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Summary

1. The use of both linear and generalized linearmixed-effectsmodels (LMMs andGLMMs) has become popular

not only in social andmedical sciences, but also in biological sciences, especially in the field of ecology and evolu-

tion. Information criteria, such as Akaike Information Criterion (AIC), are usually presented as model compari-

son tools formixed-effectsmodels.

2. The presentation of ‘variance explained’ (R2) as a relevant summarizing statistic ofmixed-effectsmodels, how-

ever, is rare, even though R2 is routinely reported for linear models (LMs) and also generalized linear models

(GLMs). R2 has the extremely useful property of providing an absolute value for the goodness-of-fit of a model,

which cannot be given by the information criteria. As a summary statistic that describes the amount of variance

explained,R2 can also be a quantity of biological interest.

3. One reason for the under-appreciation ofR2 for mixed-effects models lies in the fact thatR2 can be defined in a

number of ways. Furthermore, most definitions of R2 for mixed-effects have theoretical problems (e.g. decreased

or negativeR2 values in largermodels) and/or their use is hindered by practical difficulties (e.g. implementation).

4. Here, we make a case for the importance of reporting R2 for mixed-effects models. We first provide the com-

mon definitions of R2 for LMs and GLMs and discuss the key problems associated with calculating R2

for mixed-effects models. We then recommend a general and simple method for calculating two types of R2

(marginal and conditionalR2) for both LMMs andGLMMs, which are less susceptible to common problems.

5. This method is illustrated by examples and can be widely employed by researchers in any fields of research,

regardless of software packages used for fitting mixed-effects models. The proposed method has the potential to

facilitate the presentation ofR2 for a wide range of circumstances.

Key-words: coefficient of determination, goodness-of-fit, heritability, information criteria, intra-

class correlation, linearmodels, model fit, repeatability, variance explained

Introduction

Many biological datasets have multiple strata due to the hier-

archical nature of the biological world, for example, cells

within individuals, individuals within populations, populations

within species and species within communities. Therefore, we

need statistical methods that explicitly model the hierarchical

structure of real data. Linear mixed-effects models (LMMs;

also referred to as multilevel/hierarchical models) and their

extension, generalized linear mixed-effects models (GLMMs)

form a class of models that incorporate multilevel hierarchies

in data. Indeed, LMMs and GLMMs are becoming a part of

standard methodological tool kits in biological sciences

(Bolker et al. 2009), as well as in social and medical sciences

(Gelman & Hill 2007; Congdon 2010; Snijders &

Bosker 2011). The widespread use of GLMMs demonstrates

that a statistic that summarizes the goodness-of-fit of mixed-

effects model to the data would be of great importance. There

seems currently no such summary statistic that is widely

accepted formixed-effects models.

Many scientists have traditionally used the coefficient of

determination,R2 (ranging from 0 to 1), as a summary statistic

to quantify the goodness-of-fit of fixed effects models such as

multiple linear regressions, ANOVA, ANCOVA and generalized lin-

ear models (GLMs). The concept of R2 as ‘variance explained’

is intuitive. Because R2 is unitless, it is extremely useful as a

summary index for statistical models because one can objec-

tively evaluate the fit of models and compare R2 values across

studies in a similar manner as standardized effect size statistics

under some circumstances (e.g. models with the same

responses and similar set of predictors or in other words, it can

be utilized formeta-analysis; Nakagawa&Cuthill 2007).

In Table 1, we briefly summarize 12 properties of R2 (based

on Kvålseth 1985 and Cameron &Windmeijer 1996; compila-

tion adopted from Orelien & Edwards 2008) that will provide*Correspondence author. E-mail: shinichi.nakagawa@otago.ac.nz
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the reader with a good sense of what a ‘traditional’ R2 statistic

should be and also provide a benchmark for generalizingR2 to

mixed-effects models. Generalizing R2 from linear models

(LMs) to LMMs and GLMMs turns out to be a difficult task.

A number of ways of obtainingR2 formixedmodels have been

proposed (e.g. Snijders & Bosker 1994; Xu 2003; Liu, Zheng &

Shen 2008; Orelien & Edwards 2008). These proposed

methods, however, share some theoretical problems or

practical difficulties (discussed in detail below), and conse-

quently, no consensus for a definition of R2 for mixed-effects

models has emerged in the statistical literature. Therefore, it is

not surprising that R2 is rarely reported as a model summary

statistic whenmixedmodels are used.

In the absence of R2, information criteria are often used

and reported as comparison tools for mixed models. Infor-

mation criteria are based on the likelihood of the data given

a fitted model (the ‘likelihood’) penalized by the number of

estimated parameters of the model. Commonly used infor-

mation criteria include Akaike Information Criterion (AIC)

(Akaike 1973), Bayesian information criterion (BIC),

(Schwarz 1978) and the more recently proposed deviance

information criterion (DIC), (Spiegelhalter et al. 2002;

reviewed in Claeskens & Hjort 2009; Grueber et al. 2011;

Hamaker et al. 2011). Information criteria are used to select

the ‘best’ or ‘better’ models, and they are indeed useful for

selecting the most parsimonious models from a candidate

model set (Burnham & Anderson 2002). There are, however,

at least three important limitations to the use of information

criteria in relation to R2: (i) while information criteria pro-

vide an estimate of the relative fit of alternative models, they

do not tell us anything about the absolute model fit (cf. evi-

dence ratio; Burnham & Anderson 2002), (ii) information

criteria do not provide any information on variance

explained by a model (Orelien & Edwards 2008), and (iii)

information criteria are not comparable across different

datasets under any circumstances, because they are highly

dataset specific (in other words, they are not standard-

ized effect statistics which can be used for meta-analysis;

Nakagawa & Cuthill 2007).

