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Overview
• Introduce Lundbeck 

• Process Development for a Biologic Drug

• Case Study

• Phase I DSD

• Phase II Augment with Space Filling Design

MAXIMIZING PHASE APPROPRIATE DOE STRATEGIES
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THIS IS LUNDBECK

A global pharmaceutical 
company specialized in 
discovering and developing 
innovative treatments for 
brain diseases

To be #1 in 
Brain Health

WE ARE OUR LONG-TERM AMBITION

Patient-driven
Courageous
Ambitious

Passionate
Responsible

OUR BELIEFS

Lundbeck



Harvest
Upstream Process 

Seed Expansion Production

UF/DF
Downstream Process 

Capture Polish 1 Polish 2

• Upstream Process Parameters

• Seed Expansion

• Seed Density, Temperature, Volume, Duration, CO2

• Production

• pH, Seed Density, Temperature, Feeds (composition, 
%), Oxygen control, Duration

• Downstream Process Parameters

• Capture and Polish Steps

• Resins, Wash Buffer compositions, Elution Buffer 
compositions, Binding capacity, Temperature, Flow 
Rates, pH

• Ultra Filtration/Diafiltration (UF/DF)

• Load ratio, Buffer composition, pH, Temperature, 
Pressure, Flow Rates, Concentration

The Process we want to Develop for Drug Substance 
PROCESS DEVELOPMENT



Development Timeline
PHASES OF CMC DEVELOPMENT
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Development Timeline

Treating the Patient is the goal
How can we balance effort and 

resources to maximize speed and 
efficiency of Drug Development



Steps for Process Development
• Perform Risk Assessment

• Identify key parameters that need screening – include stake holders in the discussion

• Avoid prior assumptions - this is new cell line, new protein

• Initial Development

• Narrow down categorical factors (cell line, resin, media, buffer)

• Early Development

• Definitive Screening Design (DSD) – gain understanding of important process parameters

• Be bold in level setting – widen your design space to get meaningful information 

• Late Development

• Space-filling designs build on early development studies for prediction of performance

• Design experiments across Upstream and Downstream rather than silo investigations
• References:

• Jones, Bradley. (2011). A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects. Journal of Quality Technology. 43. 1. 

• Effective Design-Based Model Selection for Definitive Screening Designs Jones B., Nachtsheim C.J. (2017) Technometrics, 59 (3) , pp. 319-329. 

• https://community.jmp.com/t5/JMP-Blog/Proper-and-improper-use-of-Definitive-Screening-Designs-DSDs/ba-p/30703
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Steps for Process Development
• Perform Risk Assessment

• Identify key parameters that need screening – include stake holders in the discussion

• Avoid prior assumptions - this is new cell line, new protein

• Initial Development

• Narrow down categorical factors (cell line, resin, media, buffer)

• Early Development
• Definitive Screening Design (DSD) – gain understanding of important process parameters
• Investigates low, middle and high setting for continuous factors – allows fitting of a curve
• Be bold in level setting – widen your design space to get meaningful information

• Late Development
• Space-filling designs build on early development studies for prediction of performance 

• References:
• Jones, Bradley. (2011). A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects. Journal of Quality Technology. 43. 1. 

• Effective Design-Based Model Selection for Definitive Screening Designs Jones B., Nachtsheim C.J. (2017) Technometrics, 59 (3) , pp. 319-329. 

• https://community.jmp.com/t5/JMP-Blog/Proper-and-improper-use-of-Definitive-Screening-Designs-DSDs/ba-p/30703
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Setting Factor Ranges
DOE TOOLBOX
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Full Data Set Conservative 
Range Setting

Wider Range 
Setting

Bold Range 
Setting

Optimized



The Problem of Complexity and Uncertainty Physical systems, especially chemicals and 
biologics, are inherently complex and the system 
behavior is driven by the interactivity of the inputs.

All inputs contribute to the observed variation 
largely through the interdepencies

Looking back at the worst times, it always seems that they were times in which there were people who 
believed with absolute faith and absolute dogmatism in something. And they were so serious in this 
matter that they insisted that the rest of the world agree with them. And then they would do things 
that were directly inconsistent with their own beliefs in order to maintain that what they said was true.






