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Introduction 
Experimentation is the manipulation of controllable factors (independent variables) at 

different levels to see their effect on responses (dependent variables) in the face of 

noise (noise is referred to as unit structure in this paper). In the context of this paper, 

experimentation is done with the intent of understanding causality represented by the 

symbolic model Y=f(x). Some experimental designs, such as randomized complete 

block designs, are more effective in understanding both design factor effects and noise 

effects.  The efficiency and effectiveness of an experimental design is a function of how 

noise is handled during the experiment. Noise is the set of factors one is unwilling to 

manage or control.  This may be for reasons of convenience, difficulty or cost. 

Robustness is the consistent performance of products or processes in the face of 

changing noise. In order to understand robustness, noise must be included and must 

vary in the experimental studies (i.e., not held constant). The identification and 

understanding of noise is an opportunity to increase the robustness of products and 

processes. 

There are a number of ways to estimate or manage noise during the execution of an 

experiment. Tests of significance (e.g., F-test) are comparisons between the factors 

explicitly manipulated in an experiment (herein referred to as design factors) and the 

factors that change during the experiment but are NOT explicitly manipulated (herein 

referred to as unit structure). The recommended strategy is to partition the unit structure 

in some sensible way to allow for better precision in detecting design factor effects and 

also to allow for estimation of the noise effects. This needs to be done while not 

compromising the ability to extrapolate the results (i.e., negatively affecting the 

inference space of the study). A host of techniques such as blocking, efficiency split-

plots, cross-product arrays and nesting are effective at accomplishing this.  Selection of 

which technique to use is dependent on the situation. 

The focus of this paper will be on three fundamental strategies to handle noise in a 

designed experiment: repeats, replicates and split-plots.  These approaches will be 

illustrated with a hypothetical situation where two variables (X1 and X2) are the factors 
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manipulated in a designed experiment.   

The intent is to:  

• clarify the differences in strategies,  

• describe the mechanics of using each strategy,  

• explain how each strategy estimates the effect of noise, 

• provide guidance as to when each strategy is applicable, and 

• demonstrate the differences with a data set. 

 

The target audience for this paper is individuals applying experimentation to the fields of 

science and engineering. 

 

Conceptual Overview 
Designed experiments (e.g., factorials) are powerful tools to understand factor effects.  

In designed experiments, factors (x’s) are manipulated at multiple levels to quantify their 

effect on response variables (Y’s) in an attempt to understand the causal relationship 

between the factors and the responses.  This relationship is often expressed as a 

polynomial, Y = f(x) + N1. Noise can have a significant influence on the effectiveness of 

experiments.   

 

To illustrate the impact of unit structure on detecting factor effects, imagine the noise is 

analogous to the water level of a lake (figure 1, shown in red).  The factor effects are the 

change in Y represented by black lines emanating from the bottom of the lake.  To 

determine whether the design factors are significant, the effects of the design factors 

are compared to the estimated effect of the unit structure represented by the red line.  

As the water level rises as a function of the unit structure, the ability to detect the factor 

effects (referred to as precision) is compromised. 

 
  

 
1 For experimental design, noise is referred to as unit structure 
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Figure 1: Graphic Representation of Unit Structure and Design Factor Effects 
 

 

 
 
 
 
 
 
 
 
 
 
Y 
 
 
 
 
 
 
 X1 X2 X3 X4 X5 X6 
 

In figure 1, only factor X4 would be considered to have a significant effect on Y.  The 

other factor effects are concealed by the unit structure.  Since significance is a result of 

the comparison between unit structure and design structure, there are two ways to show 

significance: reduce the unit structure effects or increase the design factor effects 

typically accomplished by manipulating the design factors at “bold” level settings.  The 

different approaches to reduce the unit structure effects will be discussed. 

 

A commonly acceptable thought is to vary one factor while holding all other factors 

constant.  While this approach is significantly flawed, it has the effect of reducing the 

noise in the experiment and thus increases the precision for estimating the factor effect 

(figure 2).  This is referred to as one-factor-at-a-time experimentation or OFAT for short.   

