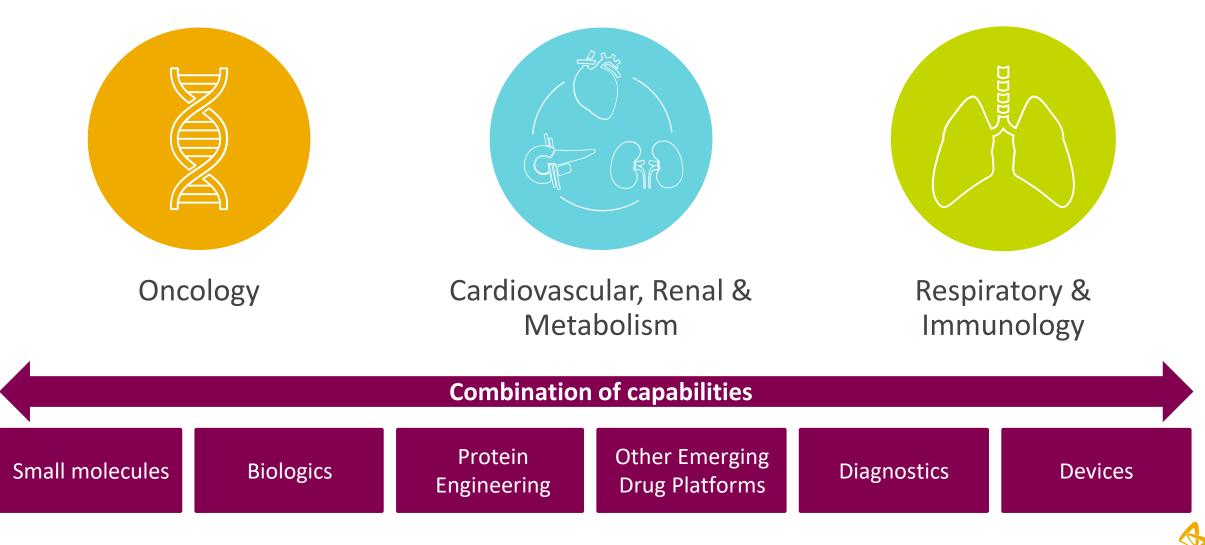


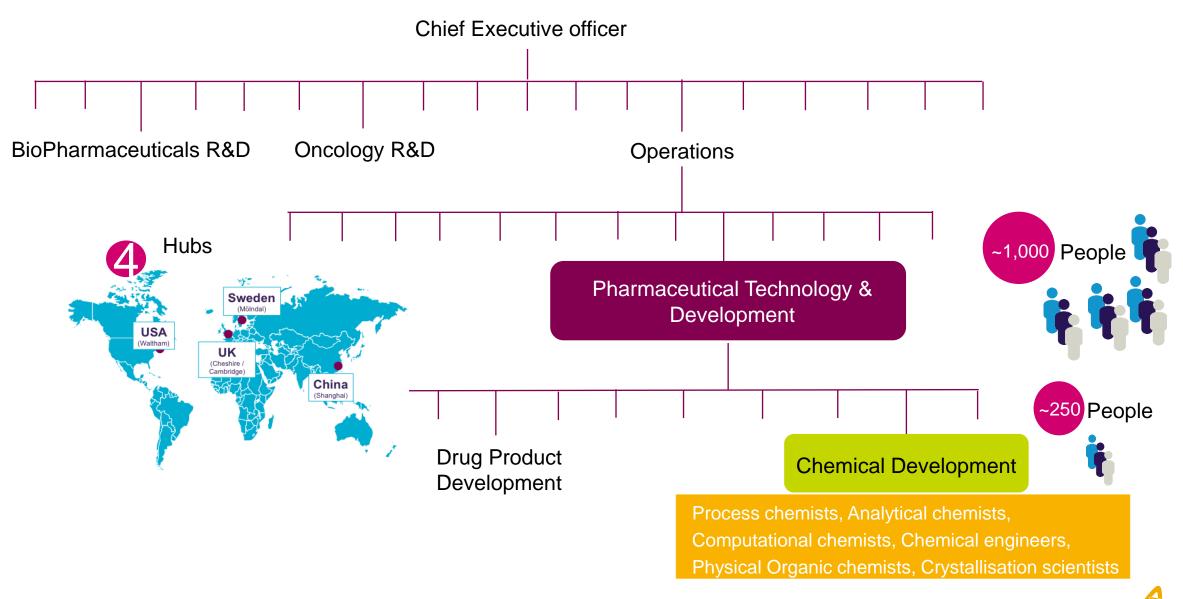
#### Combining DOE and First-Principles Science to Maximize Yield and Minimize Impurity with Fit Curve CDOE

JMP Discovery Summit - Americas

Brian Taylor, Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, *Macclesfield*, *UK* 


Chris Gotwalt, JMP

# AstraZeneca 2


October 2021




#### Focus on three main therapy areas and across key platforms

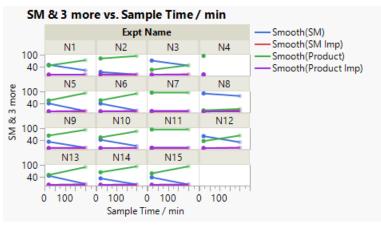


#### PT&D in AstraZeneca



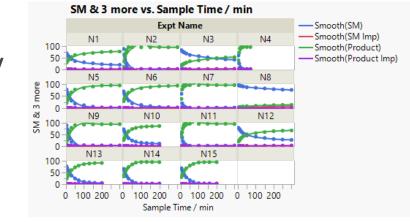
#### Lifecycle of Medicine




AstraZeneca spans the **entire life-cycle** of a medicine from research and development to manufacturing and supply, and the global commercialisation of primary care and speciality care medicines.

#### PT&D develops technologies to support products from **PhII clinical studies** through to **post product launch**

Chemical Development Design, develop and optimise synthetic routes, processes and analytical methods for the Active Pharmaceutical.


## Lab Experimentation & DoE's Analysing Profiles

#### Early 2000s – 1or2 samples/Expt



More experiments are routinely sampled to produce a reaction profile or distribution

#### 2020s – 12 Samples/Expt



- Analysing DoEs with reaction profiles from sampling experiments' over time
  - Strategies aim to reduce multiple response results into a single value
  - A common approach is to select a slice in time to analyse.
  - What process insight is lost from analysing a response in slices?
- What analysis approach can make use of all the time course reaction profile data?

What analysis approach can make use of all the time course reaction profile data?

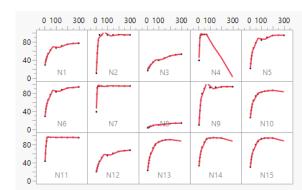
## Can we refine the analysis to consider subject matter knowledge?