The Complexity Problem
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The Elephant in the room for science and 
statistics is the inherent complexity of physical 
systems… 
Dr. Daniele Fanelli, LSE, “The Neglected 
Importance of Complexity in Statistics and 
Metasciences”, September 2022.

The implications for the future of statistical 
practice are profound requiring new thinking 
and innovative methods.

Example, the long-held DoE concepts of Effect 
Sparsity and Hierarchy are reductionist and 
upside down to the physical realities of 
complex systems.

Complex systems are defined by the 
interactivity of their elements.

The response surfaces are complex 
in shape due to the interactivity.



The Prediction Problem

Development work along the CMC pathway is inherently about predicting future 
performance.

Traditional DoE and analysis are focused on explanation not prediction; knowing 
“things” about a complex system is insufficient to predict the system behavior.

Prediction is a measure of how well a model interpolates over a design region.

If a predictive model adequately approximates the shape of the response surface, 
then the model will predict accurately at locations in the design space not used in 
the estimation of the model.

Predictive modeling requires a training set to estimate the model and a test set to 
evaluate the performance of the model at new locations in the design region.

Interpolation cannot be evaluated on a training set; a test set is required.
12



The Prediction Problem

The kinetics of chemical and biological systems are indeed complex and vary 
substantially throughout the design space due to the interactivity.

Kinetic behavior in the boundary region is often different from kinetic behavior 
observed within interior regions.

Both classical and optimal response surface designs are primarily boundary 
designs having most of the design points located at or near the boundaries; e.g., 
central composite designs (terrible designs for prediction).

Models fit to boundary designs can provide only speculation about kinetic behavior 
within the design region; little or no data exists to evaluate the actual behavior.

In order to model complex systems, designs must have substantial numbers of 
interior design points; space filling designs are the best option available today.
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The Prediction Problem

Beside the problem of boundary designs is the assumption that full quadratic 
models are sufficient to approximate complex response surfaces.

The full quadratic model is too stiff in general to accommodate the shapes of 
response surfaces in complex systems; linear models in general are too stiff.

If one performs experiments with sufficient interior points, then the inadequacy of 
the full quadratic model frequently becomes apparent.

Cornell and Montgomery (1998) pointed out the problem but were ignored.

With the SVEM algorithm we can employ machine learning methods that allow 
more flexible models to approximate response surfaces.

We do not discuss SVEM directly as there are quite a few talks on SVEM available 
from past Discovery; there are references at the end of the presentation.
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The Bio-process Characterization Experiment

A hybrid experimental design was employed to study the behavior of a unit operation 
in a bio-process. The experimental design incorporated 7 factors and there are 13 
responses; due to time constraints we focus on only 4 responses.

Due to the highly proprietary nature of the experiment and a need to protect 
Lundbeck intellectual property the design has been partially anonymized. 
Therefore, the factor names, settings, and response names are anonymous.

The design structure and relationships between the factors and the responses have 
been preserved in the anonymization.

The hybrid design is a combination of a 19-run Definitive Screening Design(DSD) 
including 4 replicate center points and a 16-run Space Filling Design (SFD).

The DSD incorporates 3 center points and the SFD 2 center points.
15



The Bio-process Characterization Experiment

We will take several approaches to the analysis of the experiment. 

1. A more typical traditional response surface approach. The DSD serves as the 
training set for modeling and the SFD as a test set to evaluate prediction.

2. The SFD is the training set for modeling and the DSD serves as a test set..

3. Next, we will construct a partition of the original 35 observations into a training set 
and test set since we have sufficient data to do so; a holdback test set is used

4. Finally, models are fit to the full data set for comparison of the predictive modeling 
strategies. In DoE it is common to fit models to the full training data set and attempt 
to judge prediction performance solely on the fit to the training data; without a 
validation or text set this is a poor, high-risk strategy for predictive modeling
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The Bio-process Characterization Experiment

The following model building algorithms and platforms are employed: 

1. Fit Definitive (FD), Fit Definitive Screening*; 

2. Forward Selection (FWS) with AICc, Generalized Regression; 

3. SVEM FWS, Generalized Regression; 

4. Moving Average (MA); Stepwise; 

5. SVEM Neural Network (NN); Predictum SVEM Addin.

6. K-Fold cross validation for FWS and NN (full data set only).

The full quadratic model (FQM) is used for the FD, FWS, and MA methods.

