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Abstract

IMPORTANCE Postoperative complications can significantly impact perioperative care
management and planning.

OBJECTIVES To assess machine learning (ML) models for predicting postoperative complications
using independent and combined preoperative and intraoperative data and their clinically
meaningful model-agnostic interpretations.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study assessed 111 888
operations performed on adults at a single academic medical center from June 1, 2012, to August 31,
2016, with a mean duration of follow-up based on the length of postoperative hospital stay less than
7 days. Data analysis was performed from February 1 to September 31, 2020.

MAIN OUTCOMES AND MEASURES Outcomes included 5 postoperative complications: acute
kidney injury (AKI), delirium, deep vein thrombosis (DVT), pulmonary embolism (PE), and
pneumonia. Patient and clinical characteristics available preoperatively, intraoperatively, and a
combination of both were used as inputs for 5 candidate ML models: logistic regression, support
vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN).
Model performance was compared using the area under the receiver operating characteristic curve
(AUROC). Model interpretations were generated using Shapley Additive Explanations by
transforming model features into clinical variables and representing them as patient-specific
visualizations.

RESULTS A total of 111 888 patients (mean [SD] age, 54.4 [16.8] years; 56 915 [50.9%] female;
82 533 [73.8%] White) were included in this study. The best-performing model for each complication
combined the preoperative and intraoperative data with the following AUROCs: pneumonia (GBT),
0.905 (95% CI, 0.903-0.907); AKI (GBT), 0.848 (95% CI, 0.846-0.851); DVT (GBT), 0.881 (95% CI,
0.878-0.884); PE (DNN), 0.831 (95% CI, 0.824-0.839); and delirium (GBT), 0.762 (95% CI, 0.759-
0.765). Performance of models that used only preoperative data or only intraoperative data was
marginally lower than that of models that used combined data. When adding variables with missing
data as input, AUROCs increased from 0.588 to 0.905 for pneumonia, 0.579 to 0.848 for AKI, 0.574
to 0.881 for DVT, 0.5 to 0.831 for PE, and 0.6 to 0.762 for delirium. The Shapley Additive
Explanations analysis generated model-agnostic interpretation that illustrated significant clinical
contributors associated with risks of postoperative complications.

CONCLUSIONS AND RELEVANCE The ML models for predicting postoperative complications with
model-agnostic interpretation offer opportunities for integrating risk predictions for clinical decision
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Abstract (continued)

support. Such real-time clinical decision support can mitigate patient risks and help in anticipatory
management for perioperative contingency planning.
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Introduction

More than 10% of surgical patients experience major postoperative complications (eg, myocardial
infarction, infection, and blood clots),1-3 leading to increased mortality, increased need for a higher
level of care and management, increased length of postoperative hospital stay, and increased costs of
care.4 Although some of these postoperative complications are unavoidable because of patient and
surgical risk factors,5 others are modifiable and potentially preventable through early identification
of patient risk factors and administration of evidence-based treatment approaches (eg, timely
administration of antibiotics6,7 in postoperative care settings).8,9

Recent work has highlighted the potential of machine learning (ML) algorithms for predicting
postoperative complications. For example, FitzHenry et al10 used preoperative patient
characteristics and text-based clinical notes to predict 9 major postoperative complications.
Others11,12 have used a combination of preoperative and a set of descriptive intraoperative features
(eg, minimum and maximum of blood pressure values) for similar predictions. In a recent study, Fritz
et al13 proposed a novel deep learning algorithm that accounted for preoperative and dynamically
changing intraoperative data to predict 30-day mortality.

Although these studies10-13 show the potential for using ML algorithms, they have several
limitations. First, none of these studies10-13 explicitly separated preoperative and intraoperative data
for developing their analytic models. It is therefore difficult to ascertain whether and how
preoperative and intraoperative data independently contributed to prediction performance. Second,
prior studies12-14 have acknowledged the high variability of missing data among considered variables
and used various standard imputation techniques; however, it is not known how variables with
various missing rates can improve prediction performance. This limitation is especially important
given that missing data are common during surgery and can have a significant effect on classification
accuracy.15 Third, and most important, the use of model-agnostic interpretations has been limited16;
even when such methods have been used, these predictions have relied on statistical features as
opposed to clinically meaningful variables.

