Exploring JMP DOE design and modeling functions to improve sputtering process

Ting Cheng; Yue Cui

Applied Materials External

Agenda - Six Sigma DMAIC Black Belt Project (using JMP)

Define	Measure	Analyze	Improve	Control
 CTQ1 >= 0.5 (!) CTQ2 <= 0.05 CTQ3 <= 0.05 	 Measurement system assessment Baseline hardware 3 tuning knobs (X₁, X₂, X₃) Baseline capability analysis Monte-Carlo simulation Baseline model establish Augment DOE RSM Prediction profile Interaction profile 	 Root cause and capability analysis Goal plot Desirability function Multivariate method Graphic analysis 	 Hardware modification Introduce X₄ Process improvement Interactive graph Augment DOE X RSM Desirability function Interaction profile Robust DOE Modeling GOSS Stepwise fit Desirability function 	 Control plan and control method Knowledge transfer
Applied Materials External				

Baseline capability – Monte Carlo Simulation

CTQ2: USL <=0.05

Process Summary				
USL	0.05			
N	10000			
Sample Mean	0.049091			
Within Sigma	0.029074			
Overall Sigma	0.029391			
Stability Index	1.010887			

Sample mean ~ upper spec limit, Ppk ~ 0 48% of baseline process result did not meet CTQ2 spec

Baseline condition @ baseline model – design evaluation

 Subject matter expert (SME) advised shift process condition 1 to process condition 2 based on hypothesis #2

- Widen the process range to meet spec for CTQ1
- Weak prediction capability in white area
- Good prediction for condition 1 & 2

Confounding Analysis:

- Resolution II: $X_1 + X_3 @ 0.4352$
- Resolution III: low confounding risk

Baseline condition @ baseline model – RSM

BUT.....

APPLIED

Optimized solution: maximize desirability for (baseline model; N.A)

Process condition $1 \rightarrow$ process condition 2:

- Improve CTQ1
- Compensate CTQ 2&3

Find optimized solution via desirability function

- 🙁 0.02 desirable
- no CTQ meet success criteria
- Hardware limitations

SME decided to introduce Y_4 , a measurable

- Reflects process intrinsic property
- Affects CTQ2 & CTQ3
- Y₄>0, +ve process
- Y₄<0, -ve process
- $Y_4 \sim 0$, neutral process \rightarrow smaller CTQ2 &CTQ3

Smaller Y₄: smaller CTQ2 & CTQ3

Next: add in X₄ impact Y₄ (Hypothesis #3 & Hypothesis #4)

Validate X₄ impact on CTQ2&3

Tuning range (orthogonal)

- X1: 13~19
- X2: 0~12
- X3: 0~10

With X₄

Tuning range

- X1: 13~19
- X2: 0~12
- X3: 0~10
- X₄: 5~13

Simple screen of conditions for Y₄<0: -ve process

- X_4 has impact on $Y_4 \rightarrow$ can impact CTQ 2&3
- Wide range of Y₄, potential solution with two step process

Analyze & improve model: design evaluation (CTQ1, 2 & 3)

Prior data collection

- Validated X₄
- Prescreen conditions of interest (higher value of X₄)
- Provide most Y₄ conditions
- X₄ might have interactions with other Xs

Scatterplot Analysis:

- Wide range (with X₄)
- More data collected at conditions of interest
- Not most orthogonal structure

Design evaluation

Confounding Analysis:

- Low confounding risk
- Data structure good for modelling

Analyze & improve model: model evaluation (CTQ1, 2 & 3)

CTQ1

Hypothesis #2

CTQ2

20 15% U

00 ^{15%}

60 ^{15%}

2 ^{15%}

5%

5%

5%-

CTQ3

×

X

X

Effect Summary

- Only factor with Pvalue<0.05 included in model
- Rsquare > 80%; Rsquare-Rsqaure Adj < 10%, Pvalue =< .0001; adequate models
- Hypothesis #1~#4 validated
 with interaction profilers

Optimized solution?

No optimized solution via desirability function, **BUT**

Prediction Profiler 0.5 6 0.259 [0.227, 0.290] 0.4 0.3 0.2 0.20 0.068 0.058 0.0781 0.15 0.10 0.0781 0.05 0.16 0.077 0.068, 0.12 0.0861 0.08 0.04 1 Atilique 0.02407 0.75 0.5 Desi 0.25 0 0.75-0.5 ò Ó 15 20 <u>0</u>07400 ŝ Ó in Ó Ó 0.25 12 16.702795 X2 X3 X1 Desirability

Baseline hardware (without X₄)

Improved hardware (with X₄)

O.02 desirable
no CTQ meet success criteria

Improved desirability
But still low (0.27)
All CTQ improved
But not all meet requirement in one step

Applied Materials External

Potential solution: two step process

Two step process: strategies

Strategy 1: 9 variables with DSD modelling

- 25 runs at least for first trial
- Good orthogonal structure
- RSM model (9 variables) constructed
- High cost

Strategy 2: Group orthogonal super-saturated (GOSS) design

Jesign								
Run	Intercept	X1 1	X3 1	X4 1	X2 2	X3 2	X4 2	Duration
1	1	1	1	1	1	1	1	1
2	1	-1	1	-1	1	-1	1	-1
3	1	1	-1	-1	1	1	-1	-1
4	1	1	1	1	-1	-1	-1	-1
5	1	-1	1	-1	-1	1	-1	1
6	1	1	-1	-1	-1	-1	1	1

		Scatterplot Matrix
X3.2 X4.2 Duration		Į .
	0	
	•	
		
		-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 X11 X31 X41 X22 X32 X42

DSD

- 17 runs
- High cost
- Interaction
 added

Augment DOE

- + 8 runs typically
- Medium cost
- Interaction added

OFAT

- Valid without interaction
- Low cost
- One main effect only

- 6 runs for 7 variables (super-saturated)
 (screen out 2 first: X₂ of step 1 and X₁ of step 2)
- Two independent blocks for each process step
- No interaction between factors cross blocks
- Orthogonal data structure in each block
- Main effect considered only
- Low cost
- May need further DOE design

Proceed with strategy 2: cost saving

Two-step process strategy: narrow down parameters

Step 1: CTQ1 > 0.5 (good for CTQ1)

Determined range for X_1 , X_3 , X_4 ; X_2 fixed

+ve process

Step 2: $Y_4 < -5\%$ (sum net process, good for CTQ2 and CTQ3)

Applied Materials External

* Known benefit process most from past learning

Modeling via stepwise after GOSS Stepwise fit with main effect only

Optimized solution via desirability

- Each CTQ has validated model (P<0.05)
- Rsquare Adj. ~0.8
- VIF<5

- Provide with optimized solution with desirability > 0.96 (>>0.27>>0.02)
- Lock process parameter (high desirability)
- Next step: OFAT change duration for steps to find optimized

Summary

- Different JMP tools involved in data analysis throughout DMAIC project
 - Baseline capability analysis: Monte-Carlo simulation, Goal Plot
 - Root cause analysis: Multivariate Method, Graphic Analysis
 - DOE: Augment DOE, GOSS, Design Diagnostic
 - Model and prediction: Fitting, Prediction Profile, Interaction Profile
 - Screen condition of interest: Interactive Graph
 - Decision making: Desirability Function

Acknowledgement

Thanks Charles C Chen's mentor