In this paper, we start by providing themost common defini-

tions of R2 in LMs and GLMs. We then review previously

proposed definitions of R2 measures for mixed-effects models

and discuss the problems and difficulties associated with these

measures. Finally, we explain a general and simple method for

calculating variance explained by LMMs and GLMMs and

illustrate its use by simulated ecological datasets.

Definitions ofR2

In this section, we first describe some of the existing methods

for estimating a coefficient of determination, R2, for LMs. A

standard (general) linearmodel (LM) can be written as:

yi ¼ b0 þ
Xp
h¼1

bhxhi þ ei; eqn 1

ei �Gaussian 0; r2e
� �

; eqn 2

where yi is the ith response value, xhi is the ith value for the hth

predictor, b0 is the intercept, bh is the slope (regression coeffi-

cient) of the hth predictor, ei is the ith residual value and resid-

ual errors are normally (Gaussian) distributed with a variance

of r2e . Such regression models are fitted by ordinary least

squares (OLS) methods that minimize the sum of squared dis-

tances between observed and fitted responses (i.e. minimizing

the residual sum of squares). The residual sum of squares

appears in the formulation of the most common definition for

the coefficient of determination, R2 (Kvålseth 1985; Draper &

Smith 1998).

R2
O ¼ 1�

Pn
i¼1

ðyi � ŷiÞ2

Pn
i¼1

ðyi � y
�Þ2

; eqn 3

ŷi ¼ b̂0 þ
Xp
h¼1

b̂hxhi; eqn 4

where n is the number of observations (i.e. the total sample

size), �y is the mean of the response, ŷi is the ith fitted response

value, b̂0 and b̂h are estimates of b0 and bh, respectively, and
the subscript ‘O’ inR2

O signifies OLS regression. An interesting

and important feature to note here is that the definition of

Table 1. Twelve properties of ‘traditional’R2 for regressionmodels; adopted fromOrelien&Edwards (2008)

Property References

R2 must represent a goodness-of-fit and have intuitive interpretation Kvålseth (1985)

R2 must be unit free; that is, dimensionless Kvålseth (1985)

R2 should range from 0 to 1where 1 represents a perfect fit Kvålseth (1985)

R2 should be general enough to apply to any type of statistical model Kvålseth (1985)

R2 values should not be affected by differentmodel fitting techniques Kvålseth (1985)

R2 values fromdifferentmodels fitted to the same data should be directly comparable Kvålseth (1985)

RelativeR2 values should be comparable to other accepted goodness-of-fitmeasures Kvålseth (1985)

All residuals (positive and negative) should beweighted equally byR2 Kvålseth (1985)

R2 values should always increase asmore predictors are added (without degrees-of-freedom correction) Cameron&Windmeijer (1996)

R2 values based on residual sum of squares and those based on explained sumof squares shouldmatch Cameron&Windmeijer (1996)

R2 values and statistical significance of slope parameters should show correspondence Cameron&Windmeijer (1996)

R2 should be interpretable in terms of the information content of the data Cameron&Windmeijer (1996)
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‘variance explained’ is rather indirectly composed of 1 minus

the ‘variance unexplained’ (we revisit this very point later). An

equivalent yet perhaps more intuitive formulation of R2
O can

also be written as:

R2
O ¼ 1� varðyi � ŷiÞ

varðyiÞ ; eqn 5

R2
O ¼ 1� r2e

varðyiÞ ; eqn 6

where ‘var’ indicates the variance of what is in the following

parentheses. Equation 6 can also be expressed as the ratio

between the residual variance of the model of interest and the

residual variance of the null model (also referred to as the

emptymodel or the intercept model):

R2
O ¼ 1� r2e

r2e0
; eqn 7

where r2e0 is the residual variance of the null model.

