
Why Aren't You Using App Builder Already?

App Builder (AB) was introduced in JMP 10. In the beginning, it had its bumps and warts and

was, arguably, a bit of a challenge to use. As a long time JSL scripter, I, too was reticent to use it

and preferred to code everything from scratch, even dialog boxes. I got tired of the work needed

to make small visual tweaks to my dialogs and custom report windows, so I gave AB a relook.

Since then, I have not looked back. If it's worth an interface, I'm using AB.

In this document I go into greater detail about AB than was possible in the recorded session,

focusing on details affecting objects and scripting in AB. Whether you’re new to AB or have been

using it for some time, you should find this information useful.

Note: The names of all objects in the Source panel, except Data Filter(Local), Column Switcher,
and Filter Col Selector end with Box. This word will be omitted except for List Box to identify

and distinguish a List Box Box from a List Box (H List Box and V List Box), Check Box, which

is technically a Check Box Box, and where it may cause confusion (e.g., to distinguish a Data

Table from the box that contains it).

Working with the Interface

The AB interface consists of four parts. The Sources panel on the left side contains the visual

elements you'll be adding to your application. I consider these elements as serving one of three

purposes: display, organization, and interactivity. While there is some overlap with certain items,

each can be considered to have a primary purpose. A list of all objects and their roles is given in

Table 1. Display elements are placeholders for specific information such as text, numbers, reports,

data table columns, pictures, etc. Organizational objects are containers for items from any of the

groups. They control how objects are displayed in a module window and relative to one another.

Unlike Display objects, the emphasis is not on what is displayed, but how. Interactive items are

for user input, so output can be specified or modified, modules launched, and scripts run.

Table 1 – Box Purposes

Display Organization Interactivity
Report Data Filter Context Data Filter Source

Data Table Border Data Filter (Local)

Graph (H/V) Center Column Switcher

Icon If Mouse Box

Matrix Lineup Number Col Edit

Pict H/V List String Col Edit

Scene Outline Button

Text Panel Check Box

Table Scroll Radio

Number Col Sheet Panel Spin

String Col (H/V) Splitter Col List

Col List (All) Tab Filter Col Selector

 Tab Page Combo

 Spacer List Box

 Number Edit

 Slider

 Text Edit

Six objects are greyed out and unselectable unless a data table is opened: Data Table, Data
Filter(Local), Column Switcher, Col List Box, Col List Box(All), and Filter Col Selector.

The tabbed workspace in the center is where the work gets done. It starts with two tabs, a Module

tab for the visual elements and a Scripts tab for the code. You can drag and drop items from the

Sources panel into a module tab in the workspace. Once there, they can be arranged and

rearranged interactively. A new module tab can be added for each window the application needs.

Code for all modules, as well as any start-up application code, can be accessed using the

Namespace combo box on the Scripts tab.

Figure 1 – Accessing module code

On the right, you'll find the Objects and Properties panels. They are similar in look and function

to the Show Properties feature for report windows. Use these panels to easily set properties and

make changes to objects in the workspace. You can only select one item at a time. Objects can't

be moved in the Objects panel, only in the workspace area.

If you're new to AB, it helps to get feel for how things are selected and move around in the

workspace. To add an item, drag it from the Sources panel. Once in the workspace, it can be

easily duplicated through copy and paste. If you find yourself spending a lot of time setting object

properties to get them to look exactly the way you want, it can be helpful to create a template

application with the items you regularly use, set up the way you prefer. I often do this for object

that have text element, since I regularly use a typeface and size different from the default. Creating

a template saves time since a duplicated object retains all the properties of the copy. Objects can

be copied from one application to another or one module into another.

To select an item, you can hover over it until you see a blue box highlighting it, then click on it or,

using the arrow cursor and dragging a selection rectangle over one of its corners. Unlike

PowerPoint, only part of the object needs to be inside the selection area. You can use this technique

to select multiple objects as well. Alternatively, you can select multiple objects by holding down

the shift key and clicking on them. As mentioned above, a single item can be selected using the

Objects panel.

When working with organizational containers you have two choices. You can create the container

first, then drop objects into it. Or you can select one or more existing items to be placed into the

container, right click, and select Add Container. This works for everything except for If and

Lineup. I tend to use this approach more frequently since I find it easier and quicker, particularly

when I am working with multiple items. If two or more containers are nested, you can remove any

container except the innermost by selecting it, right clicking, and choosing Remove Container
from the pop-up menu. This is a case where selection from the Objects panel is helpful to ensure

you've selected the correct container. Selecting an item from the Objects panel rather than

interactively is also handy when it winds up behind other objects, if you can't find it in the

workspace, or even if you're just having a difficult time selecting it to begin with (maybe it's very

small and is placed next to a lot of other small items). When a container is selected, all items in it

move, are copied, and deleted, as a unit. You can also change the container type using the right

click menu (Change Container).

