPING RULE

66 TERM QUADRATIC

TRANSFORMED
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USE MAX VALIDATION
R-SQUARE

FOR 4 CHECKPOINTS
AS STOPPING RULE

66 TERM QUADRATIC
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USE AIC CRITERION POISSON

AS STOPPING RULE DISTRIBUTION USED
WITH GENERALIZED
66 TERM QUADRATIC REGRESSION
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RMS

FIT ALL POSSIBLE

MODELS UP TO 8 TERMS

0.8

0.7

0.6

0.4

0.3

0.2

+A

+B,B*B

+—ABB*B

4+ ABCB*B

+—AB,C,A*B,B*B

A,B,C,A*B,B*B,B*C

AB,C,G,A*B,B*B,B*G

+—AB,C,G,A*B,B*B,A*C,B*G

E’?v Please Enter Values

All Possible Models

Maximum number of terms in a model;

8

Number of best models to see:

1

4 Restrict to models where interactions imply lower order effects (Heredity Restriction)

[ oK || Cancel ‘

Model Number RSquare
A 1 0.2861
B,B*B 2 05307
A,B,B*B 3 0.7661
A,B,C,B*B 4  0.8260
A,B,C,A*B,B*B 5 0.8768
A,B,C,A*B,B*B,B*C 6 0.9004
A,B,C,G,A*B,B*B,B*G 7 09239
A,B,C,G,A*B,B%B,A*C,B* 8 0.9501

Factors A & B
Factors A, B & C

5 10

p = Number of Terms

15

RMSE
0.7836
0.6503
0.4704
0.4163
0.3599
0.3329
0.3000
0.2509

Rsquare
Rsquare
Factors A, B, C & G Rsquare

AlCc
61.5162
54.3550
40.8699
37.3830
33.1552
32.6422
31.4479
27.3801

BIC
63.8504
56.9620
43.4268
39.5102
34.4016
32.4667
29.1933
22.2375

OO0O®OOO0OO0

nm nn
o OO0
O O N
01 O N




WISDOM FROM BOB

Although your model can fit the data,
it may NOT fit the process from which the data come!

How do | know if my model fits?

IS right?
adequate?
accurate?

For me, nothing beats checkpoints!
Do they fall within prediction limits?
What does a plot of actual vs. prediction look like?

Continue to check model predictions over time.
tools wear
seasons change
suppliers and operators change



ALL ANALYSES FACTOR F APPEARS
RANK FACTORS TO BE MOST LIKELY
A,B& CASTOP3 FOURTH FACTOR

- Linear terms only — fourth factor is F

- Linear + Squared terms — fourth factor is D

- Stepwise with min AICc stopping rule — fourth factor is F

- Stepwise with max K-Fold R-Square stopping rule — fourth factor is F

- Stepwise with max Validation R-Square as stopping rule — fourth factor is F
- All possible models — fourth factor is G

- When D & F are in same 5-factor (with A, B, & C) stepwise model, D drops out
- When G & F are in same 5-factor (with A, B, & C) stepwise model, G drops out
- When D & G are in same 5-factor (with A, B, & C) stepwise model, both drop out

- There is an important difference between saying, “Factor F has no effect.” and,
“Given the amount of data taken an effect for factor F was not detected.”

- Augmenting design to support 6-factor quadratic model in A, B, C, D, F & G will
= help resolve the relative contributions of D, F & G
= increase the power for all — but especially - the squared terms



IF MORE THAN A FEW FACTORS ARE SIGNIFICANT,
THEN AUGMENT DESIGN TO SUPPORT 2N° ORDER MODEL

Yield @
B G Block Timet
14 0 0 0 0 0 01 7.49
15 1 1 1 1 1 11 0.98
16 1 1 1 1 1 01 0.86
17 1 1 1 1 1 11 1.25
18 1 1 1 1 1 11 1.03
19 1 1 0 1 1 11 1.07
20 0 0 0 0 0 01 7.33
21 1 1 1 0 1 11 261
22 1 1 0 1 1 11 11.39
23 1 0 1 1 1 11 12.96
24 1 1 1 1 1 11 118
ﬁ 1 0 1 1 1 12 \
26 1 1 0 1 1 02 .
27 1 1 1 1 0 12
28 1 1 0 1 0 12
29 1 0 1 1 1 02
30 1 1 0 1 0 12
31 1 0 1 0 1 12
32 1 1 0 0 1 12
33 0 0 1 1 1 12
34 1 1 1 0 0 02
35 0 1 1 0 1 02 .
K% 0 1 1 1 1 12 /

NOTE: First 13
rows of original
design are not
shown.