There are two difficulties with generalizing this definition of

R2
O to the GLMM context. When generalizing to non-Gauss-

ian response variables (i.e. GLMs), it is not straightforward to

get an appropriate estimate of the residual variance. Also,

when generalizing to mixed-effects models that consist of error

terms at different hierarchical levels (see below), it is not imme-

diately obvious which estimate should be used as the unex-

plained variance. For GLMs, R2 can be defined using the

maximum likelihood (ML) of the full and null models (Madd-

ala 1983). Perhaps, the best-known and most popular defini-

tion is:

R2
g ¼ 1� L0

Lb

� �2
n

; eqn 8

where Lb is the likelihood of the data given the fitted model of

interest and L0 is the likelihood of the data given the null

model, n is the total sample size, the subscript ‘g’ inR2
g signifies

‘general’ (this formulation is based on the geometric mean

squared improvement; see Menard 2000). Because R2
g cannot

become 1 even when the model of interest fits data perfectly,

Nagelkerke (1991) proposed an adjustment to Equation 8:

R2
G ¼ 1� L0

Lb

� �2
n

" #,
1� ðL0Þ

2
n

h i
; eqn 9

where the denominator term can be interpreted as the maxi-

mum possible value of R2
g and the subscript ‘G’ in R2

G signifies

‘General’. A definition ofR2, which is comparable toR2
G , is:

R2
D ¼ 1��2 lnðLbÞ

�2 lnðL0Þ eqn 10

We have deliberately left �2 in the denominator and numera-

tor so that R2
D (‘D’ signifies ‘deviance’) can be compared with

Equation 3. For a LM (Equation 1), the �2 log-likelihood

statistic (sometimes referred to as deviance) is equal to the

residual sum of squares based on OLS of this model (Menard

2000; see a series of R2
D formulas for non-Gaussian responses

in Table 1 of Cameron &Windmeijer 1997). There are several

other likelihood-based definitions of R2 (reviewed in Cameron

&Windmeijer 1997;Menard 2000), but we do not review these

definitions, as they are less relevant to our approach below.We

will instead discuss the generalization of R2 to LMMs and

GLMMs, and associated problems in this process, in the next

section.

CommonproblemswhengeneralizingR2

First, let us imagine an experimental design where we sample

repeatedly from the same set of individuals. Extending the LM

shown in Equations 1–2, we can fit a LMM with one random

factor (‘individuals’ in our example) defined as:

yij ¼ b0 þ
Xp
h¼1

bhxhij þ aj þ eij; eqn 11

aj �Gaussianð0; r2aÞ; eqn 12

eij �Gaussianð0; r2e Þ; eqn 13

where yij is the ith response of the jth individual, xhij is the

ith value of the jth individual for the hth predictor, b0 is

the intercept, bh is the slope (regression coefficient) of the

hth predictor, aj is the individual-specific effect from a nor-

mal distribution of individual-specific effects with mean of

zero and variance of r2a (between-individual variance) and

eij is the residual associated with the ith value of the jth

individual from a normal distribution of residuals with

mean of zero and variance of r2e (within-individual vari-

ance). As seen in the previous equations, LMMs have by

definition more than one variance component (in this case

two: r2a and r2e ), while LMs have only one (Equations 1

and 2).

One of the earliest definitions of R2 for mixed-effects mod-

els is based on the reduction of each variance component

when including fixed-effect predictors separately; in other

words, separate R2 for each random effect and the residual

variance (Raudenbush & Bryk 1986; Bryk & Raudenbush

1992; we detail this measurement in the section ‘Related

issues’). This approach is analogous to Equation 7. As

pointed out by Snijders & Bosker (1994), however, it is not

uncommon that some predictors can reduce r2e while simul-

taneously increasing r2a, and vice versa even though the total

sum of variance components r2e þ r2a
� �

is usually reduced

(for an example, see Table 1 in Snijders & Bosker 1994).

Such behaviour of variance components can sometimes

result in negative R2 because r2e and r2a can be larger than

r2e0 and r2a0 , respectively (i.e. the corresponding variance

components in the intercept model).

To avoid this problem, Snijders & Bosker (1994) proposed

what they refer to as R2
1 and R2

2 for LMMs with one random

factor (as in Equation 11): one R2 value is calculated for each

level of a LMM (i.e. the unit level and the grouping/individual

level). R2
1 can be expressed in two forms (analogous to

Equations 5 and 7):

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution, 4, 133–142
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R2
1 ¼ 1� varðyij � ŷijÞ

varðyijÞ ; eqn 14

ŷij ¼ b̂0 þ
Xp
h¼1

b̂hxhij; eqn 15

R2
1 ¼ 1� r2e þ r2a

r2e0 þ r2a0
; eqn 16

where R2
1 is variance explained at the unit of analysis (i.e. level

1; within-individual variance explained), ŷij is the ith fitted

value for jth individual and other notations are as above. In a

similar manner,R2
2 can be written as:

R2
2 ¼ 1� varð�yj � �̂yjÞ

varð�yjÞ ; eqn 17

R2
2 ¼ 1� r2e þ r2a=k

r2e0 þ r2a0=k
; eqn 18

k ¼ MPM
j¼1

1
mj

; eqn 19

where R2
2 is variance explained at the individual level (i.e. level

2; between-individual variance explained), �yj is the mean

observed value for the jth individual, �̂yj is the fitted value for

jth individual, k is the harmonic mean of the number of repli-

cates per individuals, mj is the number of replicates for the ith

individual, M is the total number of individuals, and other

notations are as above. An advantage of using R2
1 and R2

2 is

that we can evaluate how much variance is explained at each

level of the analysis. However, there are at least three problems

with this approach: (i) it turns out thatR2
1 andR2

2 can decrease

in larger models (note that R2
O can only increase when more

predictors are added without the degrees of freedom adjust-

ment; see Table 1), (ii) it is not clear how R2
1 and R2

2 can be

extended to more than two levels (i.e. more than one random

factor) and (iii) it is also not obvious how R2
1 and R2

2 are to be

generalized toGLMMs.