While moving objects is straightforward, resizing them is a bit trickier and more limited. Except

for the items in Table 2, objects are sized relative to their contents. For these items, sizing can be

done interactively or by changing one of their sizing properties, except Pict, which can only be

sized interactively once an image is dropped into it. All size values are specified in pixels. For

Text and Text Edit, Width controls the space allocated for the box. A value of -1 allows it to

resize according to its contents. Wrap specifies the number of pixels at which text wraps to a new

line.

Table 2 – Objects with explicit sizing properties

Object Sizing Property

Scroll Width, Height

Spacer Width, Height

Graph Width*, Height*

Pict Interactive only

Scene Width, Height

Text Width, Wrap

Col List Size: X, Y

Filter Col Selector Size: X, Y

List Box Size: X, Y

Slider Width

Text Edit Width, Wrap
* Correspond to graphing area and not box size

All items in Table 2 possess the User Resizable property except Spacer, Graph, Scene, Text,
and Slider. This allows the X and/or Y size values to be locked by the application.

Common Properties

The 17 properties common to (nearly) all objects are show in Table 3. Data Filter and Column
Switcher only possess the first two and Graph does not have Padding, Border, and Margin

properties. Stretching consists of six properties as indicated in the table.

Table 3 – Properties common to all objects

Property Comment

Variable Name

String. JSL name for an object. Scoped to thisModuleInstance namespace

for the module in which the object is defined or to thisApplication in the case

of modules and data tables. Defaults to the box name plus an added integer

(depending on the number of similar boxes used) or to Module or DataTable

with an added number.

Position (X, Y)
Integer Ordered Pair. Pixel distance from upper left corner of the application

window to the object.

Background
Color

Selection. The color of the background inside the object. Default: None

Text Color
Selection. The color of any text that is part of the object. Several objects have

this property but contain no text. Default: None

Visibility
Visible, Hidden, or Collapse. Hidden retains object spacing, but the object

is invisible. Collapse collapses all spacing and makes the object invisible.

Spacing for all objects inside a container are also collapsed. Default: Visible

Padding Integer. Added space (in pixels) inside the object border. Default: 0

Border
On/off. Turns on or off frame side inside the object. Positive values for on,

everything else is off. Four possible locations: top, bottom, left, right (shown

as arrows). Default: off.

Margin Integer. Added space (in pixels) outside the object border. Default: 0

Vertical
Alignment

Default, Top, Center, or Bottom. Vertical positioning of an object inside a

V List when there are two or more objects.

Horizontal
Alignment

Default, Left, Center, or Right. Horizontal positioning of an object inside an

H List when there are two or more objects.

Stretching

Six properties:

Min Size (X and Y). Integer. Set to initial size of object.

Max Size (X and Y). Integer. Set to initial size of object.

Stretch: X – Neutral, Off, Window, or Fill. Default: Neutral
Stretch: Y – Neutral, Off, Window, or Fill. Default: Neutral

Enabled
On/off. Unchecking greys out and disables the object making it unselectable.

Default: on.

Border and Graph have the Frame property, where space can be added inside the frame area.

The check box in the properties list allows the addition of a frame (a second frame in the case of

Border) inside the padding but outside of the frame area. Figure 2 illustrates the relationship

between Padding, Border, Margin, and Frame properties.

Figure 2 – Border Box properties illustrated

Several objects can contain text in a title, as part of their contents, or both. Seven allow you to

control the font typeface and size using the Base Font, Font, and Font Scale properties. Base

Font corresponds to typeface, style, and size given in the User Preferences (e.g., Heading, Title,

Axis, etc.). Font is a selection button allowing the choice of typeface, size, style, and is operating

system dependent. Font Scale takes a numeric value that acts as a multiplier for the font size.

Table 4 provides a list of these objects along with their text related properties.

Table 4 – Objects with text properties

Object Main Property Other Properties

Outline Title Base Font

Font

Font Scale

Allow title wrapping (on/off)

Panel Title

Sheet Panel Title

Tab Page Title Base Font

Font

Font Scale

Icon Title

Number Col

Number Col Edit

Title, Items

String Col

String Col Edit

Title, Items

Button Title

Margin

Padding

Frame

Border

Frame (Check Box)

Check Box Items

Radio Items

Combo Items

List Box Items Base Font

Font

Font Scale

Text Text Base Font

Font

Font Scale

Bullet (on/off),

Rotation (Horizontal, Left, Right)

Col List Box contents Base Font

Font

Font Scale

Col List (all)