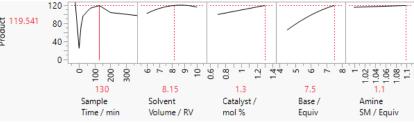
Grand Presentation Title: Combining DOE and First-Principles Science to Maximize Yield and Minimize Impurity with Fit Curve CDOE

What we do in JMP: Analyse DoE Reaction Profiles with Fit Curve and CDOE



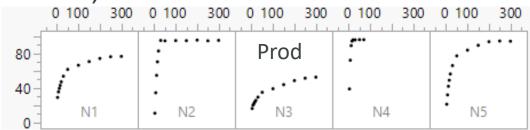
### DoE Case Study Background

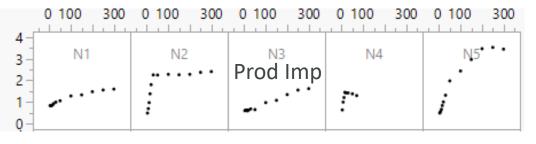

- 4 factor Definitive Screening Design (Conference Matrix Derived)
  - Solvent Volume 6.0 10.0 rel vols, Catalyst Charge 0.70 -1.30 mol%, Base Charge 4.50 -7.50 eq, Amine Starting Material 1.00 - 1.10 eq
- Sampling: 12 samples per experiment.
  - Time points selected to coincide every time 10% conversion expected to happen.
  - Each experiments samples time points can differ
- Process Response Target Criteria


| Responses                      | Target Criteria |
|--------------------------------|-----------------|
| -                              |                 |
| SM – Starting Material         | Minimise        |
| SM Imp – Starting Material Imp | Minimise        |
| Prod – Product                 | >95 %           |
| Prod Imp – Product Impurity    | <2 %            |
| Reaction Time                  | 120 – 240 Mins  |

• Prod Imp priority to control

## JMP Functional Data Explorer in combination with DoE to Chemical Reactions

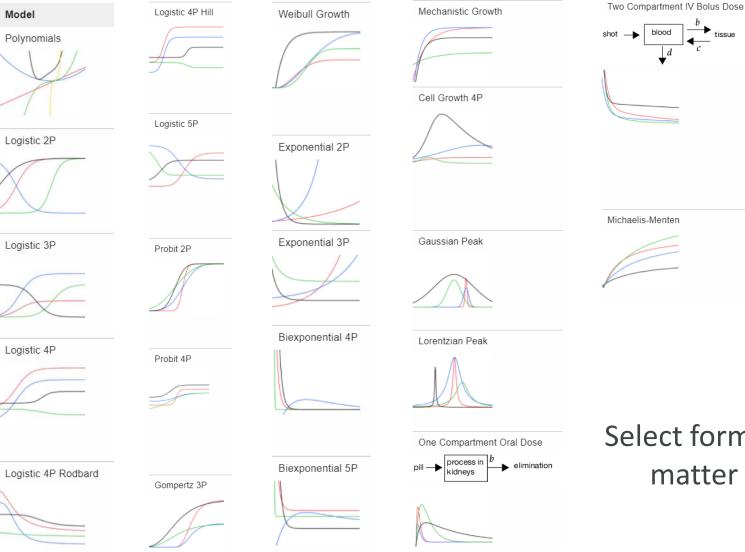

- FDE flexible Spline fitting approach can be a strength and a weakness for fitting smooth continuous time course data
  - Countless shapes can be approximated
  - Unrealistic shapes are approximated
    - when domain specific knowledge infers what shapes of profiles to expect
- Combining FDE and DoE has strengths and weakness
  - FDoE converts output to relate profiles to factors studied in the DoE
  - Unrealistic predictions estimated negative values, values greater than theoretical maximum. Eg Prod Max 100%, prediction 119%.






## Chemical Reaction profile shape properties

- Natural Minimum and Maximum bound
  - Starting Materials and Products bounds: Minimum 0%, Maximum 100%.
- Profile Gradient
  - Montonic increasing or decreasing
  - Plateau travels to an optima and remains at optima over time
- Single Profile Peak/Trough
  - Product Peak (maxima) reached, reaction held longer, decay occurs for some reason
- End of Reaction (EOR) can occur over different time scales (SM or Prod plateaus)
  - 50mins, 300 mins or 1200mins.
- Sum of Response Area % results add up to 100%.
  - SM + SM Imp + Prod + Prod Imp = 100%






### Functional DoE with Fit Curve

- Pre-loaded equations represent profiles more likely observed in Chemical Reactions
  - Some flexibility lost on fitting profile shapes
  - The profiles shapes fitted assumed to resemble more closely the underlying physical equations controlling chemical reaction profiles
  - Fitted curves compared to determine best fitted to use in DoE Modelling
    - Fit curve formula parameters used as responses in DoE Modelling

#### Fit Curve Pre-loaded Formulas



Michaelis-Menten

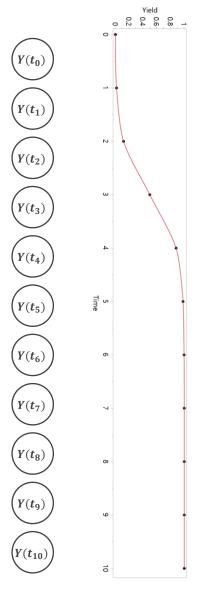
blood

tissue

Select formulas to try that match the subject matter domain profile characteristics.



#### Analysis Steps Analyse – Specialised Modelling – Fit Curve

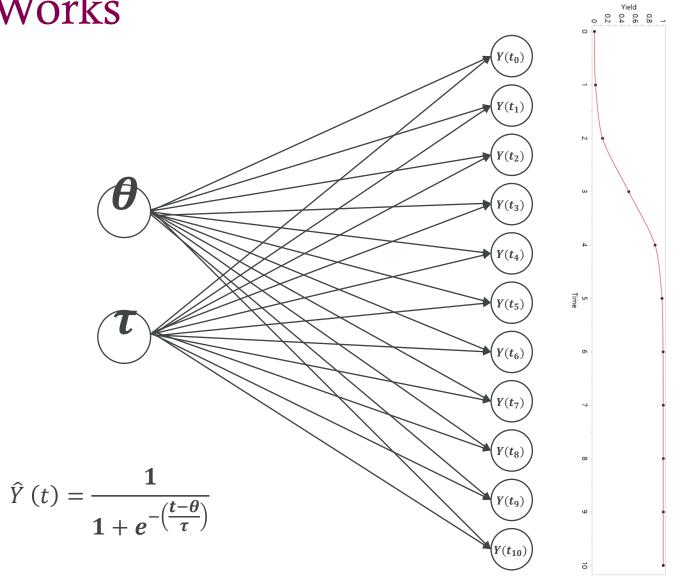

- Define the Data Structure for analysis
- Fit Multiple Curves to chemical reaction Response
  - Compare Curve fits and select preferred one
- Select Curve DoE on formula parameter Coefficients
  - Decide the DoE Analysis approach
    - Default is Forward Selection
  - Decide which Parameter Coefficients Distribution
    - Default is Gaussian
  - DoE Profiler for each chemical response
    - Compare multiple response profiles to understand reaction behaviour