  

True Unit Structure Effect 

Design Factor Effects 
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Figure 2: Graphic Representation of the Unit Structure and the Design Factor Effect in 
an OFAT 

 
 
 
 
 
 
 
 
 
 
 
 
Y 
 
 
 
 
 
 
 
    X1   
 

The OFAT methodology has some extremely negative issues and consequences: 

ü Unable to estimate the effects of changing one factor while other factors are 

changing.  Since results are obtained when all factors are fixed, the inference 

space is extremely narrow and unrealistic.  This has a negative effect on the 

ability to extrapolate the results into the future. 

ü Unrealistic and unreasonable to hold all factors constant while changing one. 

ü Inefficient and costly.  Requires more resources. 

ü Potential sub-optimization.  Factors are “locked” in based on the levels of other 

factors that have yet to be optimized. 

ü Impossible to identify & quantify interaction effects. 

 

The critical question: how can the precision of detecting factor effects be increased 

while not negatively impacting the inference space? 

Unit structure as a result of 
restricting the inference space 

True Unit Structure Effect 

Factor Effect, 
even a small 
effect is 
considered 
significant 
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Planning Tools & Strategies 
The Factor Relationship Diagram2 (FRD) is a graphical schematic tool for displaying the 

relationship between manipulated (design factors) and un-manipulated factors (unit 

structure). Note both types of factors are potential sources of variation. The FRD keeps 

track of partitioning of the unit structure and the degrees of freedom.  It is used to: 

• plan the experiment by visualizing the potential comparisons between the 

different sources of variability in the study, and  

• guide the analysis revealing the appropriate comparisons to make.  

An FRD will have design factors, unit structure (US) and at least one line of restriction 

(LOR)3. It will also include the model assigning the degrees of freedom to each partition 

of the unit structure. 

The design factors are shown in black and their levels are coded equidistant, centered 

on zero (e.g., for two level designs: -1 & +1 or - & +).   

The unit structure is the noise related to the experiment. The unit structure is red and 

coded using whole numbers to show whether the noise is constant or varying4.  The unit 

structure shows: 

1. Noise held constant during the experiment. Conditions under which the 

experiment is run (i.e., inference space) which impacts the ability to extrapolate 

the results, and 

2. Noise that varies during the execution of the experiment.  This is represented by 

the word treatment5 in the FRD.  This is what the design factors will be compared 

against to determine the significance of their effects (the water level in figure 1). 

Lines of restriction are shown in green and are used to show: 

1. Partitioning of the unit structure. Subdividing the noise into smaller “chunks”. 

2. Partitioning of the degrees of freedom for analysis.  Necessary to determine the 

appropriate model and comparisons to make. 

Solid lines of restriction partition both unit structure & degrees of freedom; dashed lines 

of restriction partition only the unit structure. 

 
2 Sanders, Doug and Jim Coleman (1999), “Considerations Associated with Restrictions on Randomization in Industrial 

Experimentation”, Quality Engineering, Volume 12, No. 1 
3 The phrase comes from restrictions on randomization. 
4 The exception to this is when the noise is manipulated (e.g., Blocks or split-plots).  Then the coding is -1 & +1 or - & + 
5 Treatment represents the entirety of the set of unit structure  potentially changing for each set of factor combinations 
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Strategy 1: Repeats 
Multiple data points are collected for the same treatment where the treatment 

combinations are not changed between those data points. The data points could be 

multiple measures of the same location on the same sample (indicative of measurement 

error), multiple measures at different locations on the same sample (indicative of within 

sample variation), multiple samples made consecutively (indicative of sample-to-sample 

variation), etc. The data points are nested within treatments. Data points from repeats 

are not considered independent events and therefore do not increase the degrees of 

freedom in the study.  

The benefit of such a strategy is the ability to: 

• assess within treatment stability, and  

• estimate and analyze response variables for the mean and variation.   