These 12 trials
added onto original
24 trials to support
full quadratic model
in 6 most important
factors plus a block
effect between
original and
augmented trials



Power Analysis

Significance Level 0.05
Anticipated RMSE 1

POWER FOR SQUARED TERMS IN 2N ORDER MODEL
IS INCREASED TO NEAR THAT OF 6-FACTOR RSM DESIGNS

Anticipated
Parameter Coefficients Power
Intercept 1 0273
Block 1 0.983
A 1 0.965
B -1 0.966
C 1 0.976
D -1 0.969
F 1 0.975
G -1 0.961
A*B 1 0.887
A*C -1 0.881
A*D 1 0.825
AFE 1 0915 Power Analysis
A*G 1 0.732 Significance Level 0.05
B*C -1 0.728 Anticipated RMSE 1
B*D 1 0.853 Anticipated
B*F -1 0.859 Parameter Coefficients Power
B*G 1 0.724 Intercept 1 0.364
C*D -1 0872 A 1 0.998
C*F 1 0838 B -1 0.998
C*G -1 0778 C 1 0.998
D*F 1 0847 D -1 0.998
D*G -1 0838 F 1 0.998
F*G 1 086 G -1 0.998
A*A 1 0299 A*A 1 0527
B*B -1 0.361 B*B -1 0.599
Cc*C 1 0362 CC 1 0.582
D*D -1 0309 D*D -1 0.541
F*F 1 0384 F*F 1 0.573
G*G -1_.0347  G*G -1 0.568

Yield @

G Block Timet

14 0 0 0 0 01 7.49
15 1 1 1 1 11 0.98
16 1 1 1 1 01 0.86
17 1 1 1 1 1 11 1.25
18 1 1 1 1 1 11 1.03
19 1 0 1 1 11 1.07
20 0 0 01 7.33
21 1 1 0 11 261
22 1 1 0 1 11 11.39
23 1 1 1 1 11 12.96
24 1 1 1 1 11 118

ﬁ 1 1 1 1 12 \
26 1 1 0 1 1 02 .
27 1 1 1 0 12 .
28 1 1 0 1 0 12 .
29 1 1 1 1 02 .
30 1 0 1 0 12 .
31 1 1 0 1 12 .
32 1 1 0 0 1 12 .
33 0 0 1 1 1 12 .
34 1 1 1 0 0 2 .
35 1 0 2 .
K% 1 1 12 /




COMPARE
AUGMENTED
DESIGNS

TOP: 10-FACTOR FRACTIONAL FACTORIAL + C.P. AUGMENTED TO SUPPORT FULL
QUADRATIC MODEL IN 6 FACTORS
33+9=42 TOTAL TRIALS

UPPER MIDDLE: 10-FACTOR PLACKET-BURMAN + C.P. AUGMENTED TO SUPPORT
FULL QUADRATIC MODEL IN 6 FACTORS
25+ 11 =36 TOTAL TRIALS

LOWER MIDDLE: 10-FACTOR DEFINITIVE SCREENING AUGMENTED TO SUPPORT
FULL QUADRATIC MODEL IN 6 FACTORS
21 +15 =36 TOTAL TRIALS

Design Diagnostics

BOTTOM: 6-FACTOR CUSTOM DOE FOR FULL RSM MODEL 10ptimal Design
34 TOTAL TRIALS D Emeiensy
G Efficiengy
. . A Efficiengy
Fractlon Of DeS|gn Space P|Ot Average Variance of Predidion
Design Creation Time (secords)
2.0
Design Diagnostics
J 10ptimal Design
P D Efficiency
,-l G Efficiency
1.5 ,’ A Efficiency
{' Average Variance of Predidion

Prediction Varianc

Design Creation Time (secords)