#### Chris Gotwalt Fit Curve – CDoE Demonstration

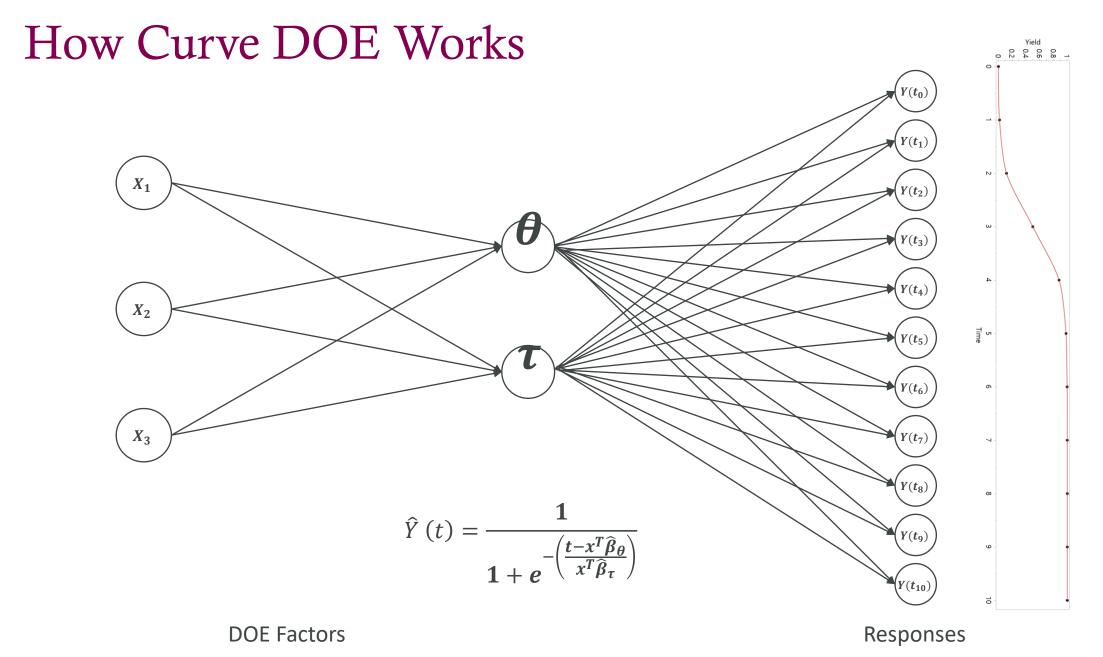
#### Curve DOE Analysis Demo

|    | Expt<br>Name | Sample<br>Time /<br>min | Solvent<br>Volume<br>/ RV | Catalyst<br>/ mol % | Base /<br>Equiv | Amine<br>SM /<br>Equiv | Product | Product<br>Imp | SM     | SM<br>Imp |
|----|--------------|-------------------------|---------------------------|---------------------|-----------------|------------------------|---------|----------------|--------|-----------|
| 1  | N1           | 3                       | 8                         | 1.3                 | 4.5             | 1                      | 29.375  | 0.8351         | 69.623 | 0.1674    |
| 2  | N1           | 7                       | 8                         | 1.3                 | 4.5             | 1                      | 35.85   | 0.8283         | 63.027 | 0.2945    |
| 3  | N1           | 11                      | 8                         | 1.3                 | 4.5             | 1                      | 39.816  | 0.8428         | 58.857 | 0.4844    |
| 4  | N1           | 15                      | 8                         | 1.3                 | 4.5             | 1                      | 43.438  | 0.8693         | 55.102 | 0.5912    |
| 5  | N1           | 20                      | 8                         | 1.3                 | 4.5             | 1                      | 47.531  | 0.9292         | 50.879 | 0.6609    |
| 6  | N1           | 30                      | 8                         | 1.3                 | 4.5             | 1                      | 53.969  | 0.9954         | 44.227 | 0.809     |
| 7  | N1           | 50                      | 8                         | 1.3                 | 4.5             | 1                      | 61.919  | 1.0611         | 36.096 | 0.9243    |
| 8  | N1           | 100                     | 8                         | 1.3                 | 4.5             | 1                      | 66.736  | 1.282          | 31.091 | 0.8916    |
| 9  | N1           | 150                     | 8                         | 1.3                 | 4.5             | 1                      | 70.972  | 1.3323         | 26.764 | 0.9308    |
| 10 | N1           | 200                     | 8                         | 1.3                 | 4.5             | 1                      | 74.555  | 1.4797         | 22.934 | 1.0305    |
| 11 | N1           | 250                     | 8                         | 1.3                 | 4.5             | 1                      | 76.611  | 1.56           | 20.675 | 1.1537    |
| 12 | N1           | 300                     | 8                         | 1.3                 | 4.5             | 1                      | 77.024  | 1.6041         | 20.252 | 1.1202    |
| 13 | N2           | 3                       | 8                         | 0.7                 | 7.5             | 1.1                    | 11.069  | 0.4895         | 88.197 | 0.2446    |
| 14 | N2           | 7                       | 8                         | 0.7                 | 7.5             | 1.1                    | 34.798  | 0.6968         | 63.886 | 0.619     |
| 15 | N2           | 11                      | 8                         | 0.7                 | 7.5             | 1.1                    | 54.966  | 0.9749         | 43.416 | 0.6434    |
| 16 | N2           | 15                      | 8                         | 0.7                 | 7.5             | 1.1                    | 70.737  | 1.3847         | 27.302 | 0.5759    |
| 17 | N2           | 20                      | 8                         | 0.7                 | 7.5             | 1.1                    | 83.222  | 1.8063         | 14.562 | 0.4093    |
|    |              |                         |                           |                     |                 |                        |         |                |        |           |

#### How Curve DOE Works

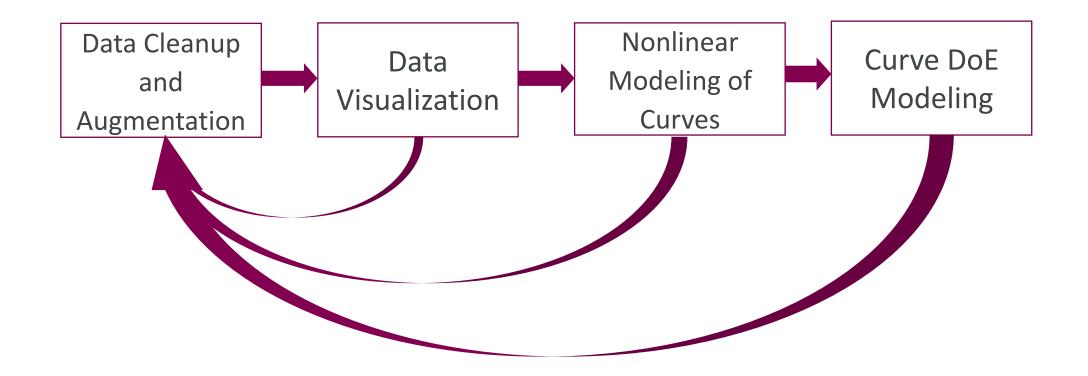



Responses

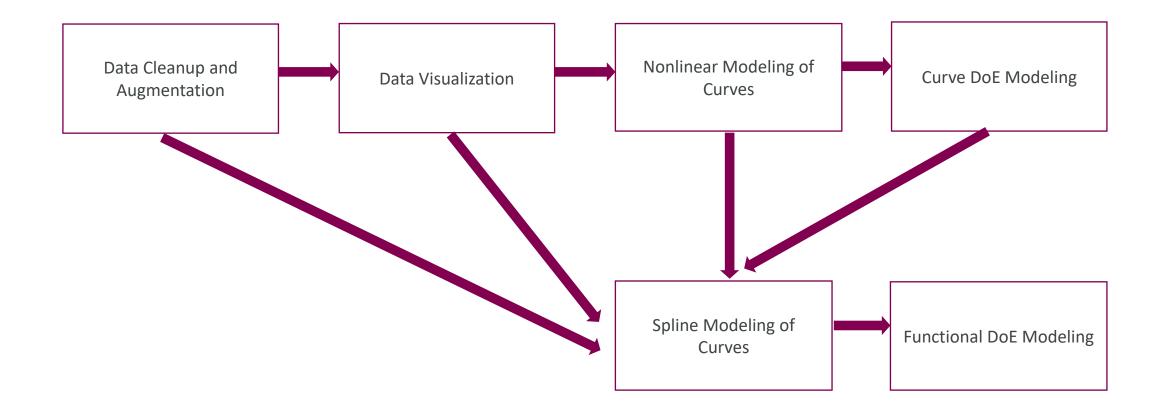



Statistical Discovery.™ From SAS.