*Fit Definitive Screening requires a DSD; it is not a predictive modeling algorithm.
17



The Bio-process Characterization Experiment

The four responses were selected based upon the observed complexity of the 
observed kinetic behavior; a subjective assessment by the authors.

The lower the level of complexity in the response surface the more likely a 
traditional response surface approach will be satisfactory; i.e., a boundary 
design combined with an assumed full quadratic model (FQM).

The table shown here lists the rated kinetic complexities (ratings are important)

18

Response Complexity
Y2 Low
Y1 Moderate
Y3 High
Y4 Very High



The Bio-process Characterization Experiment

Before getting into the modeling results, we need to define criteria to assess the 
prediction capability of the fitted models; again, prediction is a measure of 
interpolation as assessed on the test set.

The most common measure is Root Average Square Error (RASE) of prediction.  
This is the standard deviation of prediction error, usually calculated on the test set 
(when one is available); JMP often refers to this as a validation RASE.

Although the most common measure of prediction performance, RASE is 
misleading in many cases as models with substantial prediction bias have 
smaller RASE values.

One must consider the bias vs. variance tradeoff in assessing the performance of 
predictive models.
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The Bio-process Characterization Experiment

An effective measure of prediction bias is the slope of a simple linear model fit to 
the actual by predicted plot, again on the test set when available.

A Slope = 1 and Intercept = 0 indicate no detectable prediction bias.

The farther the fitted slope is from 1, the greater the prediction bias.

Predictive models with relatively low RASE values and slopes near to 1 are 
preferred; we use a slope range of 0.85 - 1.15 to define acceptable slope values.

The fitted slope of the actual by predicted plot typically is the usual ordinary least 
squares fit.

However, since the X axis consists of the predicted values there exist considerable 
error and the fitting is better viewed as an errors in variables problem.

20



The Bio-process Characterization Experiment

The Passing-Bablok (P-B) algorithm is a straightforward approach to fitting slopes 
with errors in the X values. The option is available in the JMP 17 Fit Y by X. Below 
are shown two actual by predicted plots with the P-B slopes, the model to the left 
has high prediction bias and the model to the right little or no bias.
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The Bio-process Experiment: DSD as Training Set

Current DoE practice for response surface methods (RSM) is to use a boundary 
design (DSD in this case) and assume a full quadratic model or subset of the model 
is sufficient to approximate the underlying response surface.

Therefore, we use the DSD in the role of the training set to fit predictive models using 
the 5 approaches mentioned earlier.

The DSD models are interpolating to the interior SFD points.

The predictive models are subsequently applied to the SFD data in the role of a test 
set to evaluate prediction performance; the ability to interpolate over the design 
space.

Since our four responses range from low complexity to very high complexity, we 
expect the algorithm prediction performances too vary substantially across those 
responses.
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The Bio-process Experiment: DSD as Training Set

FQM = full 
quadratic 
model.

FWS = forward 
selection.

MA = moving 
average.

NN = neural 
network

Hxx = number of 
hidden nodes 
in the NN.

23
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The Bio-process Experiment: DSD as Training Set

For the low complexity response Y2 all the model algorithms fit to the DSD data 
predicted the SFD responses well with the Moving Average with FQM model 
having the best slope.

For the moderate complexity response Y1 only the NN models fit to the DSD data 
predicted the SFD responses well with H=5 hidden nodes having the best slope.

For the high complexity response Y3 again only the NN models fit to the DSD data 
predicted the SFD responses well with H=27 hidden nodes having the best slope.

For the very high complexity response Y4 none of the models fit to the DSD data 
predicted the SFD responses well; an NN with H=15 hidden nodes having the best 
slope = 1.37.