We focused on 5 postoperative complications in this study: acute kidney injury (AKI), delirium,
deep vein thrombosis (DVT), pulmonary embolism (PE), and pneumonia. These 5 complications
were selected because they are potentially modifiable during the postoperative period, primarily
through early detection and mitigation.17-23 These complications were identified to be relevant and
essential for postoperative care management in critical care surgical units based on a recent
stakeholder-based study.24

In this study, our objectives were 3-fold: (1) to compare the performance of various ML models
for predicting postoperative complications using preoperative data, intraoperative data, and
combined data for the postoperative complications; (2) to investigate the association of missing
input variables with prediction performance; and (3) to develop clinically meaningful, model-agnostic
interpretations to support clinical decision-making and care planning.

Methods

Setting and Data Sources
Data were obtained from the electronic anesthesia record (MetaVision, iMDSoft) for all adult patients
undergoing surgery at a large academic medical center during 4 years (June 1, 2012, to August 31,
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2016). Input data elements were extracted from the preoperative assessment record and anesthesia
record; the target outcomes related to postoperative complications were retrieved from the patient’s
electronic health record.13 Data analysis was performed from February 1 to September 31, 2020. The
institutional review board of Washington University School of Medicine in St. Louis approved the
study with a waiver of consent for this retrospective study. Data were not deidentified. Additional
details on study databases and on data extraction and processing are provided in in eAppendix 1 in
the Supplement and in the study protocol.25 This study used the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.

Outcome Variables
The target outcomes included 5 postoperative complications: AKI, delirium, DVT, PE, and
pneumonia. Among these complications, AKI was determined using a combination of laboratory
values (serum creatinine) and dialysis event records, and structured anesthesia assessments,
laboratory data, and billing data indicating baseline end-stage renal disease were used as exclusion
criteria for AKI. Acute kidney injury was defined according to the Kidney Disease Improving Global
Outcomes criteria. Delirium was determined from nurse flowsheets (positive Confusion Assessment
Method for the Intensive Care unit test result); pneumonia, DVT, and PE were determined based on
International Statistical Classification of Diseases and Related Health Problems, Tenth Revision
(ICD-10) diagnosis codes. Patients without delirium screenings were excluded from the analysis of
that complication.

Data and Data Processing
Input data were split into preoperative and intraoperative variables (Table 1). Preoperative variables
included patient characteristics that were available before the surgery, including demographics (eg,
age, race, and sex), medical history and acuity (eg, Charlson Comorbidity Index, smoking, and heart
failure), physiologic measurements (eg, blood pressure, pulse, and heart rate), and anesthesia type
and laboratory measurements (eg, albumin, white blood cells, and glucose). Intraoperative data were

Table 1. Variables Included in Model(s) and Corresponding Feature Extraction Strategies

Feature type Features Preprocessing
Patient characteristics

Continuous Age, height, weight, ideal body weight, and BMI Normalization (z score)

Categorical Sex, race, Charlson Comorbidity Index, functional capacity, ASA physical status, ASA
emergency status, anesthesia type, and surgery type

One-hot encoding

Categorical comorbid conditions Hypertension, coronary artery disease, prior myocardial infarction, congestive heart failure,
diastolic function, left ventricular ejection fraction, aortic stenosis, atrial fibrillation, prior
stroke or transient ischemic attack, pacemaker or implanted defibrillator, peripheral artery
disease, deep venous thrombosis, pulmonary embolism, diabetes, outpatient insulin use,
chronic kidney disease, ongoing dialysis, pulmonary hypertension, chronic obstructive
pulmonary disease, asthma, obstructive sleep apnea, cirrhosis, any cancer, gastroesophageal
reflux, anemia, positive Coombs test result, dementia, and ever-smoker

One-hot encoding if not binary

Continuous preoperative vital signs Systolic blood pressure, diastolic blood pressure, pulse oximeter, and heart rate Normalization (z score)

Continuous preoperative laboratory
values

Albumin, alanine phosphatase, creatinine, glucose, hematocrit, partial thromboplastin time,
potassium, sodium, urea nitrogen, and white blood cells

