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Analysis of Reliability Data

▪ The common assumption in the analysis of reliability data is that all 
units on stress will eventually fail for specific failure mechanisms. 

▪ However, how do we treat reliability data that doesn’t seem to follow 
that assumption?



Reliability Stress Test Example

▪ A stress test of 100 units is run for 1,000 hours. 

▪ There are 30 failures by 500 hours, but no additional failures in the 

next 500 hours up to the test end.

▪ Question: Had the surviving 70 units continued on the stress test 

beyond 1,000 hours, would we have seen additional, similar failures 

or would there be no further failures?

▪ Question: Are we dealing with two different, mixed populations or 

is the data just behaving randomly?



Second Example: Major Computer Manufacturer’s 
Incoming Inspection Reliability Data

Readout Stress Test Results for Gate Oxide Fails

Censored units are surviving devices removed from 

stress following a readout time.

Company assumed failure distribution was lognormal.



Analysis Assuming a Lognormal Distribution
We have multi-censored, interval data. The JMP data table is 
created as shown.

Units surviving after readout

24 Hrs: 58,133 – 201 = 57,932

48 Hrs: 57,932 – 23 = 57,909

57,909 – 10,000 = 47,909 Censored

168 Hrs: 10,000 - 1  = 9,999

9,999 – 2,000 = 7,999 Censored

500 Hrs: 2,000 – 1 = 1,999 

1000 Hrs: 1,999 – 1 = 1,998  Censored

Blank cells        

under the End

column indicate 

a censoring 

time.



JMP’s Life Distribution Launch Window

We select Analyze > Reliability 
and Survival > Life Distribution 
and provide the input shown.

Note Start and End columns 
entered for Y, Time to Event.

Censor Code is 0.

Confidence Interval Method 
selected is Likelihood.



JMP Life Distribution Report: CDF
Select the Lognormal 
Distribution box option 
to display assumed
model fit to data.

The suitability of the 
lognormal model fit is 
questionable.

Parameter Estimates 
for the fitted Lognormal 
distribution are provided.



JMP Life Distribution Report: Probability Plot

Select the Scale button for 
the Lognormal 
Distribution to display the 
probability plot.

Few points are falling near 
or on the lognormal model 
(straight line), indicating 
again a questionable fit.

Note parameter estimates.



Lognormal Parameter Estimates, 
Assumes All Units Can Eventually Fail

T50 = 4.82E+30 hours sigma = 24.99

4.82E+30 hours = 5.5E26 years! 

(For comparison, the age of the universe is 
estimated to be ~1.4E+10 years.)

The lognormal Quantile Profiler estimates 535 
hours to reach 0.5% failures, but 272,929 hours 
(~31 years) to reach 1% failures.



Defect Models: Mortals Vs. Immortals

▪ In contrast to the usual assumption that all units on stress can 
eventually fail, if a defective subpopulation exists, only the fraction
of the units containing the defect may be susceptible to failure. 
These are called mortals.

▪ Units without the fatal flaw are not susceptible to failure for the 
observed cause. These are called immortals. Immortals can 
eventually fail but very, very far out in time and most likely for other 
reasons. 



Let’s Consider a Defect Model for the Data

▪ For the incoming inspection data, we assume that nearly 99% of the 
failures occurring by 48 hours were mortal failures, implying a 
mortal sample size of (201+23)/0.99 ≈ 227. 

▪ Practically, 100% of the mortal failures occur by 168 hours.  Any 
failures thereafter are not likely related to the defective 
subpopulation and could, for example, be handling induced.



Modeling with Defective Subpopulations
▪ Then, a possible model implies a fraction 

mortal subpopulation in the time zero 
sample size of 227/58,133 = 0.39%.

▪ We now add a Mortals column to the 
data table as shown and run JMP’s 
Lifetime Distribution using the Mortal 
Freq column for the Freq entry.

