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Analysis of Reliability Data

= The common assumption in the analysis of reliability data is that all
units on stress will eventually fail for specific failure mechanisms.

= However, how do we treat reliability data that doesn’t seem to follow
that assumption?



Reliability Stress Test Example

= A stress test of 100 units is run for 1,000 hours.

= There are 30 failures by 500 hours, but no additional failures in the
next 500 hours up to the test end.

= Question: Had the surviving 70 units continued on the stress test
beyond 1,000 hours, would we have seen additional, similar failures
or would there be no further failures?

= Question: Are we dealing with two different, mixed populations or
IS the data just behaving randomly?



Second Example: Major Computer Manufacturer’s
Incoming Inspection Reliability Data

Readout Stress Test Results for Gate Oxide Falls

Time (Hours) 0 24 48 168 500 1000
Rejects 0 201 23 1 1 1

Sample Size 58,133 58,133 57,932 10,000 2,000 1,999
Censored Units 0 0 47,909 7,999 0 1,998

Censored units are surviving devices removed from
stress following a readout time.

Company assumed failure distribution was lognormal.



Analysis Assuming a Lognormal Distribution

We have multi-censored, interval data. The JMP data table is
created as shown.

-:;] -
I:_
Time (Hours) 0 24 48 168 500 1000 - Start  End Freq
Rejects 0 201 23 1 1 1 1 0 24 207
Sample Size 58,133 58133 57,932 10,000 2,000 1,999 3 24 . 0
Censored Units 0 0 47,909 7,999 0 1,998 3 24 A8 33
Units surviving after readout 4 48 . 47909
24 Hrs: 58,133 — 201 = 57,932 Blank cells - 28 168 1
48 Hrs: 57,932 — 23 =57,909 under the End 6 188 . 2099
57,909 — 10,000 = 47,909 Censored column indicate 7 169 500 1
168 Hrs: 10,000-1 =9,999 .
9,999 — 2,000 = 7,999 Censored & C€NSOMNG 8] 5% : 0
500 Hrs: 2,000 — 1 = 1,999 time. | 500] 1000 1
1000 Hrs: 1,999 — 1 = 1,998 Censored 10 1000 ’ 1998



JMP’s Life Distribution Launch Window

We select Analyze > Reliability
and Survival > Life Distribution
and provide the input shown.

Note Start and End columns
entered for Y, Time to Event.

Censor Code is 0.

Confidence Interval Method
selected is Likelihood.

|-~ Life Distribution - JMP EA [2] — O X
Life Distribution | Compare Groups
Select Columns Cast Selected Celumns inte Roles Action
= 3 Columns A start OK
Al Start 4 End
45
4 Freq
| Censor | optional Remove
Censor Code: l:l. | Failure Cause ||c:?:cr.s. | Iﬂl
Select Confidence Interval Method | Freq || A Freq | Help
Likelihood * | Label || optional |
opind
|2 O~




JMP Life Distribution Report: CDF

Select the Lognormal g ="~ | ——
Distribution box option  fi= © =7 ) e
to display assumed w0 S ey o)

model fit to data. L il

The suitability of the my : ; I;:il 8
lognormal model fit is / |

. 0,002 1
qguestionable. S A
Start
. £ Statistics
Parameter Estimates 4 ModelComparisons
. Distribution AlCc  -2Loglikelihood BIC
f th ftt d L | Lognarmal 3152.7491 31487480 31706899
or the fitted Lognormal o =
1 1 1 1 > Nonparametric Estimate
distribution are provided. e .
Parameter Estimate  Std Error Lower 95% Upper 95% Criterion
location 70.6501403 12.6246802 511388684 102.34941  27Loglikelihood 271487480
scale 249800321 473551271 17.6605357 37.253408  AlCc 21527401
T50(Median)  4.81901e+30 6.084e<31 1.6193e+22 7.6574e=44  BIC 21706899

Mean (Wald Cl) 1.91e+166 2.501e+168 6.5551e+54 5.563e+277



JMP Life Distribution Report: Probability Plot

4~ Life Distribution
Frequency=zero encountered 2 times in table
> Event Plot

Select the Scale button for v R
the Lognormal =

oooooooooo o — 0,004
_ [0 004239 0.003

Distribution to display the i O

probability plot. Rt /
Few points are falling near ' | o

or on the lognormal model e
(straight line), indicating -

4 Statistics
again a questionable fit. e ——
Lognormal 3152.7491 3148.7489 3170.6899
" Summary of Data

Note parameter estimates.