Normalization (z score)

Continuous intraoperative vital signs Systolic blood pressure (invasive and noninvasive), diastolic blood pressure (invasive and
noninvasive), mean arterial blood pressure (invasive and noninvasive), central venous
pressure, pulse oximeter, temperature, pulse, heart rate, urine output, seconds of
electroencephalogram suppression, bispectral index (including spectral edge frequency,
electromyographic, total power, and suppression ratio), hematocrit and blood tests of
potassium, glucose, base excess, partial pressure of carbon dioxide, blood loss, pH, partial
pressure of oxygen, and bicarbonate

Statistical feature extraction (minimum,
maximum, mean, entropy, energy,
correlation, kurtosis, skewness, and trend)
followed by z score normalization

Continuous intraoperative
ventilatory parameters

Ventilatory frequency, tidal volume, peak inspiratory pressure, positive end-expiratory
pressure, fraction of inspired oxygen, end-tidal anesthetic concentration, respiratory
minute volume, plateau pressure and expiratory and inspiratory concentration of
desflurane, sevoflurane, nitrous oxide, and isoflurane

Statistical feature extraction (minimum,
maximum, mean, entropy, energy,
correlation, kurtosis, skewness, and trend)
followed by z score normalization

Continuous intraoperative
medications and fluids

Dobutamine, norepinephrine, phenylephrine, epinephrine, and vasopressin Statistical feature extraction (minimum,
maximum, mean, entropy, energy,
correlation, kurtosis, skewness, and trend)
followed by z score normalization

Abbreviations: ASA, American Society of Anesthesiologists; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared).
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time-series variables (captured at 1-minute intervals) and included vital signs (eg, temperature, blood
pressure, and heart rate), ventilator settings (eg, tidal volume, inspiratory pressure, and ventilation
frequency), and medications (eg, norepinephrine, phenylephrine, and dobutamine). Details on data
processing are provided in eAppendix 1 in the Supplement; a description of data types and availability
rates of each variable can be found in eAppendix 2 in the Supplement.

Missing Data
For each preoperative variable, missing data were imputed using the dummy indication technique,
where missing fields were replaced by 0s, with indicator vectors representing missingness. For each
intraoperative variable, data were imputed using data-level or feature-level imputation. Data-level
imputation was applied when a patient had a partially missing time series (ie, the sampling intervals
were >1 minute or a data gap in some epochs); in such cases, the series was imputed using the mean
value. Feature-level imputation was applied when a patient had a completely missing time series
(eg, missing the whole temperature measurements); in such cases, the associated statistical features
were categorized as missing and replaced by 0s. Subsequently, a dummy indicator was used to flag
the missingness of such time-series variables. Other imputation methods, including fixed-value
imputation (mean, median, and mode) and modern imputation methods (missForest,26 k nearest
neighbor, and multiple imputation by chained equations27), were also investigated. Details on these
methods are provided in eAppendixes 2 and 3 in the Supplement.

Feature Engineering
To build a standardized feature space for each of the models, various feature engineering techniques
were applied to process the preoperative and intraoperative data (Table 2). One-hot encoding was
performed by splitting each categorical variable into binary features in preoperative data, whereas
continuous variables were normalized using z scores. The processing of intraoperative time series
entailed 2 steps: 9 statistical features were computed, including minimum, maximum, mean,
entropy, energy, correlation, kurtosis, skewness, and trend. Next, these statistical features were
normalized using z scores. We extracted 711 features from all clinical variables, including 125 features
from preoperative variables, 504 features from intraoperative variables, and 82 unique dummy
indicators.

ML Models
Both linear and nonlinear ML models were applied to the 3 data sets: the preoperative,
intraoperative, and combined data sets. Linear models included support vector machine and logistic
regression, and nonlinear models included random forest, gradient boosting tree (GBT), and deep
neural network (DNN). The support vector machine, logistic regression, and random forest models
were implemented using the Python Sklearn package.28 The GBT was implemented using the
Xgboost package,29 and DNN was implemented using TensorFlow.30 Code and configurations of ML
models are provided in eAppendixes 3 and 4 in the Supplement.