#### How Curve DOE Works




Responses




Statistical Discovery.™ From SAS.

#### Fit Curve Workflow



#### Fit Curve Workflow

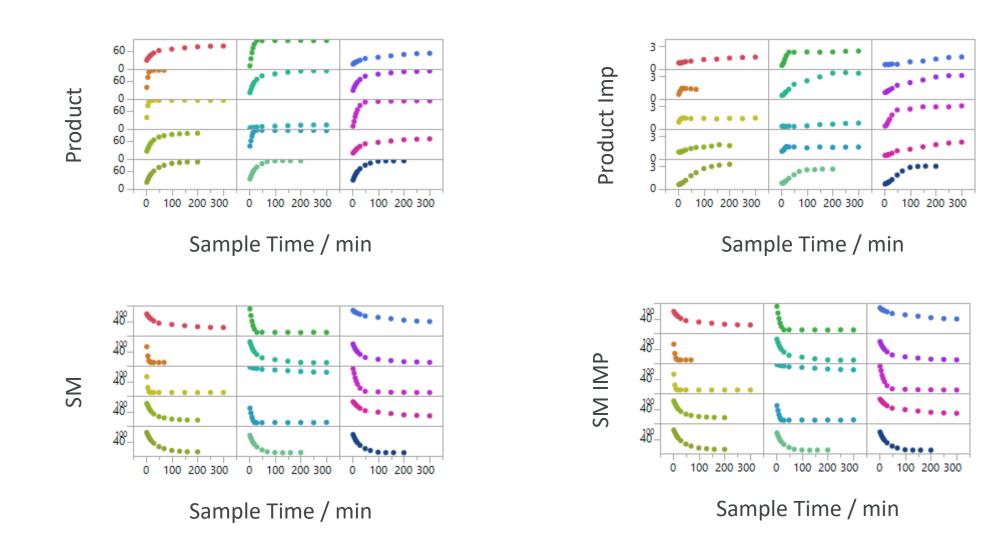


## Fit Curve or Functional Data Explorer?

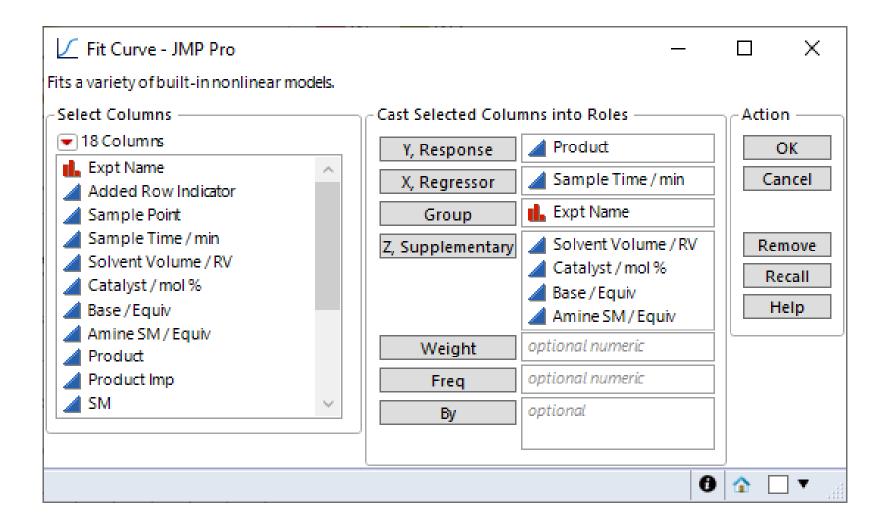
• Is there scientific basis for a particular nonlinear function?

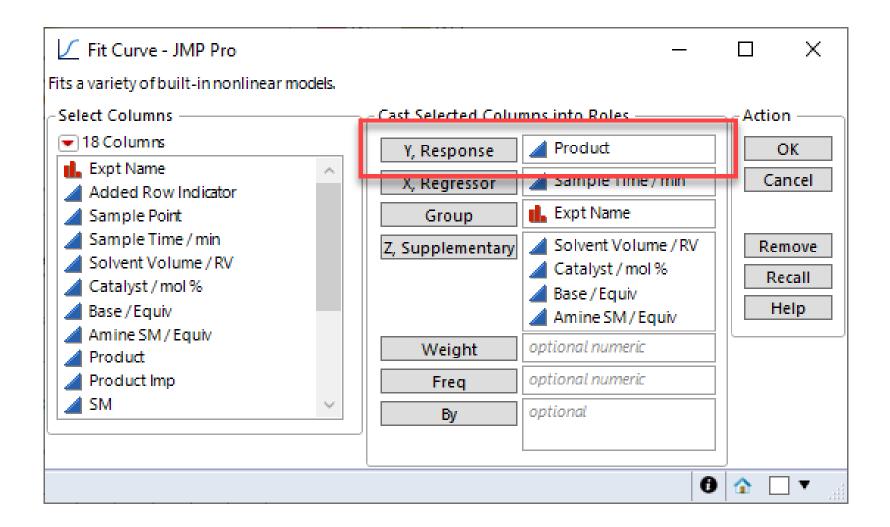
• Do the trajectories fall into one (and only one) of the supported shapes?

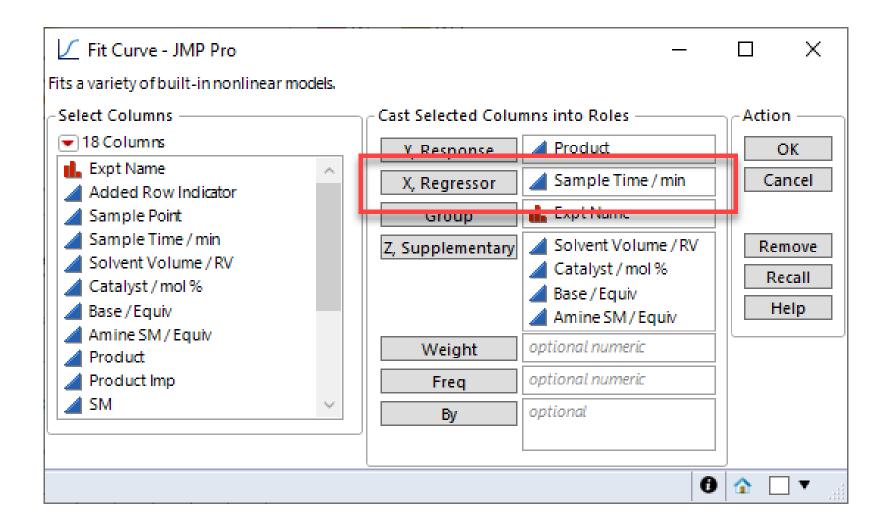
• Does there seem to be a time-translation effect that would be nicely modelled with a location parameter? • Is there little first principles theory to work from?

