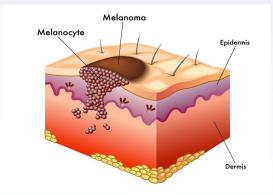
Application of JMP to Analyze Gene Expression Single-Cell RNA-seq Data in Melanoma Cells

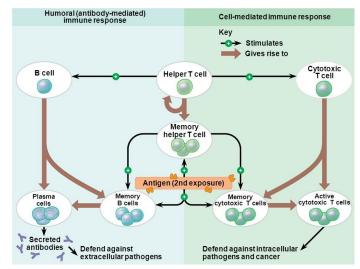
Catherine Zhou

Lynbrook High School

Introduction

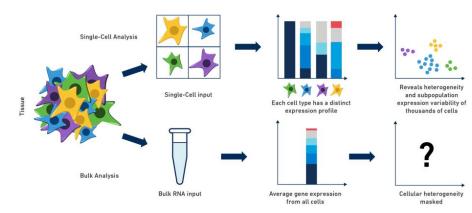
- Melanoma most aggressive type of skin cancer
 - Represents 65% of all deaths from skin cancer
- T cells
 - Type of white blood cell
 - ▷ Different types \rightarrow
 - Mount response against tumor, but become ineffective

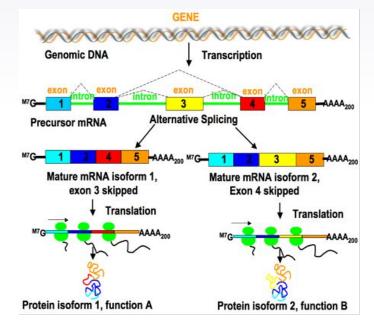




Single-cell RNA-sequencing

- Alternative splicing
- Bulk RNA sequencing vs single-cell RNA-sequencing (scRNA-seq)
- Issues arise when studying AS in scRNA-seq data

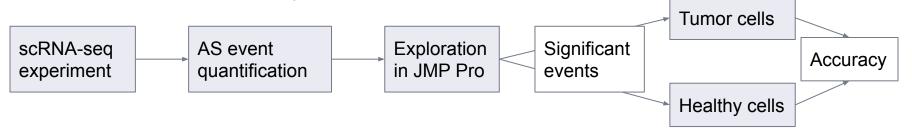




<u>Brulois et al., Nature (2020)</u>

Presentation Overview

- Question: Using scRNA-seq data, how can we find the most significant alternative splicing (AS) events differentiating cancerous T cells from healthy lymph node T cells?
 - Data processing in R
 - **JMP Pro:** Predictive modeling, clustering, visualization
 - Results: Initial analysis of scRNA-seq dataset of T cells in murine melanoma sample



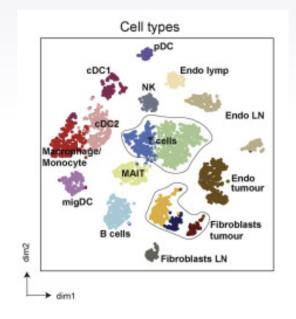
Dataset Preparation and Processing

- Used an scRNA-seq dataset of cells in lymph nodes with melanoma in mice¹
- Read alignment with STAR
- Detection of AS events with pipeline derived from rMATS
 - Generalized linear mixed model
 - Single sample with each cell
- Quantified exon skipping events with IJC and SJC
- Created matrix of all exons, cell barcodes, and IJC and SJC counts

¹Davidson, Sarah et al. *Cell* reports 31,7 **2020**

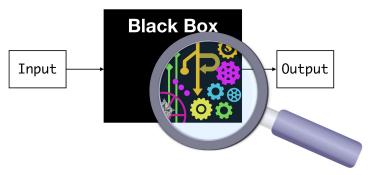
Dataset Processing

- Used cell labels previously defined in dataset
- Filtering AS events with R
 - At least 10 reads per junction
 - AS event has to be detected in >10 cells
 - AS event cannot have no variability across cells
 - Removed ~75% of exons
- Calculated PSI value = IJC/(IJC+SJC)



Application of Predictive Modeling in JMP

- Success of previous studies and models
- Advantages of using predictive modeling
 - Extract meaningful features
 - Classify data and predict outcomes with supervised learning
 - Recognize underlying relationship of data
- JMP Pro provides great interface for exploring different models
 - Also helps reduce "black box" effect



Predictive Modeling - Bootstrap forest

- Dataset size: 8044 variables (exons), 1014 rows (sample cells)
- Difficult to run analysis with large number of columns
- Bootstrap forest for variable selection
 - Predictor screening same function, slower
- Used tuning design table
 - Computationally efficient
 - Tuned number of trees (doesn't make huge difference)
- Created validation column
- Took top 100 exons, 50 exons, 10 exons

Bootstrap Forest - Accuracy

Tuning # of trees

Variable selection (validation set metrics)