Averaging the measures of repeated units reduces the variation of the within treatment 

component.  This will decrease the level of unit structure the factors will be compared to 

and increase the precision.  The variation of the repeated units may be quantified (e.g., 

range, standard deviation, variance, etc.) and will quantify the effect of the unit structure 

within treatment.  This response variable is extremely useful in determining factors that 

affect variability.  Both the mean and the variation can be analyzed as responses of the 

experiment.  Models: 

y̅ = X1+X2+X1X2 
ys = X1+X2+X1X2 

Figure 3: FRD for Repeats (measurements nested in treatments)  

 

 

- + X1 

X2 

Material lot 1 

- + - + 

Part Number 1 

1 2 3 4 5 6 7 8 Measurement 

Treatments 1 2 3 4 
Ambient Conditions 

1 2 3 4 

DFT=3 

y̅ = X1+X2+X1X2 
ys = X1+X2+X1X2 
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In this situation, the x’s associated with the measurement system are partitioned from 

the treatments thereby reducing the variation due to unit structure the treatments will be 

compared to.  This will increase the precision of the design factors (e.g., reduce the 

level of the unit structure).  It is worth noting multiple “layers” of repeats can be made for 

assessing and separating within treatment components of variation. 

 
Strategy 2: Replicates 
Multiple, independent, Experimental Units (EU’s) are created for each treatment 

combination.  Treatment combinations change between each experimental unit (each 

treatment requires breakdown and set-up).  This will increase the amount of unit 

structure in the experiment (e.g., ambient conditions, lots of raw material, multiple 

machines, other factors one is not willing to manage) and the degrees of freedom 

available.  Three scenarios: 

1. Completely Randomized Replicates (CRR).  The run order is randomly selected.  

Since the treatments are randomly selected, it is not possible to assign the unit 

structure.  Therefore an unassigned error term is added to the model. Model: 

y = X1+X2+X1X2+ e 

The benefit of such a strategy is: 

• Theoretically, an unbiased estimate of the effect of unit structure may be gotten 

during the experiment (pure error).  This may be used as a basis for comparison 

in analysis (e.g., mean square error in ANOVA).   

• Having unassigned degrees of freedom allows some flexibility in adding random 

variables to the model (e.g., measurable noise factors called covariates).   

The disadvantages are:  

• It is unknown what the factor effects are being compared to (they are un-

assignable due to the nature of how they were obtained), and 

• Specific identification and assignment of the noise factors cannot be 

accomplished.  Therefore when the error is large it is difficult to know which 

factors to work on for further improvement opportunities. 

• There is a potential for the unit structure to have a large effect and therefore 

reduces the precision of detecting design factor effects. 
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Figure 4: FRD for CRR 

 
 

The inference space is much broader than OFAT having a positive impact on the 

ability to extrapolate the results.  The unit structure effect is greater between 

treatments decreasing the ability to detect factor effects (the unit structure level is 

higher). This strategy is most useful when the noise has not been identified and 

therefore cannot be partitioned or assigned. 

 

2. Randomized Complete Block Design (RCBD).  First introduced by Sir Ronald 

Fisher, blocking combines the object of reducing the effect of unit structure to 

increase the precision (within block) while NOT negatively impacting the inference 

space (the changing unit structure is still contained in the experiment).  Figure 5 

depicts the effect blocking has on unit structure in an experiment. 

 

Blocks are created by first identifying the unit structure using tools such as the 

Process or Product Map6 and the Thought Map7.  Once identified, the unit structure 

may be controlled or sampled over during the experiment.  It is held or remains 

constant within the block, and is allowed to vary or is explicitly changed between 

the blocks. Blocks are aliased with unit structure:  lots of raw material, machines, 

shifts, ambient conditions, etc.  

 
 

6 Sanders, Doug, W. Ross, and J. Coleman (2000), “The Process Map”, Quality Engineering, Vol. 11, No. 4,. 
7 Hild, Cheryl, D. Sanders (2000) “The Thought Map”, Quality Engineering, Vol. 12, No. 1. 
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Figure 5: Graphic Representation of Unit Structure and Factor Effects with Blocks 
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The benefit of such a strategy is: 

• better precision (lowers the unit structure level within block),  

• the ability to estimate all block and block-by-factor interaction effects, and 

• increased inference space. 

This doubles the size of an un-replicated experiment, but is a superb strategy for 

the estimation of noise-by-factor interactions as it does this with increased precision. 