The first problem means that because (r2e þ r2a) of a model

with more predictors can be larger than that of a model of

fewer predictors, R2
1 and R2

2 could also take negative values

(Snijders & Bosker 1994). In other words, the estimate of

r2e þ r2a
� �

can be larger than that of (r2e0 þ r2a0). Snijders &

Bosker (1999) offer two explanations for decreases in R2 and/

or negativeR2 in a largermodel: (i) chance fluctuation (or sam-

pling variance) that is most prominent when the sample size is

small or (ii) misspecification of the model, when the new

predictor is redundant in relation to one or more other predic-

tors in the model. Snijders & Bosker (1999) suggest that

decreases in R2
1 and R2

2 (changes in the ‘wrong’ direction) can

be used as a diagnostic in model selection. However, such

misspecification does not need to be the cause of an increase in

(r2e þ r2a) (and consequently decreases inR
2
1 andR

2
2).

The second problem of extendingR2
1 andR2

2 to models with

more than two levels was addressed by Gelman & Pardoe

(2006), who provide a solution to extend R2
1 and R2

2 to any

arbitrary numbers of levels (or random factors) in a Bayesian

framework. However, its general implementation is rather dif-

ficult, and we therefore refer to the original publication for

those interested in this method.

The third problem of generalizing R2
1 and R2

2 is particularly

profound because the residual variance, r2e , cannot be easily

defined for non-Gaussian responses (see also below). At first

glance, adopting likelihood-based R2 measures such as in

Equations 8–10 could resolve this problem although such a

method only provides R2 at the unit level (i.e. level 1); indeed,

this type of solution has been recommended before (Edwards

et al. 2008). Unfortunately, there are three obstacles to using a

likelihood-basedR2 likeR2
D for generalizedmodels: (i) the like-

lihoods cannot be compared when models are fitted by

restricted maximum likelihood (REML) (the standard way to

estimate variance components in LMMs; Pinheiro & Bates

2000), (ii) it is not clear whether we should use the likelihood

from the null model such as yij = b0 + eij (excluding random

factors) or from the null model such as yij = b0 + aj + eij
(including random factors; see Equation 10) and (iii) likelihood-

based R2 measures applied to LMMs and GLMMs are also

subject to the problem of decreased or even negativeR2 with the

introduction of additional predictors. We are not aware of a

solution to this latter obstacle, but partial solutions to obstacles

(i) and (ii) have been suggested and need separate discussion.

The first obstacle of fitting models with REML only applies

to LMMs, and this can be resolved by using the ML estimates

instead of REML. However, it is well known that variance

components will be biased when models are fitted by ML (e.g.

Pinheiro&Bates 2000).

With respect to the second obstacle regarding the choice of

null models, it seems that both are permitted and accepted in

the literature (e.g. Xu 2003; Orelien & Edwards 2008). Inclu-

sion of random factors in the intercept model, however, can

certainly change the likelihood of the null model that is used as

a reference, and thus, it changes R2 values. This relates to an

important matter. For mixed-effects models,R2 can be catego-

rized loosely into two types: marginal R2 and conditional R2

(Vonesh, Chinchilli & Pu 1996).MarginalR2 is concerned with

variance explained by fixed factors, and conditional R2 is con-

cerned with variance explained by both fixed and random fac-

tors. So far, we only concentrated on the former, marginal R2,

but we will expand more on the distinction between the two

types in the next section.

Although we do not review all proposed definitions of R2

for mixed-effects models here (see Menard 2000; Xu 2003;

Orelien & Edwards 2008; Roberts et al. 2011), it appears that

all alternative definitions of R2 suffer from one or more afore-

mentioned problems and their implementations may not be

straightforward. In the next section, we introduce a definition

of R2, which is simple and common to both LMMs and

GLMMs and probably less prone to the aforementioned prob-

lems than previously proposed definitions.

General and simpleR2 for GLMMs

We first revisit the point that variance explained (R2
O) is actu-

ally defined via the variance unexplained by the model, and

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution, 4, 133–142
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now we redefine R2
O more directly in terms of variance

explained:

R2
O ¼

Pn
i¼1

ð�y� ŷiÞ2

Pn
i¼1

ðyi � �yÞ2
; eqn 20

R2
O ¼ varðŷiÞ

varðyiÞ ; eqn 21

where the notations are as in Equations 3–6. Below, we extend

this more direct formulation first to LMMs and then to

GLMMs. For simplicity, we use a LMMwith two random fac-

tors as an example. For the sake of illustration, assume that

the two random effects are ‘groups’ (with individuals uniquely

assigned to groups) and ‘individuals’ (with multiple observa-

tions per individual) (c.f. Equations 11–13). Observations are

thus clustered in individuals, and individuals are nested within

groups (see Schielzeth & Nakagawa 2012 for a discussion of

nesting inmixedmodels). Themodel can be written as:

yijk ¼ b0 þ
Xp
h¼1

bhxhijk þ ck þ ajkþeijk; eqn 22

ck �Gaussianð0; r2cÞ; eqn 23

ajk �Gaussianð0; r2aÞ; eqn 24

eijk �Gaussianð0; r2e Þ; eqn 25

where yijk is the ith response of the jth individual, belonging to

the kth group, xhijk is the ith value of the jth individual in the

kth group for the hth predictor, ck is the group-specific effect
from a normal distribution of group-specific effects with mean

of zero and variance of r2c , ajk is the individual-specific effect
from a normal distribution of individual-specific effects with

mean of zero and variance of r2a and eijk is the residual from a

normal distribution of group-specific effects with mean of zero

and variance of r2e . AnR2 for LMMgiven by Equation 22 can

be defined as:

R2
LMMðmÞ ¼

r2f
r2f þ r2c þ r2a þ r2e

; eqn 26

r2f ¼ var
Xp
h¼1

bhxhijk

 !
; eqn 27

where r2f is the variance calculated from the fixed effect compo-

nents of the LMM (c.f. Snijders & Bosker 1999), m in the

parentheses indicates marginal R2 (i.e. variance explained by

fixed factors; see below for conditional R2). Estimating r2f can,
in principle, be carried out by predicting fitted values based on

the fixed effects alone (equivalent to multiplying the design

matrix of the fixed effects with the vector of fixed effect

estimates) followed by calculating the variance of these fitted

values (Snijders & Bosker 1999). Note that r2f should be esti-

matedwithout degrees-of-freedom correction.

An obvious advantage of this formulation is that R2
LMMðmÞ

will never be negative. It is possible that R2
LMMðmÞ can decrease

by the addition of predictors (remember that R2
O never

decrease with more predictors), but this is unlikely, because r2f
should always increase when predictors are added to themodel

(compare Equations 16 and 26).

We now generalize R2
LMMðmÞ to GLMMs. We have men-

tioned already that for non-Gaussian responses, it is difficult

to define the residual variance, r2e . However, it is possible to

define the residual variance on the latent (or link) scale,

although this definition of the residual variance is specific to

the error distribution and the link function used in the analy-

sis. In GLMMs, r2e can be expressed as three components:

(i) multiplicative dispersion (x), (ii) additive dispersion (r2e)
and (iii) distribution-specific variance (r2d) (detailed in Nak-

agawa & Schielzeth 2010). GLMMs can be implemented in

two distinct ways, either by multiplicative or additive disper-

sion; dispersion is fitted to account for variance that exceeds

or falls short of the distribution-specific variance (e.g. from

binomial or Poisson distributions). In this paper, we only

consider additive dispersion implementation of GLMMs

although the formulae that we present below can be easily

modified for the use with GLMMs that apply to multiplica-

tive dispersion. For more details and also for a review of

intra-class correlation (also known as repeatability) and heri-

tability, both of which are closely connected to R2 (see Nak-

agawa & Schielzeth 2010). When additive dispersion is used,

r2e is equal to the sum of the additive dispersion component

and the distribution-specific variance ðr2e þ r2dÞ, and thus, R2

for GLMMs can be defined as:

R2
GLMMðmÞ ¼

r2f
r2f þ r2c þ r2a þ r2e þ r2d

; eqn 28

where R2
GLMMðmÞ is variance explained on the latent (or link)

scale rather than original scale. This can be easily generalized

tomultiple levels:

R2
GLMMðmÞ ¼

r2f

r2f þ
Pu
l¼1

r2l þ r2e þ r2d

; eqn 29

where u is the number of random factors in GLMMs (or

LMMs) and r2l is the variance component of the lth random

factor. Equation 29 can be modified to express conditional R2

(i.e. variance explained by fixed and random factors).

R2
GLMMðcÞ ¼

r2f þ
Pu
l¼1

r2l

r2f þ
Pu
l¼1

r2l þ r2e þ r2d

: eqn 30

As one can see in Equation 30, conditional R2 (R2
GLMMðcÞ)

despite its somewhat confusing name can be interpreted as the

variance explainedby the entiremodel. Bothmarginal and con-

ditional R2
GLMM convey unique and interesting information,

andwe recommend they both be presented in publications.
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In the case of a Gaussian response and an identity link (as

used in LMMs), the linked scale variance and the original scale

variance are the same and the distribution-specific variance is

zero. Thus, (r2e þ r2d) reduces to r2e in Equations 29 and 30.

For other GLMMs, the link-scale variance will differ from the

original scale variance. We here present R2 calculated on the

link scale because of its generality: Equations 29 and 30 can be

applied to different families of GLMMs, given the knowledge

of distribution-specific variance r2d and a model that fits addi-

tive overdispersion (e.g.MCMCglmm;Hadfield 2010). Impor-

tantly, when the denominators of Equations 29 and 30 include

r2d (i.e. for GLMM), both types ofR2
GLMM will never become 1

in contrast to traditional R2 (see also Table 1). Table 2 sum-

marizes the specifications for binary/proportion data and

count data, which are equivalent to Equations 22–25. The

GLMM formulations presented in Table 2 for binomial

GLMMs were first presented by Snijders & Bosker (1999).