▪ Note that the model estimates that 2 
(~1%) of the 227 mortals are included 
with the 47,909 censored at 48 hours.



Life Distribution of the Mortals
Fitting the lognormal 
distribution to the 
failure times of the 
mortals provides 
estimates T50 = 10.6 
hours and sigma = 
0.68, which are more 
reasonable and realistic 
values.



Defective Subpopulation Models

▪ This example shows if we don’t consider mortals vs. 
immortals in the analysis, an incorrect assumption can 
strongly affect the results.

▪ Projections of field reliability can be biased unless the 
possible existence of a limited number of defective units is 
recognized and taken into consideration.



Spotting a Defective Subpopulation

Graphical Analysis

▪ Assume that a specified failure mode follows a lognormal 
distribution.

▪ Plot the data using a lognormal probability plot. If instead of following 
a straight line, the points seem to curve away from the cumulative 
percent axis, it’s a signal that a defective subpopulation may be 
present.

▪ If test is run long enough, expect the plot to bend over asymptotic to 
the cumulative percent line that represents the proportion of 
defectives in the sample.



Spotting a Defective Subpopulation
The probability plot is based on the total sample (mortals and immortals).

The curve 

asymptotically 

approaches a 

cumulative percent 

line that represents 

the proportion of 

defective units in the 

sample. 



Plotting the Defective Subpopulation Data
The probability plot is based only on the mortal subpopulation.

The probability plot 

supports the fitted 

distribution model.



Defect Model: Observed CDF
▪ The observed CDF Fobs(t) is

Fobs(t) = p Fm(t)

where Fm(t) is the CDF of the mortals and p is the fraction of 
mortals (units with a fatal defect) in the total sample size.

▪ For example, if there are 25% mortals in the population, and the 
mortal CDF at time t is 40%, then we would expect to observe 
about 

0.25x0.40 = 0.10

or 10% failures in the total random sample at time t.



For a type of semiconductor module, it is known that a small fraction of 
hermetically sealed modules can have moisture trapped within the seal 
which increases the likelihood of a failure mechanism that causes these 
units to fail early. It is desired to fit a suitable life distribution model to 
these failures.

Test parts were specially made to greatly increase the chance of 
enclosing moisture typical of the defects in the normal manufacturing 
process. 100 randomly selected parts were stress tested for 2,000 hours.

15 failures occurred at the following times (in hours): 597, 623, 776, 871, 
914, 917, 1021, 1117, 1170, 1182, 1396, 1430, 1565, 1633, and 1664.

By the end of test, 85 units had survived (censored observations). 

Example 9.5 From Applied Reliability, 3rd ed.1



Example 9.5 Data Table of Failure and Censor Times

Since we have exact failure 
times and a single 
censoring time, the times 
are entered into a JMP data 
table as shown.

85 surviving units are singly 
censored at 2,000 hours.



JMP’s Survival Platform Launch Window
We select 
Analyze>Reliability 
and Survival>Survival 
and cast the columns 
as shown.

Check the box to plot 
Failure Instead of 
Survival.

Enter “0” for the Censor 
Code.



Nonparametric CDF Failure Plot
Adjust vertical scale and add 
gridlines to both axes.

Note that the fraction failing is 
flat from the last failure to 2000 
hours, a period of 336 hours. 

Yet, in the same time period 
prior to the last failure, there 
were five failures.

We suspect a possible 
defective subpopulation.



Maximum Likelihood Estimation
Solving for the parameters in the defect model using the method of 
maximum likelihood (ML) is a simple extension of ML theory for 
censored data. 

The basic building blocks of the ML equations are the PDF f (t) and the 
CDF F(t). If, however, only a fraction p of the population is susceptible to 
the failure mechanism modeled by F(t), then pF(t) is the probability a 
randomly chosen component fails by time t. Similarly, the "likelihood" of 
a randomly chosen component failing at the exact instant t is pf(t).