When the responses exhibit considerable complexity the boundary designs are not a 
sufficient basis for fitting models that predict the interior behavior.
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The Bio-process Experiment: DSD as Training Set

Here are shown actual by predicted plots for Y2, Y3, and Y4. For the low complexity 
Y2 response the DSD and SFD observations align well indicating the boundary 
behavior is predictive of interior behavior; the best models in slope are displayed.

For the high and very high complexity responses Y3, Y4 the DSD and SFD 
observations do not align. The boundary region is not predictive of the interior region

25
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The Bio-process Experiment: SFD as Training Set

We repeat the analyses for the case where the DSD was used as a training set and 
the SFD as a test set except here we reverse the roles.

Here predictive models are fit to the SFD data as the training set, using the same five 
algorithms and then those models are applied to the DSD data as a test set.

The SFD models on the interior are extrapolating to the DSD boundary points.

The goal is to see if predictive models fit using the interior SFD points can sufficiently 
predict the boundary settings of the observations in the DSD.

Since the Fit Definitive algorithm only works with the DSD structure it was not included 
in the analyses performed on the SFD training set.

Again, all four responses are studied to understand the impact of complexity on the 
prediction performance.
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The Bio-process Experiment: SFD as Training Set
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The Bio-process Experiment: SFD as Training Set

Here are shown actual by predicted plots for Y2, Y3, and Y4. For the low complexity 
Y2 response the DSD and SFD observations align fairly well. Interior behavior is 
predictive of boundary behavior.

For the high and very high complexity responses Y3, Y4 the DSD and SFD 
observations do not align. The interior region is not predictive of the boundary region

28
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The Bio-process Experiment: Holdback Test Set

Given there are 35 total observations to work with an attempt was made to use a 
typical holdback test set approach.

The data were partitioned into an 18-run training set and 17-run test set.  The 
partitions were created such that the training and test sets had similar portions of 
DSD and SFD runs, and both sets equivalently covered the design space.

Predictive models were fit to the training partition and then applied to the test partition 
to evaluate prediction performance.

Again, the Fit Definitive method cannot be used as the training set does not have a 
DSD structure.
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The Bio-process Experiment: Holdback Test Set

30



The Bio-process Experiment: Holdback Test Set

Here are shown actual by predicted plots for Y2, Y3, and Y4. For the low complexity 
Y2 response training set model is predictive of test behavior; the model interpolates.

Again, for the high complexity responses models fit to the training set are not 
predictive of the test set; the models do not interpolate. The result suggests one 
needs complete coverage of the design space to build predictive models Y3, Y4.

31
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The Bio-process Experiment: Full Data Set

The final approach to building predictive models is to use the entire data set and forgo 
the test set.

Since we use the full data K-fold cross validation was added to the Forward 
Selection and to Neural Network modeling; the non-SVEM versions.

Although the approach is quite common in DoE it is not without risk as one has no 
direct measure of how well the models may interpolate over the design space.

However, given responses Y3 and Y4 exhibit considerable complex kinetic behavior 
over the design space, it is desirable to use all the data covering as much of the 
design space as possible with the experiment as performed.

The fact that 16 of the observations form a space filling design we have some 
evidence of how well the models might interpolate within the interior of the region.
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The Bio-process Experiment: Full Data Set
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The Bio-process Experiment: Full Data Set

Here are shown actual by predicted plots for the best models for each response.  In all 
three cases a SVEM NN model fits best.

In this case the DSD and SFD points are aligned for all three models and one can see 
that the observed center point values for the three responses are close in value 
between the DSD and SFD

34 ● SFD  ♦ DSD



The Bio-process Experiment: Final Results Y1

Here is shown a display of the 
final best model results for all 
training scenarios and model 
algorithms for Y1; moderate 
complexity

The SVEM NN algorithms 
performed the best across all 
scenarios.

As expected, the best RASE 
scores are for the Full Data as 
there is no test set and the 
RASE scores are calculated for 
the training data.
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The Bio-process Experiment: Final Results Y2

Here is shown a display of the 
final best model results for all 
training scenarios and model 
algorithms for Y2; the lowest 
complexity.

The SVEM NN algorithms 
performed the well across all 
scenarios, however other 
algorithms did as well in many 
cases.