Design Diagnostics
10ptimal Design

D Efficiency

G Efficiency

A Efficiency

Average Variance of Predidion
Design Creation Time (seconds)

Design Diagnostics
1Cptimal Design
D Efficiengy

G Efficiengy

0.0 0.2 0.4 0.6 0.8 1o  Atmceny

Average Variance of Predidion
Fraction of Space Design Creation Time (seconds)

40,729
56.09719
1241717

0.82307
0.05

3846606
5433552
14.61968
0.833744

0.05

4215506
69.61262
22.27027
0.563765
0.066667

4254028
75.52931
27.2053068

044424
0.066667



TOP: 14-FACTOR FRACTIONAL FACTORIAL + C.P. AUGMENTED TO
COMPARE SUPPORT FULL QUADRATIC MODEL IN 7 FACTORS
AUGMENTED 33 + 13 = 46 TOTAL TRIALS
DESIGNS
MIDDLE: 14-FACTOR DEFINITIVE SCREENING AUGMENTED TO
SUPPORT FULL QUADRATIC MODEL IN 7 FACTORS
29 + 17 = 46 TOTAL TRIALS

BOTTOM: 7-FACTOR CUSTOM DOE FOR FULL RSM MODEL
42 TOTAL TRIALS

Fraction of Design Space Plot

20 . Design Diagnostics
' 1Cptimal Design
D Efficiency 37.352
G Efficiency 4868453
A Efficiency 11.13939

Average Variance of Predidion  1L.006709
DesignCreation Time (seconds) 00133333

Average Variance of Predidion  0.714178
DesignCreationTime (secords) 01133333

e Design Diagnostics

.g IOptimal Design

o D Efficiengy 36.69963
c G Efficiengy 5839688
R A Efficiengy 1561337
=

=

§el

1)

—

o

Design Diagnostics
1Cptimal Design

D Efficiengy 4103495
G Efficiengy 71.04153
A Efficiengy 2770772

Average Variance of Predidion 0445913
: DesignCreationTime (secords)  (.216667

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Space

0.0




80
70

60

Number of Unique Trials or Quadratic Terms

NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS
AND
NUMBER OF QUADRATIC MODEL TERMS
VS.
NUMBER OF CONTINUOUS FACTORS

“Unique Trials in Central Composite Design
“~Unique Trials in Box-Behnken Design
©Unique Trials in Custom Design with 6 df for Model Error

~~ Terms in Quadratic Model

36 trial I-optimal response-surface design started
as 10-factor DSD and was then augmented with
12 more trials in 6 most important factors

2 3 4 5 6 7 8 9

Number of Continuous Factors

If generally running 3, 4 or 5-factor fractional-factorial designs...
1. How many interactions are you not investigating?

2. How many more trials needed to fit curvature?

3. Consider two stages: Definitive Screening + Augmentation



SUMMARY OF MODERN SCREENING DOE

- Definitive Screening Designs

= Efficiently estimate main and quadratic effects for no
more and often fewer trials than traditional designs

= [f only a few factors are important the design may
collapse into a “one-shot” design that supports a
response-surface model

= [f many factors are important the design can be
augmented to support a response-surface model

= Case study for a 10-variable process shows that it can
be optimized in just 23 unique trials



Thanks.
Questions or comments?

TOM.DONNELLY@QJMP.COM



JMP 11 DEFINITIVE SCREENING DESIGN COLOR MAPS
FOR 8-CONTINUOUS, 2-CATEGORICAL FACTOR

De-alias 2-f Interactions and
Categorical Factors

Color Map On Correlations . \
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6-FACTOR, 16-TRIAL, NON-REGULAR FRACTIONAL FACTORIAL
(“NO CONFOUNDING” DESIGN)

Jones, B. and Montgomery, D., (2010) “Alternatives to Resolution IV Screening Designs in
16 Runs.” International Journal of Experimental Design and Process Optimization, 2010;
Vol. 1 No. 4: 285-295.
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WITH JMP 11 USE DEFINITIVE SCREENING ON DOE MENU

D{)EI Analyze Graph Six Sigma Tools -~
(g Custom Design

ﬁ Definitive Screening Design
Definitive Screening !
Screening Design
Response Surface Design
Full Factorial Design

Mixture Design

Choice Design

Space Filling Design
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Accelerated Life Test Design
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Monlinear Design
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Taguchi Arrays
Robust Screening Design

Evaluate Design

Augment Design
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Specify Factors

Add a Continuous or Categorical factor by clicking its button. Double
click on a factor name or level to edit it.