Filter Col Selector

Box contents Base Font

Font

Font Scale

Number Edit Number

Text Edit Text Base Font

Font

Font Scale

Bullet (on/off),

Justification (Left, Center, Right)

Rotation (Horizontal, Left, Right)

PW Style (on/off) – On: typed characters are masked

Locked – Off: Text is not editable

Working with Tab and Tab Page Boxes

Tab acts as a container for Tab Page. If an object other than Tab Page is dropped into an empty

Tab a Tab Page is automatically generated. In this sense, use of a Tab Page is superfluous,

except for use as a stand-alone object. Properties associated with Tab are general and apply to all

tabs contained within it. To create additional tabs in Tab, right click one of the Tab Pages and

select Tab > Insert Before or Tab > Insert After. You can also drag and drop a Tab Page to the

left of the first or right of the last existing Tab Page. This approach is less flexible in that a new

tab can only be added as the first or last tab. A tab is deleted by selecting the Tab Page, right

clicking, and choosing Tab > Delete

Working with Filters

Filtering requires two elements, Data Filter Context and either Data Filter(Local) or Data Filter
Source, the latter being used when visual elements are used to filter. All objects, including any

reports to be filtered, must be contained inside Data Filter Context. Since Data Filter Context
only take a single item, an organizational box must be used to wrap multiple objects. Filtered

objects must be outside Data Filter Source to work correctly. Data Filter Source can take

multiple object on which to filter. Like Data Filter Context it only takes a single (uncontained)

object. Filtering can be done with either Data Filter(Local) or Data Filter Source, but not both.

Using AB out of the box, no scripting – Parameterized Applications

Applications where the number and modeling types of the column do not vary can be easily created

without additional scripting. Parameterized applications generate a built-in dialog box so users can

select columns for a report. To parameterize an application, the columns used in each JMP

Platform report window are assigned a variable name. Most JMP platforms require a different

variable for each column used, however, some platforms (mostly those under

Analyze > Multivariate Methods and Graph) will take a single variable for a list of columns.

Variable names are entered in the Properties panel under Roles.

Figure 3 – Parameterized column names

To use the same column for multiple reports, use the same variable name. Figure 4 below shows

an example where the same two columns are used in two different platforms.

Figure 4 – Using the same columns for different reports

The names appearing in the auto generated dialog box for parameterized variables can be changed

by selecting Applications in the Objects panel and supplying different values for the variables

under Parameters.

Figure 5 – Changing the default names in the auto generated dialog

You'll need to have any report element sized and set-up the way you want it to look before dropping

it in the AB. Once dropped into the workspace, closing outlines, resizing graphs, running hotspot

options, etc., will not be possible. Elements in H List Box will be set to the same vertical size, you

can't make one taller than the other inside the box. Likewise for sizing elements horizontally in a

V List Box.

Writing Code – Namespaces

Understanding how namespaces work will make it easier to create robust applications. If you're

new to the idea of scoping and namespaces, scope dictates how and where a variable is defined in

the code. A namespace can be used to limit the scope of a variable to that namespace. This helps

you to avoid situations where the contents of a variable are overwritten because it was

inadvertently defined somewhere else in the same namespace. This can easily happen when you

write code and scope all the variables to the global namespace. To learn more about scoping and

namespaces, see Advanced Scoping and Namespaces in Chapter 8 of the Scripting Guide.

An AB application has two types of namespaces, both are anonymous but have reserved names to

be used inside the application code. The thisApplication namespace is created when the

application is launched and is scoped to the entire application. A locally scoped namespace is

created each time a module is launched. The keyword thisModuleInstance is used to

reference items in a specific module. If there is more than one module, there will be more than one

thisModuleInstance namespace. In these situations thisModuleInstance references

the module in which it appears. Variables declared in a module don't require the

thisModuleInstance namespace qualifier. It comes in handy, though, to avoid ambiguity if

variables with different scopes share the same name. There are two cases where

thisModuleInstance is necessary. First, when instantiating the objects associated with the

module. To do this, the code

thisModuleInstance << Create Objects;

is added to the module script by default. The second place is to reference the window created by

module instantiation:

thisModuleInstance << Get Box;

It’s important to understand that a JMP App Module Instance is different from a JMP App
Module, the former being a concrete instance of the later.

Writing Code for User Interactions

A key advantage of the AB is that it makes creating and maintaining user dialogs much simpler.