Model Performance and Evaluation
Because of the rare occurrence of certain complications (positive ratio <2% for DVT and <1% for PE)
(Figure 1), the model performance obtained from a random split of training and testing data may not
be generalizable. To develop an unbiased assessment of model performance, we performed 5
random shuffles of 5-fold cross-validation. Each iteration used a different stratified fold for model
evaluation, and the remaining folds were used for model training. At the training stage, rare events
were up-sampled, based on the positive event rate of each complication, with random replacement
using the Imblearn package,31 to produce a training data set with balanced positive and
negative labels.

Seven performance measures were recorded in each iteration, including the area under the
receiver operating characteristic curve (AUROC), the area under the precision recall curve, accuracy,
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Table 2. Characteristics of the Cohorta

Characteristic Finding (N = 111 888)

Age, mean (SD), y 54.4 (16.8)

Female sex 56 914 (50.9)

White race 82 533 (73.8)

Height, median (IQR), cm 170 (163-178)

Weight, median (IQR), kg 83 (69-100)

BMI, median (IQR) 28 (24-34)

Functional capacity, METS

<4 17 859 (16.0)

4-6 24 978 (22.3)

>6 3094 (3.0)

Missing 64 632 (57.8)

ASA physical status

1 6828 (6.1)

2 43 758 (39.1)

3 48 809 (43.6)

4 11 858 (10.6)

5 609 (0.5)

ASA emergency status 8544 (7.6)

Surgery type

Cardiac 3677 (3.3)

Otolaryngology 3186 (2.8)

General 6624 (5.9)

Gynecology 4077 (3.6)

Neurosurgery 3776 (3.4)

Orthopedic 10 416 (9.3)

Thoracic 2568 (2.3)

Urology 4889 (4.4)

Vascular 2669 (2.4)

Others 1825 (1.6)

Unknown 68 181 (60.9)

Hypertension 23 762 (21.2)

Coronary artery disease 7176 (6.4)

Prior myocardial infarction 3582 (3.2)

Congestive heart failure 4198 (3.8)

Atrial fibrillation 2664 (2.4)

Pacemaker or automated implantable cardioverter defibrillator 2061 (1.8)

Prior stroke or transient ischemic attack 1167 (1.0)

Peripheral artery disease 1920 (1.7)

Deep venous thrombosis 3597 (3.2)

Pulmonary embolism 1281 (1.1)

Diabetes mellitus 9331 (8.3)

Outpatient insulin use 7220 (6.5)

Chronic kidney disease 5945 (5.3)

Ongoing dialysis 3938 (3.5)

Pulmonary hypertension 2542 (2.3)

COPD 4311 (3.9)

Asthma 4882 (4.4)

Obstructive sleep apnea 6474 (5.8)

(continued)
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sensitivity, specificity, precision, and F scores. Models were compared in each data set using the
mean AUROCs from 5 × 5 iterations. For each complication, the best-performing ML model
(measured by its AUROC) was chosen.

Model Interpretation
We used the Shapley Additive Explanations (SHAP)32 for interpreting model predictions. SHAP is a
model-agnostic explanation technique that helps in interpreting the results from a predictive model.
The interpretation was based on the SHAP value for each feature, representing the contribution of
a feature to the predicted risk of a complication. A positive SHAP value indicated that the
corresponding feature contributes to a higher risk of the complication, whereas a negative SHAP
value indicated that the corresponding feature leads to a lower risk of that complication. The
magnitude of SHAP values represented the contribution of that feature toward prediction
performance.

Because ML features in models are not clinically meaningful, we transformed the SHAP values
from the ML feature space to the corresponding clinical variable space, so that every transformed
SHAP value mapped back to an original preoperative or intraoperative variable. For all categorical
variables, the SHAP values were calculated as the sum of the SHAP values of its one-hot encoded
features. For intraoperative time-series variables, the SHAP values were calculated as the sum of the

Table 2. Characteristics of the Cohorta (continued)

Characteristic Finding (N = 111 888)

Cirrhosis 585 (0.5)

Any cancer 12 211 (10.9)

Gastroesophageal reflux 15 543 (13.9)

Anemia 12 333 (11.0)

Positive Coombs test result 683 (0.6)

Dementia 316 (0.3)

Ever-smoker 63 797 (57.0)

Abbreviations: ASA, American Society of
Anesthesiologists; BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); COPD, chronic obstructive pulmonary
disease; IQR, interquartile range; METS, metabolic
equivalents.
a Data are expressed as number (percentage) of

participants unless otherwise indicated.