4 ~/Parametric Estimate - Lognormal
Parameter Estimate  Std Error Lower95% Upper95%  Criterion

0.005+

location 70.6501493 12.6246803 459062307 95394068  -2*Loglikelihood 3148.7489
— < 3le 24.9890321 473551271 157075977 34.2704664  AlCc 3152.7491
—TSD(M edian) 4.8191e+30 6.084e+31 8.6467e+19 2.6861e+41 BIC 3170.6899

1.91e+166 2.501e+168 6.5551e+54 5.563e+277



Lognhormal Parameter Estimates,
Assumes All Units Can Eventually Fail

I =IQuantile Profiler

Tso = 4.82E+30 hours sigma = 24.99 . t _____________________________
4.82E+30 hours = 5.5E26 years! R
(For comparison, the age of the universe is s
estimated to be ~1.4E+10 years.) e

2720292 800+

The lognormal Quantile Profiler estimates 535 g (0934372 E

“ 7498244]

hours to reach 0.5% failures, but 272,929 hours

|||||||||||
mmmmmm

(~31 years) to reach 1% failures. 58 2




Defect Models: Mortals Vs. Immortals

= |n contrast to the usual assumption that all units on stress can
eventually falil, if a defective subpopulation exists, only the fraction
of the units containing the defect may be susceptible to failure.
These are called mortals.

= Units without the fatal flaw are not susceptible to failure for the
observed cause. These are called immortals. Immortals can
eventually fail but very, very far out in time and most likely for other
reasons.



Let’s Consider a Defect Model for the Data

Time (Hours) 0 24 48 168 500 1000
Rejects 0 201 23 1 1 1

Sample Size 58,133 58,133 57,932 10,000 2,000 1,999
Censored Units 0 0 47,909 7,999 0 1,998

= For the incoming inspection data, we assume that nearly 99% of the
failures occurring by 48 hours were mortal failures, implying a
mortal sample size of (201+23)/0.99 = 227.

= Practically, 100% of the mortal failures occur by 168 hours. Any
failures thereafter are not likely related to the defective
subpopulation and could, for example, be handling induced.



Modeling with Defective Subpopulations

= Then, a possible model implies a fraction
mortal subpopulation in the time zero

LT

] Start End Freq Mortals Freq
sample size of 227/58,133 = 0.39%. 1 Y 201 201

2 24 . 0 0

= We now add a Mortals column to the 3 24 48 23 23
data table as shown and run JMP’s 4 48 | 47909 2
Lifetime Distribution using the Mortal T e .
Freq column for the Freq entry. T 169|500 1 0

= Note that the model estimates that 2 3 :33 1000 ? E
(~1%) of the 227 mortals are included 10 1000 . 1998 0

with the 47,909 censored at 48 hours.



Llfe Dlstrlbutlon of the Mortals

Life Distribution  Compa

Select Columns

=14 Columns
Start

4 Freq

4 Mortals Freq

re Groups

i Event|| 4 Start

4 End
ptional numeri

= z
z/|%||3 glo| g
=212 &[] T

ptional
4 Mortals Freq

@[> O~

" Fitting the lognormal
distribution to the
failure times of the
mortals provides
estimates T, = 10.6
hours and sigma =
0.68, which are more
reasonable and realistic

4 Compare Distributions

Distribution Scale
Nonparametric ()
Lognorma I
] Weibull
[] Loglogistic
[] Frechet
[] Mormal
[ sev
[] Logistic

Probability

values.
4 ~|Parametric Estimate - Lognormal
Parameter Estimate
location 2.359028
—  srgle 0.680983
— | 00(Median) 10.580659
Mean 13.341729

Std Error Lower 95% Upper95%
0.1991693  1.968663 2.749392
0.1432282  0.400261 0.961705
21073429  7.161095 15.633131
15241647 10.665237 16.689900

0.995 /
0.99 /
0.98

0.95 /
0.9

30 40 5060 100 200 300 400 500 1000
Criterion
-2*Loglikelihood 180.17806
AlCc 184.23163
BIC 191.02796



Defective Subpopulation Models

= This example shows if we don’t consider mortals vs.
Immortals in the analysis, an incorrect assumption can
strongly affect the results.