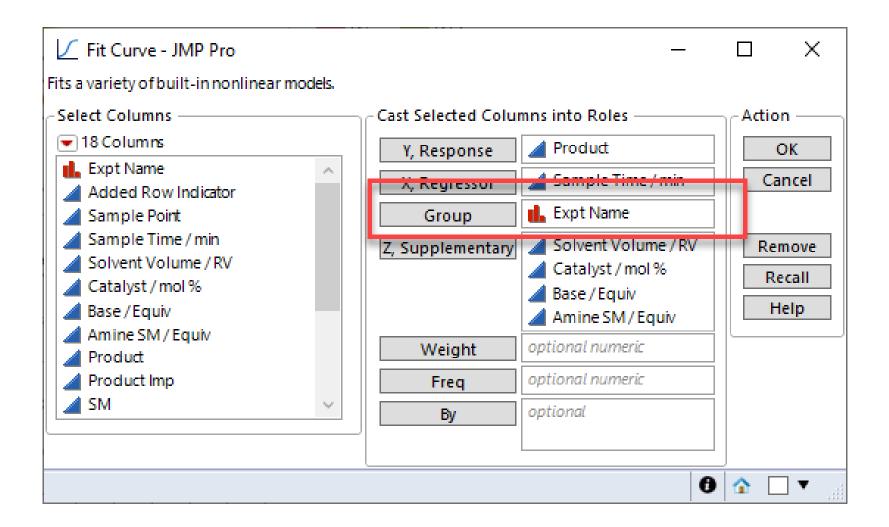

• Are the trajectories highly non-homogenous?

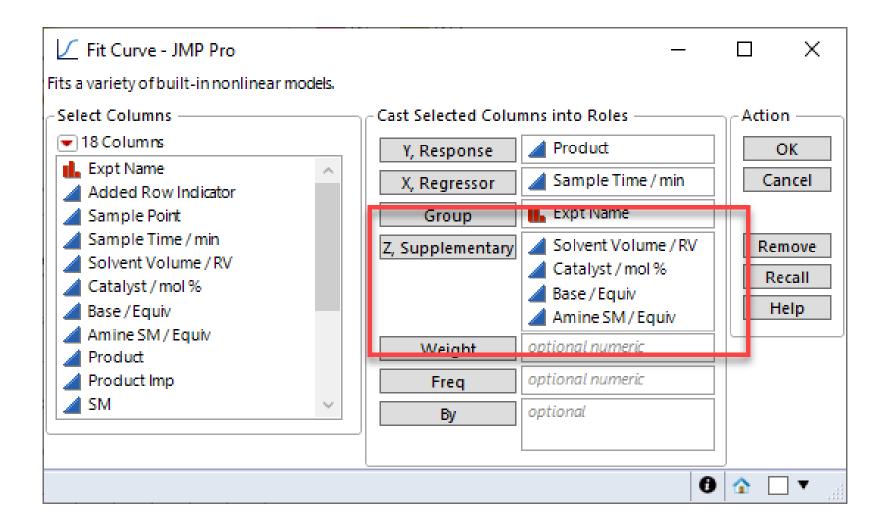
• Do the curves have three or more "features"?