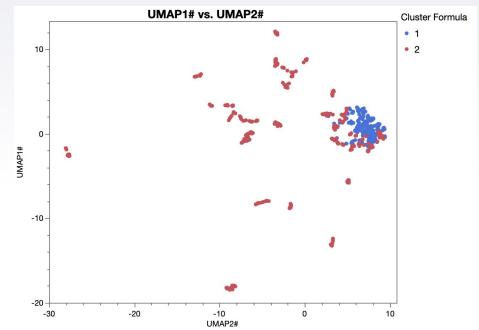
Model Validation-Set Summaries								N Terms	N Trees	N Trees Specified		Misclassification Bate	Avg -Log p	BMS Error	Avg Abs Error	
The fit below was the best of these models fit. N Trees Entropy Misclassification Avg Abs						All exons	3529	50	50		0.0690	0.2452	0.2587	0.1885		
N Terms	N Trees	Specified			Avg -Log p					• • •		6. S.S.				
3529 3529 3529	50 100 200	50 100 200	0.6258 0.5982 0.6083	0.0788 0.0837 0.0788	0.2318 0.2489 0.2426	0.2554 0.2633 0.2593	0.1758 0.1881 0.1809	Top 100	N Terms	N Trees	N Trees Specified		Misclassification Rate	Avg -Log p	RMS Error	Avg Abs Error
3529 3529 3529	300 400	300 400	0.6073 0.6045	0.0690	0.2420	0.2593	0.1809		68	30) 30	0.6310	0.0788	0.2285	0.2520	0.1547
3529	500 cation	500 S	0.6100	0.0788	0.2416	0.2576	0.1838	Top 50	N Terms	N Trees	N Trees Specified		Misclassification Rate	Avg -Log p	RMS Error	Avg Abs Error
Target	- Target		cell_ty		Training Rows:				37	40	40	0.6472	0.0640	0.2185	0.2474	0.1559
Validation Column: Validation Number of Trees in the Forest: 50			Test Rows:	Validation Rows: 2 Test Rows: 2 Number of Terms: 80			Тор 10	N Terms	N Trees	N Trees Specified		Misclassification Rate	Avg -Log p	RMS Error	Avg Abs Error	
Number of Terms Sampled per Split: 3529			Minimum S	Bootstrap Samples: 608 Minimum Splits per Tree: 10 Minimum Size Split: 5				8	30	30	0.6491	0.0837	0.2173	0.2537	0.1481	

Model Screening

- Ran top 10 exons on all models
 - Resulted in high accuracy across the board
- Prediction profiler
- Demo (Very quick!)

Clustering

- K-means clustering of all cells
 - More accurately classifies tumor vs normal cells
- UMAP on all cells
 - Shows potential new subsets
 - Created using JMP add-in



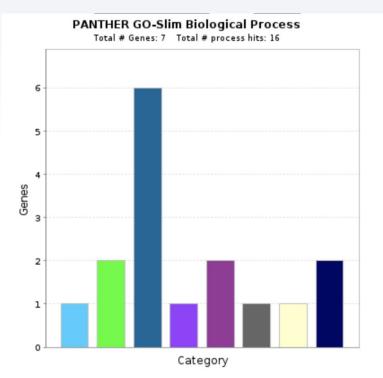
Gene enrichment analysis

Index	Name	P-value	Adjusted p-value	Odds Ratio	Combined score
1	RNA import into mitochondrion (GO:0035927)	0.002248	0.05604	624.59	3808.55
2	regulation of leukocyte degranulation (GO:0043300)	0.004043	0.05604	312.23	1720.62
3	regulation of myeloid leukocyte mediated immunity (GO:0002886)	0.004940	0.05604	249.76	1326.33
4	regulation of mast cell activation involved in immune response (GO:0033006)	0.004940	0.05604	249.76	1326.33
5	positive regulation of protein maturation (GO:1903319)	0.005388	0.05604	227.05	1185.99
6	regulation of mast cell degranulation (GO:0043304)	0.007178	0.05735	166.47	821.79
7	protein import into mitochondrial matrix (GO:0030150)	0.008519	0.05735	138.70	660.97
8	positive regulation of protein processing (GO:0010954)	0.008966	0.05735	131.39	619.44
9	regulation of protein processing (GO:0070613)	0.01120	0.05735	103.99	467.16
10	protein transmembrane import into intracellular organelle (GO:0044743)	0.01431	0.05735	80.48	341.79

Malignant tumors selectively retain mitochondrial genome and ETC function

T-cells are a type of leukocyte

Gene enrichment analysis

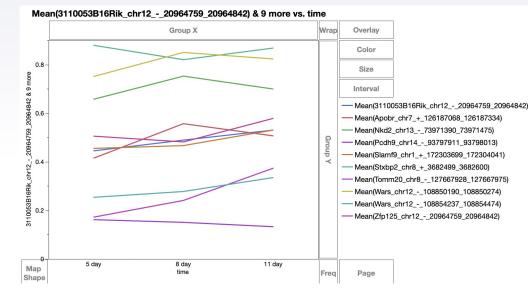


Color picker powered by

Notable genes

- Stpbx2
 - Involved in intracellular trafficking, control of SNARE (soluble NSF attachment protein receptor) complex assembly, and the release of cytotoxic granules by natural killer cells
- Slamf9
 - Encodes a member of the signaling lymphocytic activation molecule family, transmembrane
- Wars
 - Tryptophanyl-tRNA synthetase (WARS) catalyzes the aminoacylation of tRNA(trp) with tryptophan and is induced by interferon

Analysis of tumor gene expression over time



► Tomm20

- Inclusion of exon greatly increases over time
- Translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20) facilitates cancer aggressiveness and therapeutic resistance in chondrosarcoma.
- Roche ME, *et al.* Biochim Biophys Acta Mol Basis Dis, 2020 Dec 1. PMID 32920118

Conclusion

- Exploration of dataset facilitated by JMP demonstrates role of genes/exons in T cells in melanoma
- Code can be replicated in Python for more robust/detailed analysis
- Potential genes can aid in the discovery of novel and personalized approaches to cancer treatment
- Can perform in-vitro testing on top genes