= Projections of field reliability can be biased unless the
possible existence of a limited number of defective units is
recognized and taken into consideration.



Spotting a Defective Subpopulation
Graphical Analysis

= Assume that a specified failure mode follows a lognormal
distribution.

= Plot the data using a lognormal probability plot. If instead of following
a straight line, the points seem to curve away from the cumulative

percent axis, it's a signal that a defective subpopulation may be
present.

= |ftestis run long enough, expect the plot to bend over asymptotic to
the cumulative percent line that represents the proportion of
defectives in the sample.



Spotting a Defective Subpopulation

The probability plot is based on the total sample (mortals and immortals).
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The curve
asymptotically
approaches a
cumulative percent
line that represents
the proportion of
defective units in the
sample.



Plotting the Defective Subpopulation Data

The probability plot is based only on the mortal subpopulation.

99.99 998 99989590 8070 50 3020 10 5 2 0.5 0.1 0.01

The probability plot
. | supports the fitted
N distribution model.
100 1 O S T I O | | |

0.01 01 05 2 5 10 2030 50 7080 90 959899 99.8 99.99
Cumulative Percent Failures



Defect Model: Observed CDF

= The observed CDF F_,.(t) is

Fobs(t) =P Fm(t)

where F(t) is the CDF of the mortals and p is the fraction of
mortals (units with a fatal defect) in the total sample size.

For example, if there are 25% mortals in the population, and the

mortal CDF at time t is 40%, then we would expect to observe
about

0.25x0.40 = 0.10

or 10% failures in the total random sample at time t.



Example 9.5 From Applied Reliability, 3" ed.*

For a type of semiconductor module, it is known that a small fraction of
hermetically sealed modules can have moisture trapped within the seal
which increases the likelihood of a failure mechanism that causes these
units to fail early. It is desired to fit a suitable life distribution model to
these failures.

Test parts were specially made to greatly increase the chance of
enclosing moisture typical of the defects in the normal manufacturing
process. 100 randomly selected parts were stress tested for 2,000 hours.

15 failures occurred at the following times (in hours): 597, 623, 776, 871,
914,917, 1021, 1117, 1170, 1182, 1396, 1430, 1565, 1633, and 1664.

By the end of test, 85 units had survived (censored observations).



Example 9.5 Data Table of Failure and Censor Times

Since we have exact failure ‘

times and a single
censoring time, the times
are entered into a JMP data

Failure Times Censor Freq
597 1

623
776
871

(=== R R N R R FU Y T Y [«

1

1 1

1 1

1 1

914 1 1

table as shown. 97 1
1021 1 1

1117 1 1

1170 1 1

1182 1 1

11 1396 1 1

12 1430 1 1

85 surviving units are singly - e
15 1664 1 1

censored at 2,000 hours. —_ s ] 1 1



JMP’s Survival Platform Launch Window

We select

Analyze>Re| Iabl I Ity TL Survival / Reliability - JMP Pro - O >
an d Su rvi Val >Su rV|Va| Fits distributions to time-to-event data.

-Select Columns -Cast Selected Columns into Roles ——————————————— - Action
and cast the columns © 4 Columns e 4 Fatore T =
as ShOWﬂ . 4 Failure Times - optional numeric

4 esnr Grouping || optional
Check the box to plot BT | | [ o | 4 Censor [ Remove |
Fal I u re In Stead O? Plot Failure Instead of Survival Freq 4l Freqg
. Censor Code Ijl By optional
Survival.
Tatl |'ﬂ'| 2 O
Enter “0” for the Censor

Code.