Again, the RASE scores for the 
full data are training set values 
so they should be lower.
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The Bio-process Experiment: Final Results Y3

Here is shown a display of the 
final best model results for 
all training scenarios and 
model algorithms for Y3; 
high complexity.

The SVEM NN algorithms 
performed the best across all 
scenarios

Again, the RASE scores for 
the full data are training set 
values so they should be 
lower.
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The Bio-process Experiment: Final Results Y4
Here is shown a display of the 

final best model results for 
all training scenarios and 
model algorithms for Y4; 
very high complexity.

No models for the DSD 
Training scenario resulted in 
acceptable slopes. The 
response is difficult to 
model. The SVEM NN 
models tended to do the 
best. 

Again, the RASE scores for  
are lower.
38



Summary

We evaluated multiple model building algorithms and four test set strategies to build 
predictive models for four responses from a bio-process experiment.

The fourth strategy was to use the complete data set for modeling and forgo a test 
set; not generally recommended for predictive model building. 

In this case the presence of 16 space filling design points in the experiment supplied 
evidence of whether a model might interpolate well over the design space.

The responses varied from low complexity (Y2) to very high complexity (Y4).

A machine learning method SVEM combined with neural network (NN) modeling was 
evaluated over the four strategies and compared to other algorithms.

Overall, the combination of SVEM and NN provided the best predictive models, 
especially for the more complex responses.
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Summary

Over the various predictive modeling techniques, full quadratic models (FQM) 
performed poorly compared to NN models on the complex responses (Y1, Y3, Y4).

Prediction is about interpolation; test sets are necessary to assess performance.

From the predictive modeling strategies with a test set it is observed that the DSD 
and SFD points exhibit different kinetic behavior for the more complex responses.

For the low complexity response Y2, the DSD and SFD points appear to aligned.

The implication is that kinetic behavior in complex systems may change substantially 
from the design center to boundaries; near boundaries often little data exists.

Operating regions (e.g., NORs) should avoid boundary areas; too much uncertainty.

The traditional boundary designs used in statistics for response surface analysis are 
inadequate for complex systems as no data is available on internal behavior.
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Final Thoughts on Complexity, DoE, and Modeling

We are in the age of digital science; digital chemistry and digital biology are two 
prominent examples.

Systems theory and thinking about of complex systems is ascendent in science; 19th 
Century reductionism is in decline; its all about the interactivity.

In addition is the increase in both process and laboratory automation and new, 
affordable sensor technologies enabling evermore complex experiments.

Machine learning (e.g., SVEM) and deep learning algorithms are necessary to model 
complex system behavior.

Yet, DoE for response surface methods are mostly unchanged from Box and Wilson 
(1951) and certainly the1960s; new thinking is needed.

Boundary designs analyzed by FQMs dominate statistical approaches; both are 
inadequate for complex systems.41



Final Thoughts on Complexity, DoE, and Modeling

Complex system behavior is driven by the interactive behavior of the inputs, therefore 
experimentation on complex systems requires designs incorporating large numbers 
of factors while maintaining reasonable run sizes.

New design criteria for complex systems in the digital era are at a minimum:

 Accommodate large number of factors with a reasonable number of runs.

 Cover the interior of the design space to capture the dynamic, kinetic behavior.

 Do not require the specification of a model to generate the design.

 Allow user input on the distribution of design points over the design space.

 Easily combined with existing data (e.g., process data) from the system in study.

At present space filling designs is the best option, but much more work is needed.
42



Final Thoughts on Complexity, DoE, and Modeling

Besides new designs and strategies, machine learning methods need to be adopted .

Traditional practices in DoE need be reconsidered, these include:

 Screening to remove factors from future consideration, it is a high-risk strategy; 
the active and inactive factor paradigm is not true for complex systems.

 With SFDs and machine learning traditional screening is unnecessary.

 Screening techniques are better used to refine design spaces for future work.

 Stop reflexively reducing linear models, it degrades prediction performance.

 The Hierarchy principle is false for complex systems. The system behavior is 
driven by interactivity not main effects.

 Stop the ubiquitous use of  FQMs. The model is too stiff for complex systems.
43
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