They also show that this approach can be extended tomultino-

mialGLMMswhere the response is categorical withmore than

two levels (Snijders & Bosker 1999; see also Dean, Nakagawa

& Pizzari 2011). However, to our knowledge, equivalent

formulas for Poisson GLMMs (i.e. count data) have not been

previously described (for derivation, see Appendix 1).

As a technical note, we mention that for binary data the

additive overdispersion is usually fixed to 1 for computational

reasons, as additive dispersion is not identifiable (see

Goldstein, Browne & Rasbash 2002). Furthermore, some of

the R2 formulae include the intercept b0 (like in the case

Poissonmodels for count data). In such cases,R2 values will be

more easily interpreted when fixed effects are centred or

otherwise havemeaningful zero values (see Schielzeth 2010; see

also Appendix 1). We further note that for Poisson models

with square-root link and a mean of Yijk <5, the given formula

is likely to be inaccurate because the variance of square-root

transformation of count data substantially exceeds 0�25
(Table 2; Nakagawa& Schielzeth 2010).

Related issues

While an obvious advantage of using R2
GLMM is its simplicity,

one drawback is that R2
GLMM does not provide information

regarding variance explained at each level in a manner that R2
1

and R2
2 do. This shortcoming may be remedied by providing

the proportion change in variance (PCV;Merlo et al. 2005a,b)

as Supporting information in publications. Using Equa-

tions 22–25, PCV at three different levels can be expressed as:

Cc ¼ 1� r2c
r2c0

; eqn 31

Ca ¼ 1� r2a
r2a0

; eqn 32

Ce ¼ 1� r2e
r2e0

; eqn 33

whereCc, Ca andCɛ are PCV at the level of groups, individ-

uals and units (observations), respectively, and r2c0 , r2a0 and

r2e0 are variance components from the intercept model

(i.e. Equation 22; PCV for additive dispersion, r2e0 can also be

calculated by replacing r2e with r2e þ r2d). Proportion change in

variance is in fact one of earliest proposed R2 measures for

LMMs (Raudenbush & Bryk 1986; Bryk & Raudenbush

1992), although it can take negative values (Snijders & Bosker

1994). We think, however, that presenting PCV along with

R2
GLMMwill turn out to be very useful, because PCVmonitors

changes specific to each variance component, that is, how the

inclusion of additional predictor(s) has reduced (or increased)

variance component at different levels. For example, if

Cc = 0�12, Ca = �0�05 and Cɛ = 0�23, the negative estimate

shows that variance at the individual level has increased (i.e.

r2a [r2a0). Additionally, we refer the reader to Hössjer (2008)

who describes an alternative approach for quantifying vari-

ance explained at different levels using variance components

from a singlemodel.

So far, we have only discussed random intercept models

(e.g. Equations 22) not random-slope models where slopes are

fitted for each group (usually along with random intercepts at

each level; see Schielzeth & Forstmeier (2009) highlighting the

necessity to fit random-slope models when the main interest is

on data-level fixed effect predictors). Snijders & Bosker (1999)

point out that calculating R2 like R2
1 and R2

2, it is easy to do so

for random intercept models, but for random-slope models is

tedious (as variance components for slopes cannot be easily

integrated with other variance components, e.g. Schielzeth &

Forstmeier 2009). Snijders & Bosker (1999) mention that R2
1

and R2
2 obtained from random-slope models are usually very

similar to those obtained from random intercept models,

where the same fixed effects are fitted. Therefore, we recom-

mend calculating R2
GLMM (both marginal and conditional)

from corresponding random intercept models for random-

slope models, although PCV should be calculated for the ran-

dom-slopemodels of interest.

Worked examples

We will illustrate how the calculation of R2
GLMM along with

PCV using simulated datasets. Consider a hypothetical species

of beetle that has the following life cycle: larvae hatch and grow

in the soil until they pupate, and then adult beetles feed and

mate on plants. They are a generalist species and so are widely

distributed. We are interested in the effect of extra nutrients

during the larval stage on subsequent morphology and repro-

ductive success. Larvae are sampled from 12 different popula-

tions (‘Population’; see Fig. 1). Within each population, larvae

are collected at two different microhabitats (‘Habitat’): dry

and wet areas as determined by soil moisture. Larvae are

exposed to two different dietary treatments (‘Treatment’):

nutrient rich and control. The species is sexually dimorphic

and can be easily sexed at the pupa stage (‘Sex’). Male beetles

have two different colour morphs: one dark and the other red-

dish brown (‘Morph’, labelled A and B in Fig 1), and morphs

are supposedly subject to sexual selection. Sexed pupae are

housed in standard containers until they mature (‘Container’).

Each container holds eight same-sex animals from a single

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution, 4, 133–142
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population, but with amix of individuals from the two habitats

(N[container] = 120; N[animal] = 960). Three traits are measured

after maturation: (i) body length of adult beetles (Gaussian

distribution), (ii) frequencies of the two distinct male colour

morphs (binomial or Bernoulli distribution) and (iii) the

number of eggs laid by each female (Poisson distribution) after

randommating (Fig. 1).