Nonparametric CDF Failure Plot

4 = Product-Limit Survival Fit

4 Failure Plot

Adjust vertical scale and add
gridlines to both axes.

0.15+

Note that the fraction failing is
flat from the last failure to 2000 0.10-
hours, a period of 336 hours.

Failing

0.05+

Yet, in the same time period
prior to the last failure, there

were five failures. R e
Failure Times
We Suspect a pOSS|bIe Time to event: Failure Times
. - Censored Censor
defective subpopulation. s

Frequency counts from Freq



Maximum Likelihood Estimation

Solving for the parameters in the defect model using the method of
maximum likelihood (ML) is a simple extension of ML theory for
censored data.

The basic building blocks of the ML equations are the PDF f (t) and the
CDF F(t). If, however, only a fraction p of the population is susceptible to
the failure mechanism modeled by F(t), then pF(t) is the probability a
randomly chosen component fails by time t. Similarly, the "likelihood" of
a randomly chosen component failing at the exact instant t is pf(t).

The rule for writing likelihood equations for the defect model is to
substitute pf and pF wherever f and F appear in the likelihood equation.



MLE Equations

The standard likelihood equation for Type | censored data (n on
test, r fails at exact times t;, t,, . . ., t, and (n - r) units censored at
time T = the end of test) is given by

LK = [ [ - F™

If only a fraction p of the population is susceptible to failure, the ML
equation for the defect model becomes

LK = p'[ ] [fCe L - pF(D]™

ML estimates are the values of p and the population parameters
that maximize LIK, or equivalently, minimize L = -log LIK, an easier
equation to work with.



JMP’s Life Distribution Platform

- - Failure Times Censor Freq

JMP’s Life Distribution platform b |
under Reliability and Survival uses : el 1]
the MLE method to fit defect models. 5 o4 1 1
3] 917 1 1

To illustrate, we use the original ! oy 1
Example 9.5 data table. 9 o 1
10 1182 1 1

11 1396 1 1

12 1430 1 1

13 1565 1 1

14 1633 1 1

15 1664 1 1

0 5

(=]

2000

(]



Life Distribution Column Roles

| Life Distribution - JMP Pro - a by
Life Distribution | Compare Groups
I n I au n C h WI n d OW, CaSt -Select Columns ————————— - Cast Selected Columns into Roles -Action ——
. ¥4 Colurmns A Failure Ti oK
columns into roles as shown. |iaere e Rt | ———
4 Censor
- qu Rermnove
We select Likehood for the conrcoie— o 4 Consor
- ) ) - [ Failure Cause | optional Help
Select Confidence Interval Method
Confidence Interval - =
Label optional
M et h O d . By optional

Censor Code is 0.

e~ [~




Life Distribution Report Window

4 =|Life Distribution
I Event Plot

4 Compare Distributions
Distribution Scale

The first plot displayed is

[1 Lognormal
[C] Weibull

the Nonparametric CDF

[] Frechet

] Normal

estimate of the cumulative
fraction failures probability
versus failure times.

[CNONGNONONONG]
NEREEEN

o
f
1

|

Probability

4 Statistics
P Summary of Data

P Nonparametric Estimate



Fitting Lognormal Distribution

Click only the Lognormal
Under Life Distribution box to display the

Nonnegative, which

' i 4c Distributi
assumes all units can fail. DERAEINE RO

Distribution Scale
Monparametric (8
Lagnarmal

Fit All Distributions l [ ] Weibull

»

[ ] Loglagistic
[ ] Frechet

[ ] Mormal

[ ] SEV

[ ] Logistic

Fit &ll Monnegative

I Fit All D5 Distributions

E
et
o
et
o
et
o
et



Life Distribution Report (CDF)

The report includes the
lognormal CDF plot,
Profilers, and
Parametric Estimates.

The lognormal fit is poor.

0.2

‘ 4 = Distribution Profiler




Loghormal Probability Plot

Click the
Lognormal
Scale to
display the
lognormal
probability
plot.

The
lognormal
fit is poor.