Unit Structure within Block 

True Unit Structure Effect 

Block Effect 
due to unit 
structure 
changing 
between block 

Factor Effects 
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The block degree of freedom is partitioned from the other degrees of freedom 

reducing the unit structure used as a basis to compare the design factor effects to 

and increases the precision of estimating noise-by-factor interaction effects 

improving the ability to create robust products and processes.  

Model: 

y = X1+X2+X1X2+B+BX1+BX2+BX1X2 

 
Figure 6: FRD for RCBD 

 

 

In this situation, material lot is included in the experiment thereby increasing the 

inference space (there is increased confidence the results will hold true as lots 

change).  In addition, the ambient conditions are confounded with the block not with 

the treatments.  This decreases the unit structure between treatments and thus 

increases the precision.  The added benefit of the RCBD is the block-by-factor 

interactions occur with the design structure so they are estimated with increased 

precision.  The ability to estimate noise-by-factor interactions is required for robust 

design. 

 

3. Randomized Incomplete Block Designs8 (RIBD).  RIBD are fractional blocks.  

They achieve much of what a RCBD does in terms of inference space and ability to 

assign the block effect, but instead of running the entire experiment twice, two 

different orthogonal fractions are run. An incomplete block is created by aliasing the 

block with one of the degrees of freedom in the experiment, most likely a higher 
 

8 Aka, Balanced Incomplete Block (BIB) 
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X1 

X2 
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+ 
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DF=1=B 

DF=6=X1+X2+X1X2+BX1+BX2+BX1X2 

DFT=7 
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order term (the same procedure for aliasing a main effect with an interaction to 

fractionate a factorial design).  When this is done, the result is additional 

confounding (in this case block-by-factor interactions are aliased with other factor 

effects).  This would be useful in quantifying the effect of the chunk of unit structure 

variables for potential disaggregation later.  In other words, future opportunities for 

improvement of the model.   

Model: 

y = X1+X2+B 

Figure 7: FRD for RIBD 

 
 

In this situation, the benefits of increased inference space and increased precision 

are obtained, but the noise-by-factor interactions are now aliased with design factor 

effects (in this case the X1*X2 interaction).  This strategy is most useful for 

manufacturing processes where the block is a surrogate for a set of x’s currently not 

managed.  If the block effect is large, the block is studied (disaggregated) to identify 

x’s that will likely improve the process. 

 
Strategy 3: Split-plots 
Split-plot experiments can be seen as a practical and appropriate way to deal with 

certain situations that preclude randomization. The run order is executed by changing 

the subplot (SP) factor(s) while the whole plot (WP) factor(s) remains constant.  Then 
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the WP factor(s) is changed and the treatments replicated.  This minimizes the number 

of times the whole plot factor(s) is changed.   

 

There are two distinctly different reasons to restrict randomization. The runs of an 

experiment might be made in a split-plot fashion due to: 

1. The desire to partition the unit structure and therefore manage the precision of 

the design structure (i.e., Efficiency Split-plot, figure 8): 

• Desired precision of design structure varies (e.g., design factors may interact 

with the noise and there is interest in noise-by-factor interactions) 

• Unit structure needs to be partitioned to increase design factor precision.  The 

partitioning of the unit structure allows for greater precision when evaluating 

the design structure. 

  
 Figure 8: FRD for Hypothetical Efficiency Split-plot Design 

 

2. Physical or economic reasons (i.e., Convenience Split-plot, figure 9): 

• One (or more) of the factors to be investigated is hard or expensive to 

change (it is not noise).  This 'hard to change" factor(s) will be designated the 

WP.  The other factors will make up the SP. 

• The experimenter wishes to make the experiment easier to execute. 

• If the unit structure is significantly partitioned, there will be a negative effect on 

the precision of the whole plot. In this case, it would NOT be desired to have a 

significant partitioning of the unit structure thereby not diminishing the 

precision of the whole plot.   
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Unit Structure 1 2 3 4 

X3 - + - + - + - + 

DFWP=3 
WP=X1+X2+X1X2 

DFSP=4 
SP=X3(1+WP) 

DFT=7 
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For convenience split-plots, the information about the whole plot factor(s) is subject 

to different unit structure due to the minimized number of changes. For quantitative 

analysis, the whole plot error (rather than the mean square error of the subplot) 

should be used to determine whether the whole plot factor had a statistically 

significant effect.  This requires replication. Replication of the runs at the whole plot 

level is necessary to have any information about the whole plot error and therefore 

a quantitative test of significance. 