Data for this hypothetical example were created in R 2.15.0

(R Development Core Team 2012). We used the function lmer

in the R package lme4 (version 0.999375-42; Bates, Maechler

& Bolker 2011) for fitting LMMs and GLMMs. We modelled

three response variables (see also Table 3): (i) the body length

with a Gaussian error (‘Size models’), (ii) the twomale morphs

with the binomial error (logit-link function; ‘Morph models’)

and (iii) the female egg numbers with the Poisson error (log-

link function; ‘Fecundity models’). For each dataset, we fitted

the null (intercept/empty) model and the ‘full’ model; all mod-

els contained ‘Population’ and ‘Container’ as random factors;

we included an additive dispersion term (see Table 2) in Fecun-

dity models. The full models all included ‘Treatment’ and

‘Habitat’ as fixed factors; ‘Sex’ was added as a fixed factor to

the body size model. Two kinds of R2
GLMM and PCV for the

three variance components were calculated as explained above.

The results of modelling the three different datasets are sum-

marized in Table 3; all datasets and anR script are provided as

online supplements (Data S1-4).

In all the three model sets, some variance components in the

full models were larger than corresponding variance compo-

nents in the null models (e.g. r2a\r2a0). In Morph models, the

sum of all the random effect variance components in the full

model was greater than the total variance in the null model (c.f.

ðr2e þ r2aÞ\ðr2e0 þ r2a0); see above; Snijders & Bosker 1994).

All these patterns result in negative PCV values (see Table 3),

while R2
GLMM values never become negative. In Morph and

Fecundity models, R2
GLMMðmÞ values are relatively minor

(8–10%) compared with R2
GLMMðcÞ values. In Size models, on

the other hand, R2
GLMMðmÞ was nearly 40%. This was due to a

very large effect of ‘Sex’ in body size model; in this model, the

‘Treatment’ and ‘Habitat’ effects together accounted for only

c. 1% of the variance (not shown in Table 3). The variance

among containers in the null Size model was conflated with the

variance caused by differences between the sexes in the null

model, as ‘Sex’ and ‘Container’ are confounded by the experi-

mental design (single sex in each container; Fig. 1). A part of

the variation assigned to ‘Container’ in the null model was

explained by the fixed effect ‘Sex’ in the full model. Finally, it is

important to note that both ‘Treatment’ and ‘Habitat’ effects

were statistically significant in all the datasets in most cases

(five out of six). Much of data variability, however, resided in

the random effects along with residuals (additive dispersion)

and in the distribution-specific variance. Note that differences

between correspondingR2
GLMMðmÞ andR2

GLMMðcÞ values reflect
how much variability is in random effects. Importantly, com-

paring the different variance components including that of the

fixed factors within as well as between models, we believe,

could help researchers gaining extra insights into their datasets

(Merlo et al. 2005a,b). We also note that in some cases, calcu-

lating a variance component for each fixed factor may prove

useful.

Final remarks

Here, we have provided a general measure of R2 that we

label R2
GLMM. Both marginal and conditional R2

GLMM can

be easily calculated, regardless of the statistical package

used to fit the models. While we do not claim that R2
GLMM

is a perfect summary statistic, it is less susceptible to the

common problems that plague alternative measures of R2.

We further believe that R2
GLMM can be used as a quantity

of biological interest and hence R2
GLMM might be thought

of as being estimated from the data rather than calculated

for a particular dataset. The empirical usefulness of R2
GLMM

as an estimator of the explained variance should still be

tested in future studies. As with every estimator of biologi-

cal interest, it is desirable to quantify the uncertainty

around this estimate (e.g. 95% confidence interval, which

could be approximated by parametric bootstrapping or

MCMC sampling). As far as we are aware, such uncer-

tainty estimates have not been considered for traditional

Fig. 1. A schematic of how hypothetical datasets are obtained (see the

main text for details).
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R2. Perhaps, future studies can also investigate the useful-

ness of uncertainty estimates for R2
GLMM and other R2

measurements.

We finish with a cautionary note that R2 should not

replace model assessments such as diagnostic checks for het-

eroscedasticity, validating assumptions on the distribution of

random effects and outlier analyses. Above, we presented R2

with the motivation of summarizing the amount of variance

explained in a model that is suitable for the specific research

questions and datasets. It should only be used on models

that have been checked for quality by other means. It is also

important to realize that the R2 can be large due to predic-

tors that are not of direct interest in a particular study (Tjur

2009) such as the sex effect on body size in our example.

Despite these limitations, when used along with other statis-

tics such as AIC and PCV, R2
GLMM will be a useful summary

statistic of mixed-effects models for both biologists and other

scientists alike.
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Kvålseth, T.O. (1985) Cautionary note about R2. American Statistician, 39, 279–

285.

Liu, H.H., Zheng, Y. & Shen, J. (2008) Goodness-of-fit measures of R(2) for

repeated measures mixed effect models. Journal of Applied Statistics, 35, 1081–
1092.

Maddala, G.S. (1983) Limited-Dependent and Qualitative Variables in Economet-

rics. CambridgeUniversity Press, Cambridge.