Figure 1. Flowchart of Complication Analysis and Cohort Split

111 888 Total surgery cases recorded (June 1, 2012-August 31, 2016)

711 Features extracted after imputation

DVTDeliriumAKI Pneumonia PE

106 870 AKI (positive ratio, 6.1%)
12 919 Delirium (positive ratio, 52.6%) 

111 888 DVT (positive ratio, 1.3%)
111 888 PE (positive ratio, 0.5%) 
111 888 Pneumonia (positive ratio, 2.1%) 

5 Random shuffles

First iteration

Second iteration

Third iteration

Fourth iteration

Fifth iteration

Training folds Testing fold

AKI indicates acute kidney injury, DVT, deep vein
thrombosis; PE, pulmonary embolism.
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SHAP values of each of its statistical features. When variables had missing data, the SHAP values
included the contribution of each of the dummy indicators.

We developed a pragmatic visualization for model interpretation at the patient level. This
visualization compared a patient (ie, any selected patient) with the cohort of patients who did not
experience the selected complication. The top 10 variables with highest SHAP values (ie,
corresponding to the most significant influence on the prediction) associated with the selected
patient were sorted and included to highlight key features. We depicted the following to support
practitioners’ model interpretation: (1) the accumulated risk with the each of the top 10 clinical
variables, measured by SHAP values and scaled to on a 0- to 1-point scale, with 0 indicating lowest
risk score and 1 indicating highest risk score, using a logistic function; (2) comparison of the risk
contributions of each of these top 10 clinical variables of the selected patient to the risk contributions
of the average patient not in that complication cohort; and (3) characterization of significant
intraoperative time series in terms of its statistical features.

Statistical Analysis
Two different analyses were conducted. In the first analysis, we used 3 data sets: preoperative data,
intraoperative data, and the combination of both data sets. We used the features in each data set
for model training and testing. In the second analysis, we evaluated improvements in predictive
performance by incorporating variables with various missing rates. All features were sorted in
ascending order of their missing rates. We started using features that were available for all patients
(ie, complete case analysis with overall missing rate of 0%); then we added more features (ie, ones
with missing data) and recorded the predictive performance with respect to the overall missing rates
and the number of features.

Results

A total of 111 888 patients (mean [SD] age, 54.4 [16.8] years; 56 915 [50.9%] female; 82 533 [73.8%]
White) were included in this study. (Table 2). The mean duration of follow-up was based on
postoperative length of stay (mean [SD], 11.138 days). The resulting data sets contained 106 870
patients with AKI (positive event rate, 6.1%), 12 919 with delirium (positive event rate, 52.6%),
111 888 with DVT (positive event rate, 1.3%), 111 888 with PE (positive event rate, 0.5%), and 111 888
with pneumonia (positive event rate, 2.1%) (Figure 1). The positive event rates were held consistent
in each train-test split.

Model Performance
Of the considered ML models, the best-performing models were GBT for pneumonia, AKI, DVT, and
delirium and DNN for PE. The AUROCs for these models were as follows: 0.905 (95% CI,
0.903-0.907) for pneumonia, 0.848 (95% CI, 0.846-0.851) for AKI, 0.881 (95% CI, 0.878-0.884)
for DVT, 0.831 (95% CI, 0.824-0.839) for PE, and 0.762 (95% CI, 0.759-0.765) for delirium
(Figure 2A; see eAppendix 5 in the Supplement for detailed performance metrics, including area
under the precision recall curve, accuracy, sensitivity, specificity, F score, and precision). We further
compared the prediction performance of various imputation methods on the pneumonia data set
and found that the dummy indication technique achieved the best performance (see eAppendix 3 in
the Supplement for detailed comparisons).