 
 Figure 9: FRD for Hypothetical Convenience Split-plot Design 

 

 

Example scenarios 9 :  For the following illustration, consider a situation where the 

product is a sauce added to food.  The response variable of interest is the taste of the 

sauce. The design factors for the recipe include amount of Vinegar, variety of Peppers 

and type of Secret ingredient.  The unit structure includes Time and temperature of the 

cooking process (these are noise to the designer of the recipe). 

 
1. A split-plot arrangement where the Noise matrix is the WP and the design factors 

create the subplots (SP factors), figure 10.   

 

  
  

 
9 Cross-product or Inner-Outer arrays 
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Figure 10: FRD Unit Structure in the Whole Plot 

 
 

2. A split-plot arrangement where the design factors are in the WP and the Noise 

variables create the SP, figure 11. 

 Figure 11: FRD Noise in the SP 

 
 

3. Fractional split-plots using split-plot confounding10 – an arrangement where the 

unit structure “matrix” (SP) is fractionated and two orthogonal fractions are run.  

The fractional SP’s are confounded with the higher order interaction in the WP 

(SPV=Tt), figure 12. 

 
10 Split-plot confounding occurs when a fractional split-plot is run using two different fractions. 
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Vat cond. 1  2 3  4 5  6 7 8 9  10 11 12  13 14  15 16   17 18  19 20  21 22  23 24  25 26  27 28  29 30  31 32 
Within Lot 1  2 3  4 5  6 7 8 9  10 11 12  13 14  15 16   17 18  19 20  21 22  23 24  25 26  27 28  29 30  31 32 
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1    2    3    4 Noise 
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Batch 1  2  3  4  5  6  7  8 

Set-up 1  2             3          4           5 6      7 8 
Vat cond.  1         2             3          4           5 6      7 8 
Within Lot 1         2             3          4           5 6      7 8 
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 Figure 12: FRD Noise is fractionated in the SP 

 

 

Case Study Example: Viscosity of a Sauce 
The following example will illustrate the differences in the strategies previously 

considered. In this example an experiment is run to understand the effect of three 

design factors on the viscosity of a sauce.  A process map used to identify the noise 

and design factors of the batch process is shown in figure 8.  

Figure 8: Map of the Sauce Making Batch Process 

 
The factors to be manipulated in the experiment are: 

S:  Speed of agitator 
T:  Time for cooking the batch 
H:  Temperature of the batch 

The Y of interest in this study is the viscosity, measured in centipoise.  Table 1 contains 
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  1 -1 -1 1 -1 1  1     -1 -1 1 1     -1  1    -1 -1 1 

-1  1  -1  1  -1  1  -1  1 

-1    1    -1    1 

-1           1 

Batch 1  2  3  4  5  6  7  8 

Set-up 1  2             3          4           5 6      7 8 
Vat cond.  1         2             3          4           5 6      7 8 
Within Lot 1         2             3          4           5 6      7 8 
Var. 
Prep. 1         2             3          4           5 6       7 8 

Treatment    1        2          3       4        5     6         7       8         9      10         11       12        13     14         15       16 
 

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 

DFWP=7 
WP=S+P+V+SP+SV+PV+SPV 
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DFtotal=15 



Sigma Science: Fundamental Strategies to Handle Noise In DOE 16 
     

011418  ©Sigma Science Inc. 

 

the matrix for the factors showing two experimental units for each treatment for a total of 

16 experimental units.  These results will be evaluated using several of the scenarios 

already discussed. 