 $YES \Rightarrow$  Functional Data Explorer

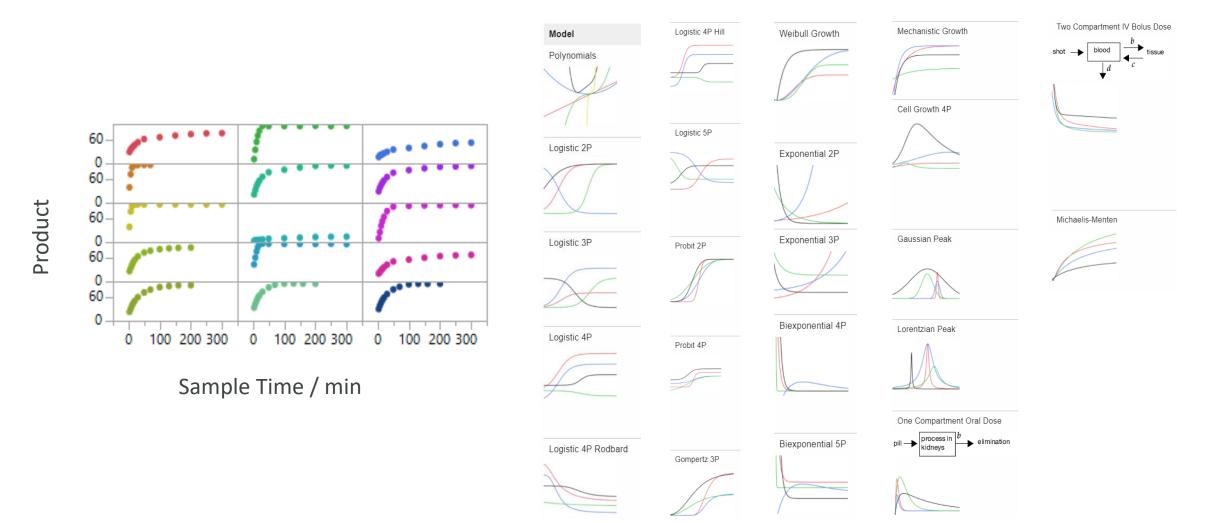




#### The Four Response Curves



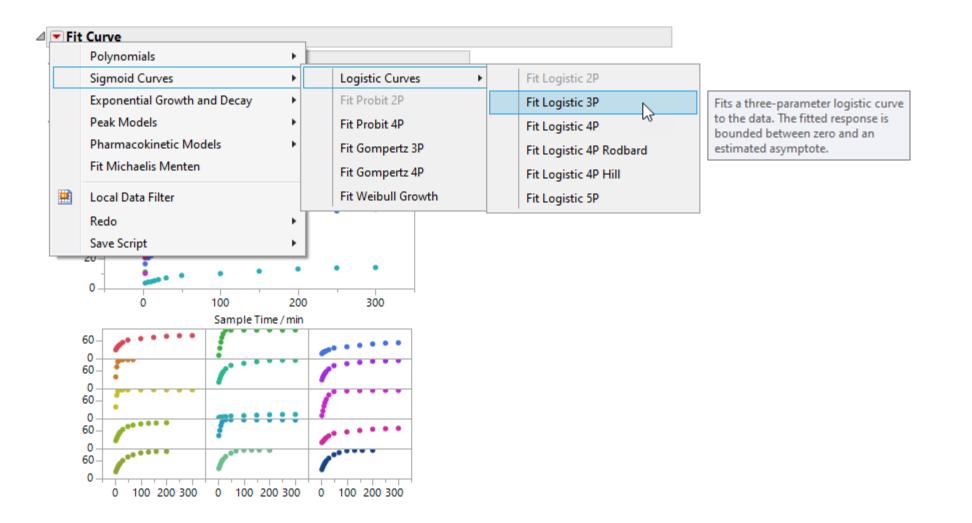


| 🕎 Fit Curve Example - JMP Pro                                         |       |            |                          |      |           |                 |                  |                  | —                  |          | >    |
|-----------------------------------------------------------------------|-------|------------|--------------------------|------|-----------|-----------------|------------------|------------------|--------------------|----------|------|
| File Edit Tables Rows Col                                             | s DOE | Analy      | ze Graph Tools Add-Ins   |      | /iew W    | indow Help      |                  |                  |                    |          |      |
| : 🛤 🎦 💕 🔚   🐰 🗈 🔍                                                     | 56.   |            | Distribution             |      |           |                 |                  |                  |                    |          |      |
| Fit Curve Example                                                     | · \   | <u>у</u> х | Fit Y by X               |      |           |                 |                  |                  |                    |          |      |
| Design Definitive Screening Design<br>Source                          |       |            | Tabulate                 |      |           |                 |                  |                  |                    |          |      |
| Model     DOE Dialog     Crazy Curve DOE                              |       | -dat       | Text Explorer            |      | mol %     | Base / Equiv    | Amine SM / Equiv | Product          | ProductImp         | SM       | 1    |
| Product CDOE Logistic3P                                               | •     | ≥          | Fit Model                |      | 1.3       | 4.5             | 1                | 29.37459756      | 0.835080239        | 69.622   | 9579 |
| Product Imp CDOE Logistic3P                                           | •     | -          |                          |      | 1.3       | 4.5             | 1                | 35.85010208      | 0.82834393         | 63.027   | 0626 |
| <ul> <li>SM CDOE Expon3P</li> <li>SM Imp Fit Curve Overfit</li> </ul> | •     |            | Predictive Modeling      | •    | 1.3       | 4.5             | 1                | 39.81607367      | 0.84278963         | 58.856   | 7294 |
| SM Imp FDOE P Spline                                                  | •     |            | Specialized Modeling     | •    | 🗹   F     | it Curve        | , 1              | Fits a variety o | of built-in nonlir | near 101 | 6918 |
|                                                                       | •     |            | Screening +              | S. N | Nonlinear |                 | models.          |                  | 879                | 1406     |      |
|                                                                       | •     |            | Multivariate Methods     |      | ~ ["      | ioninicai       | 1                | 53.96907749      | 0.995378004        | 44.226   | 5883 |
|                                                                       | •     |            |                          | 1    | 🔅 F       | unctional Data  | Explorer 1       | 61.91892842      | 1.061143748        | 36.095   | 6525 |
| Columna (11/0)                                                        | •     |            | Clustering               | *    | . –       |                 | 1                | 66.73583593      | 1.282049257        | 31.090   | 5086 |
| 💌 Columns (11/0)                                                      | •     |            | Quality and Process      |      | 🤸 🛛 G     | aussian Proces  | s 1              | 70.97244996      | 1.332256616        | 26.764   | 4804 |
| ۹                                                                     | •     |            | -                        |      |           | ina Canina      | 1                | 74.5553563       | 1.479735172        | 22.934   | 4183 |
| Expt Name                                                             | •     |            | Reliability and Survival |      |           | Time Series     |                  | 76.61089629      | 1.559971515        | 20.675   | 4739 |
| Sample Point                                                          | •     |            | Consumer Research        |      | 💥   т     | ime Series Fore | cast 1           | 77.02376098      | 1.604085012        | 20.251   | 9814 |
| Sample Time / min Solvent Volume / RV                                 | •     | 1          | 3 8                      | -    |           |                 | 1                | 11.06909695      | 0.489543727        | 88.196   | 7997 |
| Catalyst / mol %                                                      |       |            | 14 8                     |      | ₩   N     | Matched Pairs   |                  | 34.79812829      | 0.696797357        | 63.886   | 0921 |











#### Data Visualization and the Nonlinear Model Key



S

#### Fitting Nonlinear Models To the Data



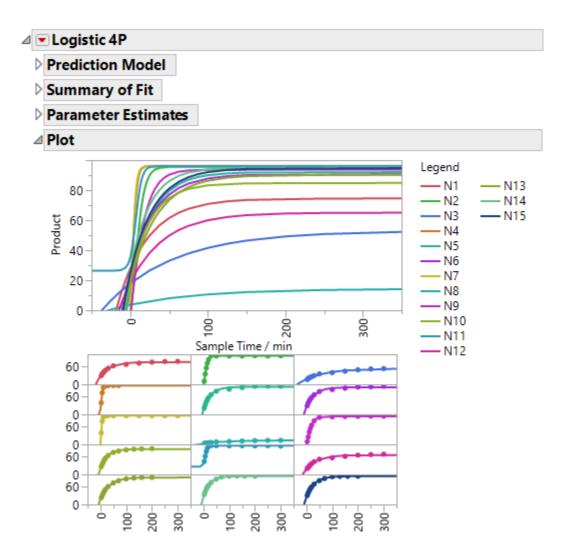


Alt+Right Click on red triangle to select multiple options

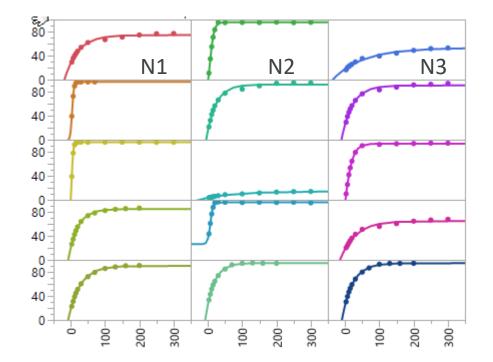
#### 🛛 💌 Fit Curve

#### Model Comparison .2 .4 .6 .8 BIC SSE Model AICc ~ AICc Weight MSE RMSE R-Square Logistic 4P 2,4788613 1.57444 774.21661 901.26526 287.54791 0.9980418 1 Logistic 3P 925,40129 1.481e-33 970.09161 0.9933937 1037.7242 7.4052794 2.7212643 1132.045 Weibull Growth 1.989e-78 1244.3679 3138,5071 23,958069 0.9786268 4.8946981 Logistic 5P 1.19e-127 5000.6892 49.511775 7.0364604 0.9659454 1358,7337 1481.4682 Probit 4P 1463.7303 1.88e-150 1590.7789 14459.122 124.64761 11.164569 0.9015335

#### 🖉 💌 Fit Curve


| Δ | Model Comparison |           |             |    |    |    |    |           |           |           |           |           |
|---|------------------|-----------|-------------|----|----|----|----|-----------|-----------|-----------|-----------|-----------|
|   | Model            | AICc ^    | AICc Weight | .2 | .4 | .6 | .8 | BIC       | SSE       | MSE       | RMSE      | R-Square  |
|   | Logistic 4P      | 774.21661 | 1           |    |    |    |    | 901.26526 | 287.54791 | 2.4788613 | 1.57444   | 0.9980418 |
|   | Logistic 3P      | 925.40129 | 1.481e-33   |    |    |    |    | 1037.7242 | 970.09161 | 7,4052794 | 2.7212643 | 0.9933937 |
|   | Weibull Growth   | 1132.045  | 1.989e-78   |    |    |    |    | 1244.3679 | 3138.5071 | 23.958069 | 4.8946981 | 0.9786268 |
|   | Logistic 5P      | 1358.7337 | 1.19e-127   |    |    |    |    | 1481.4682 | 5000.6892 | 49.511775 | 7.0364604 | 0.9659454 |
|   | Probit 4P        | 1463.7303 | 1.88e-150   |    |    |    |    | 1590.7789 | 14459.122 | 124.64761 | 11.164569 | 0.9015335 |