Across all complications, the predictive performance using only the preoperative data set was
better than using only the intraoperative data set; the combined data set had the best performance
for all complications. However, models with only the preoperative data set performed nearly as well.
The difference in AUROC between the combined and preoperative-only data sets were 0.019 for
pneumonia, 0.032 for AKI, 0.016 for DVT, 0.009 for PE, and 0.002 for delirium (Figure 2B).

When adding features with greater missing rates, there was a consistent increase in the AUROC:
0.588 to 0.905 for pneumonia, 0.579 to 0.848 for AKI, 0.574 to 0.881 for DVT, and 0.6 to 0.762 for
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delirium (Figure 2C). The predictive performance for all outcomes flattened when the number of
features was greater than 400 (Figure 2D).

Model Interpretation
To highlight the clinical utility and translational impact of such predictions in perioperative care, we
present a case example of a patient with a positive predicted risk for pneumonia.

A 65-year-old patient with fever, a history of chronic obstructive pulmonary disease, heavy
smoking, and elevated liver enzymes is admitted for an open pneumonectomy. An epidural is
placed preoperatively. The patient is given a moderate dose of phenylephrine intraoperatively
(maximum dose, 0.8 μg/kg per minute) and 2.5 L of crystalloid fluids, and a right chest tube is
placed. The patient is extubated in the operating room and transferred to the intensive care unit
with a high-flow face mask (9 L of oxygen).

A patient undergoing pneumonectomy is at high risk for pulmonary complications,33 including
pneumonia. For this patient, the ML model predicted the patient to be at risk for pneumonia. Using
the best-performing GBT model (cross-validated AUROC, 0.905, overall accuracy on validation data

Figure 2. Results of Machine Learning Models
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D, AUROCs with varied number of features. AKI indicates acute kidney injury; DVT, deep
vein thrombosis; PE, pulmonary embolism. The error bars indicate 95% CIs.
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set, 94.1%), we illustrate the complication-specific interpretation, depicting the risk contributors to
pneumonia. As shown in Figure 3, the key contributors to the model prediction were the patient’s
anemia (hematocrit) and low body mass index, attributed to their chronic condition; elevated white
blood cell count, a possible reflection of baseline infection; and tidal volume and respiratory rate
signals, a potential reflection of the transition to single-lung ventilation.

Although these features are not meant to be necessarily causal or modifiable, in this example,
the ML output explanations highlight the relevant features associated with pneumonia. These
insights after surgery can inform appropriate clinical actions in the intensive care unit, including early
mobilization, pulmonary hygiene with a respiratory therapist (eg, incentive spirometry), scheduled
bronchodilators, continuing epidural analgesia, supplemental oxygen, close monitoring, and a low
threshold for antibiotic therapy. When compared with a cohort of patients that did not develop
pneumonia, 9 of the 10 clinical variables with the highest SHAP values (ie, variables that contributed
most to the risk) classified the patient to be at risk for pneumonia. The addition of these top 10
clinical variables increases the overall risk of getting pneumonia from 0.500 to 0.920 (calculated by
the scaled SHAP values).

Additional types of visualizations are provided in eAppendix 6 in the Supplement. Model
interpretation in the cases of false-positive, false-negative, true-positive, and true-negative
predictions are presented for each outcome in eAppendix 7 in the Supplement.

Figure 3. Complication-Specific Model Interpretation
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Discussion

This cohort study used a ML approach with preoperative and intraoperative surgical data, both
independently and in combination, to predict the occurrence of postoperative surgical
complications. Gradient boosting tree achieved the best predictive performance for pneumonia, AKI,
DVT, and delirium, and DNN had the best predictive performance for PE. This superior performance
of GBT and DNN is indicative of the complexity of input space, where simple linear algorithms (eg,
logistic regression and support vector machine) were not able to capture important patterns for
prediction.

Prior studies11,13,34,35 have used the available data en masse without accounting for the time of
data availability in the perioperative continuum. For example, certain clinical variables are available
before the surgery, including laboratory results, demographic characteristics, and patient clinical
characteristics. Characterizing the time of availability of specific clinical data elements can help make
predictions about the patient’s potential clinical trajectory. For ascertaining the predictive capabilities
at the preoperative phase and the immediate postoperative phase, separate models that used
preoperative, intraoperative, and combined data sets were developed.