Table 1: The Design Factor Matrix and the Results of the Experiment 

S T H             Y             Y 
 -1  -1  -1 6391 6429 

1  -1  -1 6329 6395 
 -1 1  -1 6276 6310 

1 1  -1 6245 6305 
 -1  -1 1 6090 6124 

1  -1 1 6067 6106 
 -1 1 1 6058 6095 

1 1 1 6044 6097 
 
Scenario 1: Repeats 
The first scenario is the strategy where the two data points are two samples of the batch 

created by the 8 treatments.  
Figure 10: FRD Repeats 

 
 

For repeats, the within batch and measurement system components of variation are 

partitioned (separated) from the treatments.  As a note, the repeated measures could 
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T 

H 

Within Batch 

Vat          1 
Season         1 
Type         1 
Process         1 

 1 2  3 4  5 6  7 8 9    10 11    12 13   14 15   16 

-1  1  -1  1  -1  1  -1  1 

-1    1    -1    1 

-1           1 

Batch 1  2  3  4  5  6  7  8 

Set-up 1  2             3          4           5 6      7 8 
Vat cond. (time, 
Scrub, technique)  1         2             3          4           5 6      7 8 
Mat’l Lot (supplier, 
Location, type) 1         2             3          4           5 6      7 8 
Prep. (technique 
Wash, utensil) 1         2             3          4           5 6       7 8 
Follow Recipe 
(order, direction, 
speed) 1         2             3          4           5 6       7 8 
Treatment 1         2             3          4           5 6       7 8 
 

 

 1 2  3 4  5 6  7 8 9    10 11    12 13   14 15   16 Measurement 

y̅ = S+T+H+ST+SH+TH+STH 
y����= S+T+H+ST+SH+TH+STH 

DFT=7 
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each be measured multiple times to further separate and assess measurement 

uncertainty. Without repeats, those sources of variation would be confounded with the 

treatments resulting in an increase in the unit structure being compared to the design 

factors.  When averaged, the variation is reduced thereby increasing the precision of the 

design factors.  When repeats are available, a test for consistency and outliers (special 

causes) within treatment is possible and is done using a range chart (figure 11). 

Figure 11: Range chart of Y 

 
 

As shown by the range chart, the variation within treatment is consistent so the 

repeated measures may be used to calculate estimates of central tendency and 

dispersion (i.e., it is appropriate to calculate the average and standard deviation within 

treatment shown in table 3). 

 

Table 3: Statistics Calculated from the Within Treatment Data 

S T H Mean(Y) Std Dev(Y) 
 -1  -1  -1 6410 26.87 
 -1  -1 1 6107 24.04 
 -1 1  -1 6293 24.04 
 -1 1 1 6076.5 26.16 

1  -1  -1 6362 46.67 
1  -1 1 6086.5 27.58 
1 1  -1 6275 42.43 
1 1 1 6070.5 37.48 

 

The effects for both Y’s are plotted on Normal plots to determine significance of factor 

effects (figure 12 & 13).  
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Figure 12: Normal Plot of Effects for Means, T & H are significant 

 
Figure 13: Normal Plot of Effects for Standard Deviation, S is significant 

 
 

The effect of S on the variation within batch is discovered.  

 

Scenario 2: Completely Randomized Replicates 

This scenario is the typically advocated completely randomized replicates with the FRD 

shown in figure 9.  Each EU for each treatment combination is created in random order. 
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Figure 9: FRD for CRR 

 
In this scenario, the only partitioning of the unit structure is the unit structure in the 

inference space.  The design factor effects will be compared to the unit structure 

confounded with treatments.  This includes variation due to the measurement system, 

batch, etc.  The Y columns from table 1 are stacked for analysis.  Table 2 shows the 

analysis summary. 

Table 2: ANOVA for CRR 

Source DF Sum of 
Squares 

Mean Square F Ratio 

Model 7 274723.44 39246.2 36.0657 
Error 8 8705.50 1088.2 Prob > F 
C. Total 15 283428.94  <.0001 

 

Source DF Sum of 
Squares 

F Ratio Prob > F 

S 1 2139.06 1.9657 0.1985 
T 1 15687.56 14.4162 0.0053 
S*T 1 495.06 0.4549 0.5190 
H 1 249750.06 229.5101 <.0001 
S*H 1 390.06 0.3585 0.5659 
T*H 1 6201.56 5.6990 0.0440 
S*T*H 1 60.06 0.0552 0.8202 

The results of this analysis indicate significant main effects of H & T and possibly a T*H 

interaction effect.  These are significant based on the comparison of the factor effects to 

the Mean Square Error (un-assignable unit structure).  Note the effect of S on variation 

is not exposed with this strategy. 