#### 🖉 💌 Fit Curve


| ⊿ Model Comparison |                |           |             |             |           |           |           |           |           |  |
|--------------------|----------------|-----------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|--|
|                    | Model          | AICc ^    | AICc Weight | .2 .4 .6 .8 | BIC       | SSE       | MSE       | RMSE      | R-Square  |  |
|                    | Logistic 4P    | 774.21661 | 1           |             | 901.26526 | 287.54791 | 2.4788613 | 1.57444   | 0.9980418 |  |
|                    | Logistic 3P    | 925.40129 | 1.481e-33   |             | 1037.7242 | 970.09161 | 7.4052794 | 2.7212643 | 0.9933937 |  |
|                    | Weibull Growth | 1132.045  | 1.989e-78   |             | 1244.3679 | 3138.5071 | 23.958069 | 4.8946981 | 0.9786268 |  |
|                    | Logistic 5P    | 1358.7337 | 1.19e-127   |             | 1481.4682 | 5000.6892 | 49.511775 | 7.0364604 | 0.9659454 |  |
|                    | Probit 4P      | 1463.7303 | 1.88e-150   |             | 1590.7789 | 14459.122 | 124.64761 | 11.164569 | 0.9015335 |  |



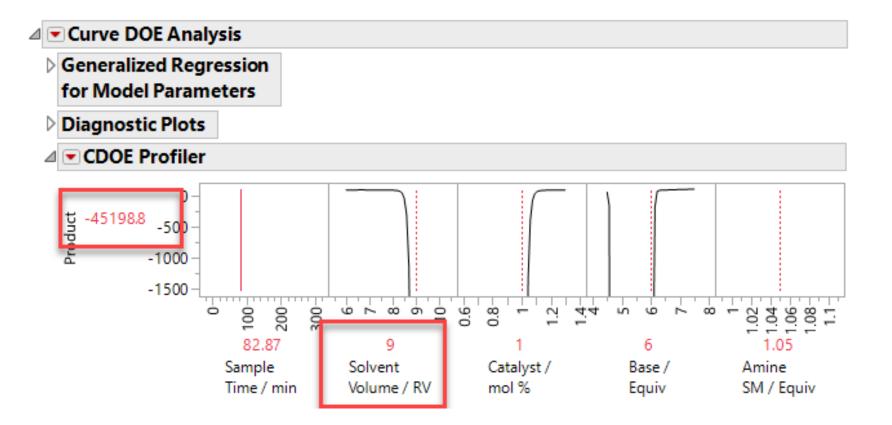
### Logistic 4P Model



#### Logistic 4P Model

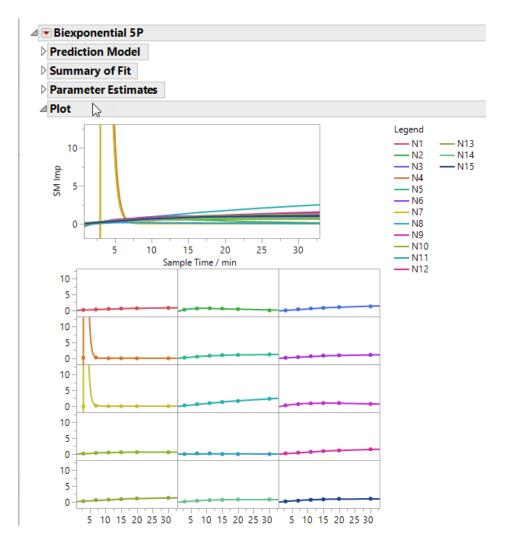


#### 🛛 💌 Logistic 4P

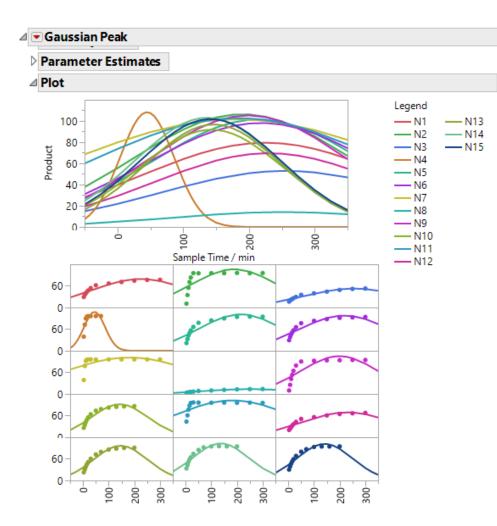

Prediction Model

#### Summary of Fit

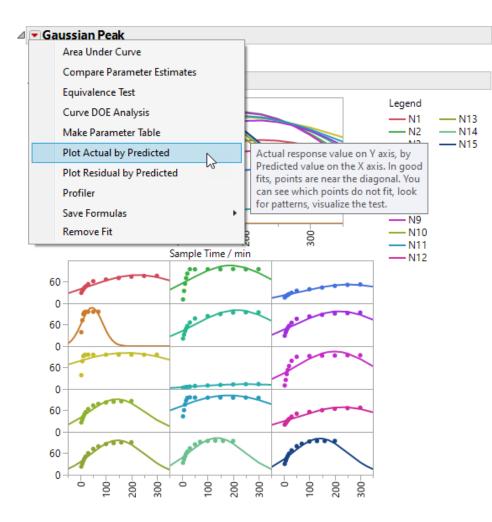
#### Parameter Estimates


| Parameter        | Group | Estimate  | Std Error |
|------------------|-------|-----------|-----------|
| Growth Rate      | N1    | 0.0254486 | 0.0080311 |
| Inflection Point | N1    | -431.7105 | 1141239   |
| Lower Asymptote  | N1    | -2751999  | 7.992e+10 |
| Upper Asymptote  | N1    | /4.50802/ | 0.9428258 |
| Growth Rate      | N2    | 0.1636571 | 0.0169077 |
| Inflection Point | N2    | 5.4759384 | 1.9387716 |
| Lower Asymptote  | N2    | -44.86278 | 21.420603 |
| Upper Asymptote  | N2    | 95.642648 | 0.6257901 |
| Growth Rate      | N3    | 0.0112444 | 0.0071275 |
| Inflection Point | N3    | -1159.956 | 33420084  |
| Lower Asymptote  | N3    | -16149627 | 6.069e+12 |
| Upper Asymptote  | N3    | 52.970350 | 2.8297727 |
| Growth Rate      | N4    | 0.3668455 | 0.0869127 |
| Inflection Point | N4    | 3.8772156 | 2.1243712 |
| Lower Asymptote  | N4    | -2.131121 | 35.994322 |
| Upper Asymptote  | N4    | 96.311589 | 0.7976433 |

