Exercise Plan for Diabetic Patients

Mason Chen

Project Background

/Spring 2021

Family member diagnosed diabetes

๗of / Summer 2021

Use JMP to conduct Six Sigma DMAIC project
[®] / Summer 2021
Glucose level greater than $200 \mathrm{mg} / \mathrm{dL}$
\{ $\}$ mf / Fall 2021
Glucose level returned to normal $65-99 \mathrm{mg} / \mathrm{dL}$

Define Phase Project Overview

Voice of Customer (VOC) - family doctor suggested four potential actions to manage diabetes

- Eat healthy meals
- Take Metformin HCl 500 mg
- Take insulin
- Exercise at a higher heart rate to burn sugar

Critical to Quality (CTQ)

- Design a treadmill speed walking program
- Reduce blood glucose levels to below $100 \mathrm{mg} / \mathrm{dL}$
- Strengthen lower body muscles and prevent lower body injuries
- Reduce resting heart rate (bpm)

Define Phase Team

- Diabetes patient - checks blood glucose levels daily
- Family doctor - checks patient's progress every three months
- Physical therapist - helps prevent walking injury
- Six Sigma advisor - mentors DMAIC project
- JMP advisor - assists with analysis

Measure Phase Exercise Design

- Recommended target heart rate during exercise is $50-85 \%$ of maximum heart rate
- However, calcium score from CT scan is 131, which is at $72^{\text {nd }}$ percentile for the same age (indicates moderate to high risk of heart attack)
- Consulted with family doctor and decided to set target heart rate at 65-80\% range of maximum heart rate to avoid heart attack risk at high heart rate
- Chose brisk walking on treadmill because it offers a wide range of physical benefits, such as weight loss, improved cardiovascular health, lower blood pressure, and lower blood sugar

Measure Phase Maximum Heart Rate

- Maximum heart rate = 220-age
- At 52.5 years old, maximum heart rate $=$ $220-52.5=167.5 \mathrm{bpm}$
- Upper bound = $167.5 * 0.8=134 \mathrm{bpm}$
- Lower bound = $167.5 * 0.65=109 \mathrm{bpm}$

Measure Phase Hecrt Attack

- Average resting heart rate is usually between $60-80 \mathrm{bpm}$
- Exercise strengthens heart muscles and allows it to pump a greater amount of blood with each heartbeat, lowering the resting heart rate and increasing the amount of oxygen in muscles
- Goal is to also reduce resting heart rate (measured before exercise)

Analyze Phase Control Variables

Three control variables

- Walking uphill - adding inclines requires the heart, lungs, and muscles to work harder
- HIIT (high-intensity interval training) - HIIT involves short bursts of vigorous exercise alternated with low-intensity recovery periods
- Frequency - American Heart Association recommends 150 minutes of moderate-intensity exercise

Analyze Phase Treadmill Design

- Variables - incline (0 or 5 degrees) and speed ($0,1,1.5,2,2.5,3$. $3.2,3.4,3.6 \mathrm{mph}$)
- Upper speed limit is set at 3.6 mph to avoid going into running mode
- Conduct a full factorial DOE
- Rests between treatment levels to reach resting heart rate

Incline (Degrees)	Speed (MPH)	Heart Rate (BPM)
0	0	92
0	1	94
0	1.5	97
0	2	100
0	2.5	104
0	3	108
0	3.2	112
0	3.4	116
0	3.6	120
5	0	97
5	1	106
5	1.5	115
5	2	117
5	2.5	120
5	3	123
5	3.2	126
5	3.4	132
5	3.6	139

Anclyze Phase Fit Model

- R-square for stepwise regression $=97 \%$ and ANOVA p-value < 0.05
- Most studentized residuals within $+/-2 \sigma$
- Prediction expression includes all factors beside the incline*incline term

Prediction Expression

80.42727748
$+2.9333333333 \cdot$ Incline (Degrees)
$+9.9686556109 \cdot$ Speed (MPH)
$+($ Incline $($ Degrees $)-2.5) \cdot(($ Speed $(M P H)-2.2444444444) \cdot 0.4920782852)$
$+($ Speed $($ MPH $)-2.2444444444) \cdot(($ Speed (MPH) -2.2444444444$) \cdot 1.4919751545)$