 

S 

T 

H 

Treatment 

Vat          1 
Season         1 
Recipe         1 
Process         1 

 1 2  3 4  5 6  7     8 9    10 11    12 13   14 15   16 

-1  1  -1  1  -1  1  -1  1 

-1    1    -1    1 

-1           1 

 

 1 2  3 4  5 6  7     8 9    10 11    12 13   14 15   16 Measurement 
 1 2  3 4  5 6  7     8 9    10 11    12 13   14 15   16 
 
 
 
 
 

 1 2  3 4  5 6  7     8 9    10 11    12 13   14 15   16 

 1 2  3 4  5 6  7     8 9    10 11    12 13   14 15   16 

 1 2  3 4  5 6  7     8 9    10 11    12 13   14 15   16 

 1 2  3 4  5 6  7     8 9    10 11    12 13   14 15   16 

Set-up  
Vat cond. (time, 
Scrub, technique)   
Mat’l Lot (supplier, 
Location, type)  
Prep. (technique 
Wash, utensil)  
Follow Recipe 
(order, direction, 
speed)  
 

Y=S+T+H+ST+SH+TH+STH+e 

DFT=15 
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Scenario 3: Randomized Complete Block Design 

In the third scenario all 8 of the treatment combinations are run once (first EU) in the 

first block and then replicated in the second block (second EU).  This results in a total of 

16 treatments. 

Figure 14: FRD for RCBD 

 

 

Unit structure previously in the inference space and unit structure previously 

confounded with treatments is allocated to the blocks.  This has the effect of increasing 

the inference space and increasing the precision simultaneously.  Analysis allows for 

assigning the degrees of freedom of both block and block-by-factor interactions.  For 

this analysis the column B (for block) is added to the data set (table 4). 

  

 

S 

T 

H 

Sauce Type        1 
Season         1 

Treatment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

- + - + - + - + - + - + - + - + 

-  +  -  +  -  +  -  + 

-    +    -    + 

-1 1 Block 
Ambient Temp. 
Material Lot 
Supplier 
Type 
Location 
Vat Cond. 
Meas. Device 
Technique 
Order 
Direction 
Speed 
 
 
 

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 
1 2 
1 2 
1 2 
1 2 
1 2 
1 2 
1 2 
1 2 

DFT=15 

DF=1=B 

DF=14=S+T+H+ST+SH+TH+STH+BS+BT+ BH+BST+BSH+BTH+BSTH 
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Table 4: Data Set Arranged for RCBD 
B S T H Y 

 -1  -1  -1  -1 6391 
 -1 1  -1  -1 6329 
 -1  -1 1  -1 6276 
 -1 1 1  -1 6245 
 -1  -1  -1 1 6090 
 -1 1  -1 1 6067 
 -1  -1 1 1 6058 
 -1 1 1 1 6044 

1  -1  -1  -1 6429 
1 1  -1  -1 6395 
1  -1 1  -1 6310 
1 1 1  -1 6305 
1  -1  -1 1 6124 
1 1  -1 1 6106 
1  -1 1 1 6095 
1 1 1 1 6097 
Figure 15: Normal Plot for RCBD 

 
 

The ability to detect factor effects (precision) increases and the block effects are 

estimable.  The main effects of H, T & S and the interaction of T*H as well as the block 

effect are all significant (as well as some other possible effects). 

 
Disclaimer:  While the same data has been used to illustrate the differences in the 
strategies, the correct analysis will always depend on how the data was actually 
acquired.  



Sigma Science: Fundamental Strategies to Handle Noise In DOE 22 
     

011418  ©Sigma Science Inc. 

 

Conclusion 
Table 5 provides a summary comparison of the strategies. 