Continue

File Edit Tables Rows Cols DOE Analyze Graph SixSigmaTools Tools Add-lns View Window Help
4~ Definitive Screening Design
4 Responses
[Add Response ¥ [Remove ”Number of Responses... l
Response Name Goal Lower Limit Upper Limit Importance
Y |Maximize
4 Factors
[Continuous] [Categorical] [Remove lAdd N Factors | 2
M Name Role Values
‘Xl Continuous -1 1
‘)(2 Continuous -1 1
‘XB Continuous -1 1
‘X4 Continuous -1 1
‘XS Continuous -1 1
‘Xﬁ Continuous -1 1
WS
X7 Categorical L1 L2
‘XS Cateqgorical L1 L2




ANALYSIS
STRATEGIES

- Visual Tools:
= Distribution — click on “good” and “bad” response values to see correlations with
factor settings
= Graph Builder — Y vs. X graphs — all data, summarized data, fit line, smoother

» Drop factors side by side or alternatively (for coded factors) stack factors then replot
» Use Overlay field to look at possible interactions between two factors

- Analytic Tools:

= Conservative: Main Effects fit — look at Scaled estimates

» Consider adding interactions among significant factors using Effects Heredity and Sparsity
= Aggressive: Strepwise with various stopping criteria

» AICc, BIC, K-fold, Excluded checkpoints,

» Fit All Possible Models
= Analytic Output:

» Stepwise Histories — Criterion or Rsquare

» Actual vs. Predicted with Graph Builder — Col Switch different models

» Create All Possible Models Table — Plot four metrics using Overlap Plot



COLOR MAP FOR 20-TRIAL PLACKETT-BURMAN DESIGN WITH
19 CONTINUOUS FACTORS

Color Map On Correlations
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COLOR MAP FOR 40-TRIAL FOLD-OVER PLACKETT-BURMAN DESIGN WITH
19 CONTINUOUS FACTORS AND 20™ BLOCK FACTOR

Color Map On Correlations

Irl



COLOR MAP FOR A 42-TRIAL DEFINITIVE SCREENING DESIGN WITH
19 CONTINUOUS FACTORS AND 1 TWO-LEVEL CATEGORICAL FACTOR

Color Map On Correlations
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COLOR MAP FOR 21-TRIAL HALF OF 42-TRIAL DSD WITH
19 CONTINUOUS FACTORS SPLIT ON 20™ CATEGORICAL FACTOR

Color Map On Correlations
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Color Map On Correlations

BOTH WITH 19 CONTINUOUS FACTORS

AND 21-TRIAL HALF OF 42-TRIAL DSD (RIGHT)

COLOR MAP FOR 20-TRIAL PLACKETT-BURMAN DESIGN (LEFT)

Color Map On Correlations
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COLOR MAP FOR A 40-TRIAL FOLD-OVER PLACKET-BURMAN DESIGN (LEFT)

AND A 42-TRIAL DEFINITIVE SCREENING DESIGN (RIGHT)
WITH 19 CONTINUOUS AND 1 TWO-LEVEL BLOCK/CATEGORICAL FACTOR
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R XX XXX XX S S I SIRRRRRX HHRHAHHXHNH X LRI R XX XX
Irl

Irl
0



For designs containing only continuous factors, compare these properties of
definitive screening designs versus standard screening designs:

» Main effects are orthogonal to two-factor interactions.
— Definitive Screening Designs: Always
— Standard Screening Designs: Only for Resolution IV or higher

» No two-factor interaction is completely confounded with any other two-factor
interaction.

— Definitive Screening Designs: Always

— Standard Screening Designs: Only for Resolution V or higher

* All quadratic effects* are estimable in models containing only main and

guadratic effects.
— Definitive Screening Designs: Always
— Standard Screening Designs: Never

* When quadratic effects are mentioned, the standard screening designs are
assumed to have center points.
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