Given that the predictive performance of the models using the combined data set was only
marginally better than those with only the preoperative data, there is potential utility of these models
in multiple surgical scenarios. For example, these models can be generated for preoperative
predictions (using data available before surgery) and postoperative complication predictions (either
with the combined data set when available or with only intraoperative data for off-hour unplanned
patient operations without preoperative data). Practitioners can use these predictions to develop
perioperative care management goals and care plans. For example, practitioners can highlight the
postoperative risks for patient complications during handoff communication between the operating
room and a critical care unit, which can help formulate a contingency plan based on identified risks
and the associated factors identified from the model interpretations.

Previous studies12-14 have not explicitly addressed the effect of missing values on predictive
performance. In the present analysis, missing variables were systematically included in the modeling
approach to evaluate the associations of missingness with predictive performance. The results of
this study demonstrated that the inclusion of missing variables improves prediction performance;
however, the performance improvement reached an asymptote for all complications with a large
number of features.

This study explored a model-agnostic interpretation technique for describing potential clinical
factors that contribute to postoperative complications. Although the model interpretation
techniques developed in the ML community were primarily targeted at data scientists, this study
extended the interpretation techniques to facilitating meaningful use in clinical communication, such
as for patient handoff communication. As opposed to estimating the contributions of features
extracted from the original clinical data, this study used a systematic approach that maps the
features extracted from both preoperative and intraoperative variables back to the clinical variable
space to generate clinically meaningful interpretation. Leveraging SHAP-based analysis, this study
generated a visualization format for interpreting patient-associated risks based on the clinical
variables. By highlighting significant clinical variables (ie, interpretations) that contribute to the risk
predictions, such visualization can assist practitioners in preemptive and early identification of key
factors, including modifiable ones, that contribute to patients’ risk of developing a complication.
Practitioners can use such insights to quickly identify potential factors that contribute to a
complication risk and decide the evidence-based treatment protocols to mitigate such risks.

Furthermore, as highlighted by the case example, the prediction algorithm can be valuable in
validating or assisting practitioners in ascertaining the risk of postoperative complications,
highlighting additional clinical nuances that may explain these risks (which may have been previously
omitted), and providing cognitive support to augment postoperative proximal practitioner decisions.
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Limitations
This study has limitations. First, the surgical patient data were obtained from a single hospital.
Second, several variables were not accounted for in the models, including planned surgical
description, length of surgery, key intraoperative variables (eg, blood transfusion data, and urine
output), and commonly used vasopressors, inotropes, and certain medications used during surgery
specified by consultants,13 which potentially could affect the model performance. Third, subgroup
analysis based on the various surgery types was not conducted because of the small number of
patients within each subgroup; hence, the clinical utility of the predictions of postoperative
complications based on specific surgery types is limited. Fourth, the target outcomes (except AKI)
were identified using administrative data (eg, ICD-10–based discharge diagnosis codes) and were not
verified using manual health record reviews. The validity of the outcomes determined by automated
health record review has previously been compared with manual record review and patient-
reported outcomes.36 Similar to another report,37 this previous study36 found large positive
likelihood ratios with moderate sensitivity. Another study38 found that practitioners and coders have
substantial disagreement, largely around the severity of a complication. Others39,40 have found
medium to high sensitivity (70%) for ICD-10–based detection of in-hospital pneumonia and DVT. To
address this limitation, the current ongoing work involves data triangulation across the
administrative data, clinical text, and other data to align with high-quality manual health record
review provided by National Surgical Quality Improvement Program adjudicators. Fifth, state-of-
the-art model interpretation approaches, including SHAP and its alternatives,32,41,42 do not consider
the dependencies between features and inevitably introduce a correlation bias.32,42,43

Conclusions

These findings suggest that the proposed ML framework for predicting postoperative complications
with model-agnostic interpretation affords opportunities for implementing and integrating ML
output in real-time clinical decision support systems and anticipatory management tools for
practitioners to support their postoperative care planning and resource management.
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