As mentioned previously, most properties can be set interactively in the Properties panel and

visual organization of the dialog is also done interactively so you can see how it looks without

having to run code. You can still message objects in the code if a property isn't listed (e.g., as of

JMP 17.2 the White Box Style property doesn’t appear in the Properties panel for Text Edit) or

if it needs to be set at runtime. Code for this is put under the Scripts tab in the namespace

associated with the module where the object appears. Any code referencing module objects must

appear after they are created, that is, after

thisModuleInstance << Create Objects;

Table 5 gives the objects with scriptable properties and their names. Code associated with their

behavior can either go in the Properties panel (see Figure 6) or in corresponding namespace

section under the Scripts tab (see Figure 7). Scripts created in Properties panel are considered

anonymous, since they need not be named and are only available to the object that defines them.

Anonymous scripts make the code less cluttered. The drawback is that you must remember to look

in the Properties panel to find them. If the Scripts tab is used, the variable name of the function

or expression block associated with the executed code must be put in the text entry field for the

script in the Properties panel.

Table 5 – Objects with scriptable properties

Object Script Property

Mouse
Click, Mark, Track, Drag Begin, Drag End, Drop Track, Drop
Comment

Tab Tab Close, Tab New, Select

Graph Script

Table Row Change

Number Col Edit Script

String Col Edit Script

Button Press

Check Box Change

Radio Select

Spin Press

Col List Select

Col List (all)
Filter Col Selector

Select

Combo Select

List Box Select

Number Edit Script, Number Changed

Slider Move

Text Edit Script, Text Changed

Figure 6 – Anonymous script located in property panel. Click on three-dot button to launch Edit scripts window or type directly in

text field.

Figure 7 – Named script located in Scripts tab. Name must appear in Properties panel.

To quickly add a script to the proper area in the Scripts tab, right click the object and scroll to

Scripts at the bottom of the menu. Selecting a Script property (e.g., Press for a Button)

automatically generates a Function script. The function name is a concatenation of the object’s

variable name and the name of the script property. All scripts contain the optional argument

thisBox, which references the object associated with the function. Table 6 gives a list of

additional arguments for those objects with script properties containing more than one argument.

Figure 8 – Creating an object script from the workspace

Table 6 – Object with scripts containing more than one argument

Object Script Additional Arguments
Mouse Click clickpt, event

Mouse Track clickpt

Mouse Drag Begin clickpt

Mouse Drag End clickpt, how

Mouse Drop Track clickpt

Number Col Edit Script which

String Col Edit Script which

Check Box Change index

Spin Press value

Number Edit Number Changed numEditValue

Text Edit Text Changed text

Argument Description
clickpt X,Y coordinate of mouse location relative to the upper left of the application

window. Can take negative values when cursor is outside of the window.

event Pressed – mouse button pressed

Moved – mouse moved, button still pressed

Ticked – button pressed but mouse not moving

how copy –object should be copied to new location

move – object should be cleared from the source and stored to the new location

ignore – drag operation canceled

which Script currently does not work

index 1-based index of item changed

value 1 = up arrow clicked, -1 = down arrow clicked

numEditValue Current value of number. Update does not require user to press Enter

text Current value of text. Update does not require user to press Enter

If a function already exists for an object script, the right click menu option will have a check and

the name of the script or Send for anonymous scripts.

Figure 9– Object with existing script

Working with Multiple Modules

AB has different types of modules with which to work: Dialog, Dialog with Menu (has a menu

at top of window, Windows only), Modal Dialog, Launcher, Report (can be saved with Save or

Save As), Display Box (does not create its own window but contains contents to be used by other

modules or windows). The Auto Launch property controls whether the module is launched at

application start. It is on by default. To launch a module where Auto Launch is set to off you can

use the code

moduleRef << Create Instance(moduleArgs);
where moduleRef is a reference to the module and moduleArgs is one or more comma separated

values to be passed to the module. Values passed to a module are received in the OnModuleLoad

function, e.g.,
OnModuleLoad({arg1,arg2,..., argN},

 thisModuleInstance:local1 = arg1;

 thisModuleInstance:local2 = arg2;

.

.

.

 thisModuleInstance:localN = argN;

);

where local1, local2, … localN are scoped to the module in which they appear, i.e., to the

thisModuleInstance namespace. The qualifier thisModuleInstance is optional. There are

no additional features providing communication between two modules, e.g., a publisher-subscriber

pattern implementation, outside of functionality already present in JSL.

Working with Data Tables

When working with applications requiring a data table, it is helpful to work with a table that will

not change location or name. Regardless of the table being used for the analysis, AB will require

there to be some table open. Data tables from the sample data directory provide good options since

they rarely change names, and the directory location can be accessed with the JMP variable

$Sample_Data.

Running, Debugging, and Deploying Applications

Testing and debugging applications must be done from the red hotspot button to the left of

Application Builder. The simplest way to deploy an applications is to save it to an Add-In. The

script can also be saved to a custom menu item. To do this, change Edit on the last line of the

script to Run prior to saving it. In general, the script generated by Save Script to Script Window

should be left unaltered.