4 Compare Distributions

Distribution Scale
Nonparametric
Lognormal

[] Weibull

[] Loglogistic

[ Frechet

] Nermal

[ sew

[] Logistic

OOC0oO0C®O

Probability

0.2+

0.1+

0.05

0.02

0.01
0.005- =

0.001

<

-

600 700 800

T
1000
Failure Times

4 = Distribution Profiler

0.2
2 0.078469
2 [0.04281,
5 0.1+
2 0.133086]
-
D_
o o o
(=] (o] (o]
= (gl =
— — ™~
1298.5
Failure
Times



Fitting DS Lognormal Distribution

Fit All DS Distributions

. ] oglogistic
DS Lognormal is  Tmires

D5 Lognormal

selected. (] s Weibui
[] DS Loglogistic
[] DS Frechet

Under Life Distribution g
hotspot select Fit All DS D =
Distributions, which fits a S o
Defective Subpopulation Ofect O —
model. CIsev o —
[ ] Logistic ] —_—
[ | LEV o —
div Life Distribution [] Exponential o —
' Fit All Distributions [] LegGenGamma -
[ GenGamma —
Fit All Nonnegative [] TH Lognormal —
[ ] TH Weibull —_—



Life Distribution Report for DS Lognormal

4 = Distribution Profiler

- 0.2

Click Nonparametric
Scale. The fit is very good. ‘ -

DS Lognormal L. T )y

parameter estimates now

armal

DS Log

Probability
\
L]
.\
.

000
1500
2000

2000

include an estimate for Vi oy
the fraction defective '/___———_
parameter p = 0.158. —_—

TSO = exp(7.014...) = 1,112, <~ ParametricEstimate - DS Lognormal

Parameter Estimate  Std Error Lower95% Upper95%  Criterion
] location 70141224 0.11038028 6.8188691 7.5926206 -2*Loglikelihood 301.07812
S|gma = (0.353 scale 03531441 008697588 02396830 07360846  AICc 307.32812
D 01576122 003884920 0.0929089 03126496  BIC 314.89363



Hypothesis Test (Requested Addition)

If ML estimates have been calculated for a suspected defect model, we
can test the hypothesis p =1, (i.e., there is no defect subpopulation)
versus the alternative defect model.

Let L1 be the minimum log likelihood for the standard (non-defect)
model and let L2 be the minimum log likelihood for the defect model.
The likelihood ratio (LR) test statisticis A = 2(L1 - L2).

If the hypothesis p = 1 is true, A will have approximately a chi-square
distribution with 1 degree of freedom. If A is larger than, say, y2,.95 =
3.84, then we reject the standard model and accept the defect model at
the 95% confidence level.



Hypothesis Test on Example 9.5 Data

The LR test statisticis A = 2(L1 - L2).

The -2*LogLikehood estimates are provided under the Criterion column.
2(L1) = 307.18419

4~ Parametric Estimate - Lognormal 2(L2) = 30107812
::Ji::r;[?;:ta Btig';s; 5“:}2'3’;3’ Loweg;?;f’ Upper;;:; g:.zrg;mL:;elihood 307.18419 TeSt StatIStIC )\ = 2(L1 - L2) ~
TSOMedin) | 604742 20336705 3669060 15616770 BIC. seasss 307.2-301.1=6.1
Mean (Wald Cl) 10916.720 6383.7665 3470.0471 34343.851

4= Parametric Estimate - DS Lognormal Since A is |arger than le;% =
otation 70141524 011033006 eocacet pesseste | areguieinoos sovorery|  3-84, We reject the standard
e puoms s theec BE SET model and accept the defect

model at =95% confidence level.



Defect Models in the Reliability Literature

= Google “defective subpopulations in reliability data” for
further information.

= For a detailed case study involving accelerated testing in the
presence of defective subpopulations, see reference 2.

= |n the reliability literature, such models are also called Limited
Failure Population (LFP) Models.?



Summary

= |tis important in the analysis of reliability data to recognize
and factor in the presence of defective subpopulations (DS)

for unbiased results.

= JMP’s Life Distribution platform has the capability to analyze
DS data using both visual and MLE methods.
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