Table 5: Summary Comparison 
Strategy Pro Con Application 
Repeats • Test for outliers 

• Two models (mean 
and variation) 

• Increases precision 

• Resources for multiple 
EU’s 

 

• Measurement error 
• Y in the form of 

variation 
 

CRR • Unbiased estimate of 
error 

• Unassigned DF’s 
available 

• Increased inference 
space 

• Noise un-assignable 
• “Unknown” tests of 

significance 
• Doubles the size of the 

experiment 
 

• Unknown noise 
• Situations where the 

noise has not been 
identified 

RCBD • Block & block-by-
factor interactions 
estimable 

• Increased precision 
• Increased inference 

space 

• Doubles the size of the 
experiment 

 

• Robust design 
• Design engineering 

 

RIBD • Block effect estimable 
• No additional 

treatments 
• Increased precision 
• Increased inference 

space 

• Block-by-factor 
interactions aliased 

 

• Manufacturing 
• Post design 

 

Split-plots • Increased precision 
• Increased inference 

space 
• Noise-by-factor 

interactions estimable 

• Possible reduced 
precision of the WP 

• Robust design 
• Design engineering 
 

 
The most effective designed experiments include noise in the experiment.  The idea is 

for the experiment to represent, as closely as possible, reality and in reality noise 

changes.  The challenge is as the experiment more closely approximate reality, the 

noise increases and the ability to detect the factor effects decreases.  Repeats, 

replicates and split-plots are three of a number of strategies to handle the noise 

effectively to both increase the precision without negatively affecting the inference 

space.  This increases the likelihood the results of the experiment will be applicable in 

the future. 

“Block What You Can, Randomize What You Cannot.” (G.E.P. Box11) 
 

 
11 Box, George, Hunter, William, and Hunter, J. Stuart (1978) Statistics for Experimenters:  An Introduction to Design, Data Analysis, 

and Model Building, Wiley. 
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Definitions 
ANOVA (ANalysis Of VAriance):  a general term referring to a calculational procedure for allocating the 

amount of variation due to each effect in a factorial experiment.  The usual objective is to test for 

differences among factor levels and/or treatment combinations. 

Blocks: in industrial experimentation, blocks are frequently a frame where noise (x’s not explicitly 

manipulated in the experiment), can reasonably be expected to remain constant (or are held 

constant) while that part of the experiment takes place.  Subsequent replicates are selected so that 

noise changes between those blocks.  In this manner, there is increased precision for the design 
factors and information regarding design factors is acquired across changing noise (e.g., 

environmental conditions, variation in raw materials, and other known and unknown noise) 

Completely Randomized Replicates (CRR):  the selection of all experimental units, the order of the 

application of the treatment combinations to the experimental units, and the order of measurement 

are all done randomly.   

Cross Product Arrays: factorials of design factors run inside of factorial treatments of unit structure factors 

(also called inner and outer arrays) 

Degrees of Freedom (DF):  the number of independent pieces of information that can be used to estimate 
a statistic.  Degrees of freedom can be thought of as the number of paired comparisons available to 

learn about a statistic.  

Experimental Unit (EU): the independent output of a treatment combination from a designed experiment. 

(e.g., multiple parts, multiple measures of the same batch, multiple batches, etc.) 

Factor Relationship Diagram (FRD): a graphical description of an experiment showing the relationship 

between manipulated factors and unit structure. It consists of design structure, unit structure and 

line(s) of restriction that depict partitioning of the unit structure and degrees of freedom. 

Inference Space:  the totality of material, conditions and processing techniques to which the data analysis 
results will apply.  

Nested: a condition where one layer (set of x’s) is contingent (dependent) upon another. 

Noise: the set of x’s one is unwilling to manage (for reasons of cost, difficulty or convenience). 

Precision: the ability to detect effects. 

Robust:  the condition where performance and functionality is consistent over changing conditions (i.e., 

the absence of noise-by-factor interactions). 

Scientific Method: the iterative process of induction and deduction.  
Split-plot Designs: a method of handling restrictions on randomization for factorial designs. 

Statistics: the science of extracting information from data.  This science includes the collection, analysis, 

interpretation and communication of information based on data.   

Treatment or Treatment Combination:  a unique experimental condition in a factorial design defined by 

the specific level of each factor. 
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