Menard, S. (2000) Coefficients of determination for multiple logistic regression

analysis.American Statistician, 54, 17–24.
Merlo, J., Chaix, B.,Yang,M., Lynch, J.&Rastam,L. (2005a)Abrief conceptual

tutorial on multilevel analysis in social epidemiology: interpreting neighbour-

hood differences and the effect of neighbourhood characteristics on individual

health.Journal of Epidemiology andCommunityHealth, 59, 1022–1028.
Merlo, J., Yang, M., Chaix, B., Lynch, J. & Rastam, L. (2005b) A brief

conceptual tutorial on multilevel analysis in social epidemiology: investigating

contextual phenomena in different groups of people. Journal of Epidemiology

and CommunityHealth, 59, 729–736.
Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of

determination.Biometrika, 78, 691–692.
Nakagawa, S. & Cuthill, I.C. (2007) Effect size, confidence interval and statistical

significance: a practical guide for biologists.Biological Reviews, 82, 591–605.
Nakagawa, S.&Schielzeth,H. (2010)Repeatability forGaussian and non-Gauss-

ian data: a practical guide forbiologists.BiologicalReviews, 85, 935–956.

Orelien, J.G. & Edwards, L.J. (2008) Fixed-effect variable selection in linear

mixedmodels usingR2 statistics.Computational Statistics & Data Analysis, 52,

1896–1907.
Pinheiro, J.C. & Bates, D.M. (2000) Mixed-effects Models in S and S-Plus.

Springer, NewYork.

RDevelopmentCore Team (2012)R:ALanguage and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.

Raudenbush, S. & Bryk, A.S. (1986) A hierarchical model for studying school

effects. Sociology of Education, 59, 1–17.
Roberts, J.K., Monaco, J.P., Stovall, H. & Foster, V. (2011) Explained variance

in multilevel models.Handbook of AdvancedMultilevel Analysis (eds J. Hox &

J.K.Roberts), pp. 219–230. Routledge,NewYork.

Schielzeth, H. (2010) Simple means to improve the interpretability of regression

coefficients.Methods in Ecology and Evolution, 1, 103–113.
Schielzeth, H. & Forstmeier, W. (2009) Conclusions beyond support: overconfi-

dent estimates inmixedmodels.Behavioral Ecology, 20, 416–420.
Schielzeth, H. & Nakagawa, S. (2012) Nested by design: model fitting and inter-

pretation in a mixed model era. Methods in Ecology and Evolution, doi:

10.1111/j.2041-210x.2012.00251.x.

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics,

6, 461–464.
Snijders, T.A.&Bosker, R.J. (1994)Modeled variance in two-levelmodels.Socio-

logicalMethods &Research, 22, 342–363.
Snijders, T. & Bosker, R. (1999)Multilevel Analysis: An Introduction to Basic and

AdvancedMultilevelModeling. Sage, London.

Snijders, T. & Bosker, R. (2011)Multilevel Analysis: An Introduction to Basic and

AdvancedMultilevelModeling, 2nd edn. Sage, London.

Spiegelhalter, D.J., Best, N.G., Carlin, B.R. & van der Linde, A. (2002) Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society

Series B-StatisticalMethodology, 64, 583–616.
Tjur, T. (2009) Coefficients of determination in logistic regression models – a new

proposal: the coefficient of discrimination.American Statistician, 63, 366–372.
Vonesh, E.F., Chinchilli, V.P. & Pu, K.W. (1996) Goodness-of-fit in generalized

nonlinearmixed-effects models.Biometrics, 52, 572–587.
Xu, R.H. (2003) Measuring explained variation in linear mixed effects models.

Statistics inMedicine, 22, 3527–3541.

Received 10 July 2012; accepted 12 September 2012

Handling Editor: Robert B. O’Hara

Appendix 1

DERIVATION OF DISTRIBUTION-SPECIF IC VARIANCE

(r2d ) FOR POISSON DISTRIBUTIONS

When a random variable x is Poisson-distributed, the mean

and variance of x is respectively:

EðxÞ ¼ k; (A1)

varðxÞ ¼ k: (A2)

The distribution of ln(x) can be approximated by the natural

logarithm of a log-normal distribution. Then, the variance of

ln(x) can be approximated as:

varðlnðxÞÞ ¼ ln 1þ varðxÞ
EðxÞ2

 !
: (A3)

By substituting Equations A1 and A2 into Equation A3,

we obtain:

varðlnðxÞÞ ¼ ln 1þ k

k2

� �
: (A4)

Therefore,

varðlnðxÞÞ ¼ ln 1þ 1

k

� �
: (A5)

When we replace var(ln(x)) with r2d and k with exp(b0), we
obtain:

r2d ¼ ln 1þ 1

expðb0Þ
� �

: (A6)

Simulations (unpublished data, the authors) show that as E

(x) approaches 0, this approximation becomes unreliable.

Also, exp(b0) should be obtained either from amodel with cen-

tred or scaled variables (sense Schielzeth 2010), or an intercept-

only model while including all random effects. Note that the

former approach may be limited when a model includes cate-

gorical variables.
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