Studentized Residuals

Anclyze Phase Interaction Profiler

- Heart rate has a linear relationship with incline (potential energy) and a quadratic one with speed (kinetic energy)
- Upper bound (134 bpm) at incline of 5 degrees and speed of 3.5 mph
- Lower bound (109 bpm) at incline of 0 degrees and speed of 2.9 mph

Interaction Profiles

Anclyze Phase Injury Risk

To avoid injury, use the following techniques when walking -

- Keep your head up and look forward
- Relax your neck, shoulders, and back
- Do not slouch or lean forward
- Keep your back straight and engage your abdominal muscles
- Walk with a steady gait, rolling your foot from heel to toe
- Loosely swing your arms

3D Motion Biomechanics

Running
 Blueprint

Variable Clustering

Cluster Members				
Cluster	Members	RSquare with Own Cluster	RSquare with Next Closest	1-RSquare Ratio
1	Basketball	0.596	0.061	0.43
1	Soccer	0.53	0.158	0.559
1	Tennis	0.262	0.083	0.805
1	Figure Skating	0.596	0.017	0.411
2	Swim	0.514	0.022	0.497
2	Snowboarding	0.398	0.047	0.632
2	Wrestling	0.673	0.02	0.334
3	Volleyball	0.414	0.029	0.603
3	Golf	0.717	0.026	0.29
3	Weight Lifting	0.328	0.003	0.674
4	Football	0.568	0.07	0.465
4	Ice Hocky	0.568	0.069	0.464
5	Baseball	0.584	0.061	0.443
5	Kickboxing	0.584	0.011	0.42

Lateral (left) \& medial (right) meniscus

Anterior Cruciate Ligament

The $A C L$ is located at the center of the knee joint from the backside of the thighbone (femur) to the front of the shinbone (tibia).

ACL Injury

- If tibia (shinbone) is moved too far forward or hyperextended, ACL can be torn
- Sudden deceleration or pivoting in place
- Foot is planted and body changes direction rapidly
- Common sports that are source of ACL tears:
- Basketball - jumping, landing, and pivoting
- Football - planting foot and rapidly changing direction, body contact
- Downhill skiing - ski boots higher than calf, moving impact of a fall to knee rather than lower ankle or leg
- Assesses the force of the knee to ground (and vice versa)
- Newton's Third Law (again)
- Too much force from knee to ground means knee experiences just as much force (ACL injury risk)
- Requires self-coordination between
flexion and extension of several body parts (hip, knee, etc.)
- Force and flexion are connected

Countermovement Jump Process

Experimental Design

- 7 different sensors were attached to a test subject while he conducted countermovement jump exercise on force plate (before fatigue)
- 1 hour fatigue period - running, squatting, basketball, jumping, cone drills, etc.
- After fatigue, conducted countermovement jump again to study fatigue factor
- Sensor data was transformed through a biomechanical model to simulate the 3Dmotion profiles

Individual Force Profile

- Pre-jump curve (transition from braking to propulsive phase) is smoother for before fatigue
- May indicate that different body parts are well coordinated (and no plateau)
- 2-step (soft and hard) landing mechanism has greater contrast during before fatigue

Multivariate Control Chart

- Multivariate Statistical Process Control Chart studies time domain difference
- More points outside Upper Control Limit for before then after fatigue

Before Fatigue

After Fatigue

Analyze \rightarrow Quality and
Process \rightarrow Model Driven
Multivariate Control Chart

Contribution Comparison

Improve Phase HIIT Design

- 0-2 minutes - warmup
- 2-14 minutes - 3 cycles of 2 minutes at lower limit ($109 \mathrm{bpm}, 0$ degrees, 2.9 mph) and 2 minutes at upper limit (134 bpm , 5 degrees, 3.5 speed)
- 14-15 minutes - cooldown

Improve Phase Validation Plan

- Measure CT coronary artery calcium score, glucose reading, and resting heart rate after doing the exercise program for three months
- Revise the workout plan (with stronger heart muscles and a lower resting heart rate, the treadmill settings should be changed to meet the bounds of the target heart rate)

Conclusions

- Applied DMAIC Six Sigma framework and JMP 16 platforms to help manage diabetes and lower heart attack risk
- Used Design of Experiment (DOE) to design a treadmill workout plan based on the target heart rate
- Currently completing improve and control phases

THANKSFOR LISTENING!