The rule for writing likelihood equations for the defect model is to 
substitute pf and pF wherever f and F appear in the likelihood equation.



MLE Equations
The standard likelihood equation for Type I censored data (n on 

test, r fails at exact times t1, t2, . . . , tr, and (n - r) units censored at 

time T = the end of test) is given by

If only a fraction p of the population is susceptible to failure, the ML 

equation for the defect model becomes

ML estimates are the values of p and the population parameters 

that maximize LIK, or equivalently, minimize L = -log LIK, an easier 

equation to work with. 

i=r
n-r

i

i=1

LIK = [ f( )][1 - F(T)]t

i=r
r n-r

i

i=1

LIK = [ f( )][1 - pF(T)p ]t



JMP’s Life Distribution Platform

JMP’s Life Distribution platform 
under Reliability and Survival uses 
the MLE method to fit defect models. 

To illustrate, we use the original 
Example 9.5 data table. 



Life Distribution Column Roles

In launch window, cast 
columns into roles as shown.

We select Likehood for the 
Confidence Interval 
Method.

Censor Code is 0.



Life Distribution Report Window

The first plot displayed is 
the Nonparametric CDF 
estimate of the cumulative 
fraction failures probability 
versus failure times.  



Fitting Lognormal Distribution

Under Life Distribution 
hotspot select Fit All 
Nonnegative, which 
assumes all units can fail.

Click only the Lognormal
box to display the 
lognormal CDF plot.



Life Distribution Report (CDF)

The report includes the 
lognormal CDF plot, 
Profilers, and 
Parametric Estimates.

The lognormal fit is poor.



Lognormal Probability Plot
Click the 
Lognormal
Scale to
display the 
lognormal 
probability 
plot.

The 
lognormal 
fit is poor.



Fitting DS Lognormal Distribution

DS Lognormal is 

selected. 

Under Life Distribution 
hotspot select Fit All DS 
Distributions, which fits a 
Defective Subpopulation 
model.



Life Distribution Report for DS Lognormal
Click Nonparametric 
Scale. The fit is very good.

DS Lognormal
parameter estimates now 
include an estimate for 
the fraction defective 
parameter p = 0.158. 

T50 = exp(7.014…) = 1,112. 

Sigma = 0.353  



Hypothesis Test (Requested Addition) 
If ML estimates have been calculated for a suspected defect model, we 
can test the hypothesis p = 1, (i.e., there is no defect subpopulation) 
versus the alternative defect model.

Let L1 be the minimum log likelihood for the standard (non-defect) 
model and let L2 be the minimum log likelihood for the defect model. 
The likelihood ratio (LR) test statistic is λ = 2(L1 - L2). 

If the hypothesis p = 1 is true, λ will have approximately a chi-square 
distribution with 1 degree of freedom. If λ is larger than, say, 2

1;95 = 
3.84, then we reject the standard model and accept the defect model at 
the 95% confidence level. 



Hypothesis Test on Example 9.5 Data 
The LR test statistic is λ = 2(L1 - L2).

The -2*LogLikehood estimates are provided under the Criterion column. 

2(L1) = 307.18419

2(L2) = 301.07812

Test Statistic λ = 2(L1 - L2) ≈ 

307.2 - 301.1 = 6.1 

Since λ is larger than 2
1;95 = 

3.84, we reject the standard 

model and accept the defect 

model at ≈95% confidence level.



Defect Models in the Reliability Literature

▪ Google “defective subpopulations in reliability data” for 
further information.

▪ For a detailed case study involving accelerated testing in the 
presence of defective subpopulations, see reference 2.

▪ In the reliability literature, such models are also called Limited 
Failure Population (LFP) Models.3



Summary

▪ It is important in the analysis of reliability data to recognize 
and factor in the presence of defective subpopulations (DS) 
for unbiased results.

▪ JMP’s Life Distribution platform has the capability to analyze 
DS data using both visual and MLE methods.
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