#### Logistic 4P Model




#### Checking the Nonlinear Model



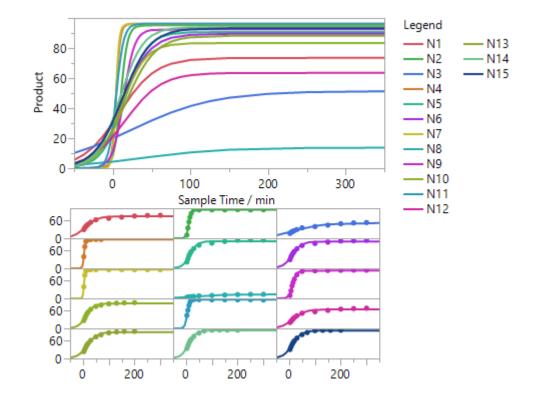


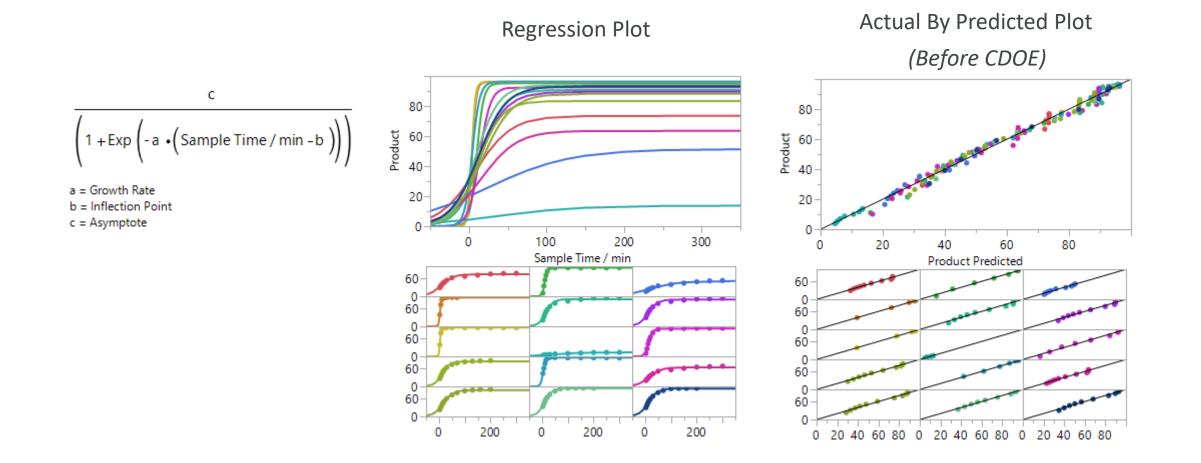

#### Checking the Nonlinear Model



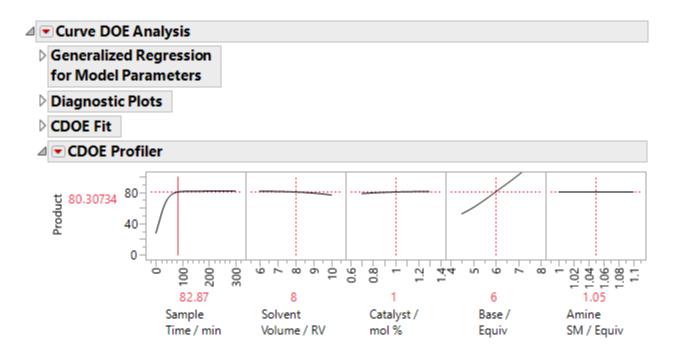
#### Checking the Nonlinear Model

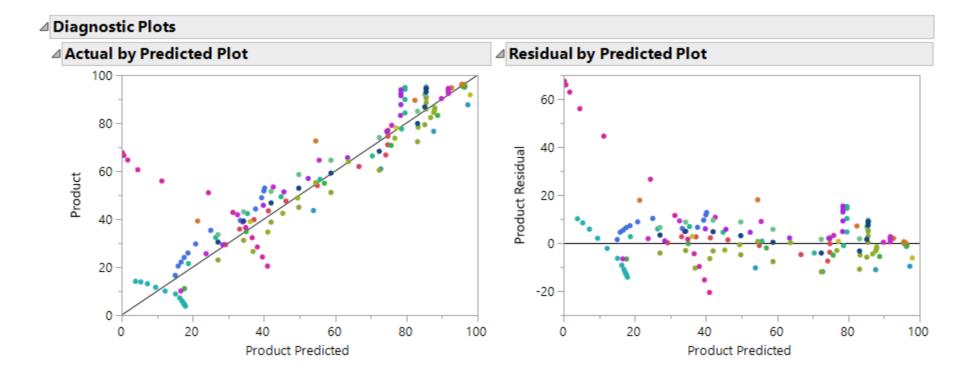


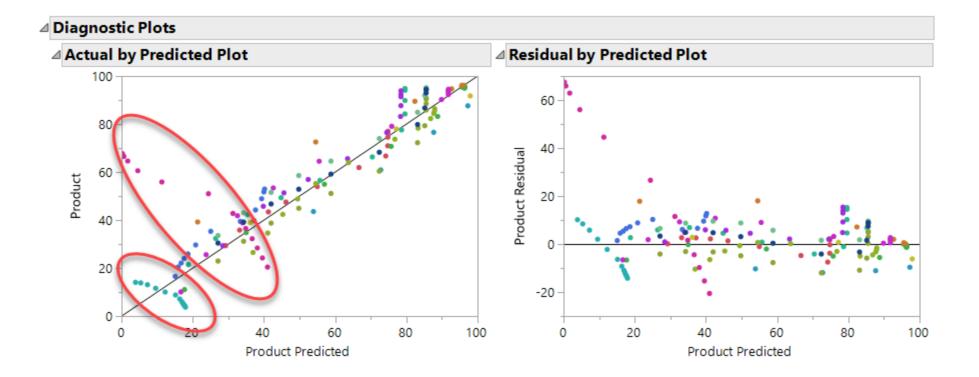


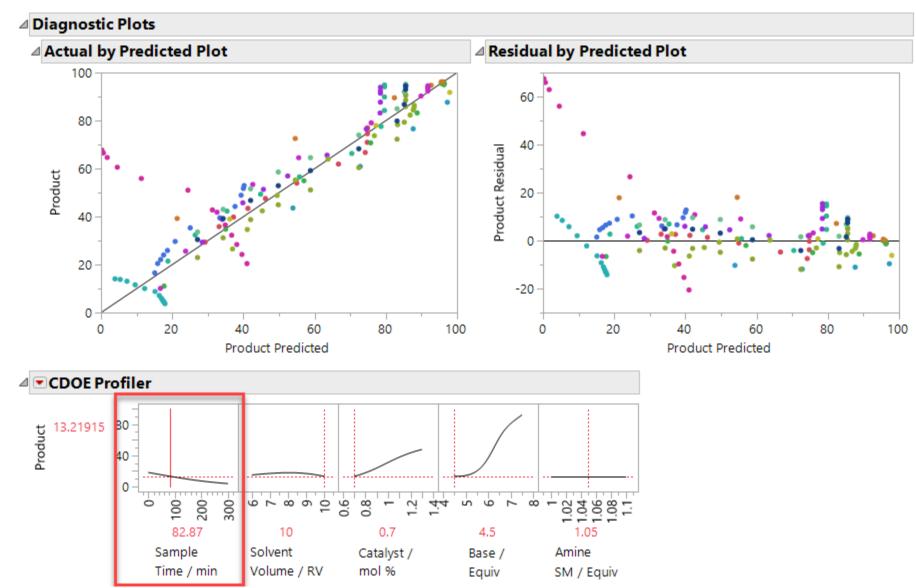


#### ⊿ 💌 Logistic 3P

Prediction Model


# $\frac{c}{\left(1 + Exp\left(-a \cdot \left(Sample Time / min - b\right)\right)\right)}$


a = Growth Rate b = Inflection Point c = Asymptote




| ✓ Fit Curve                  |                                        |
|------------------------------|----------------------------------------|
| ⊿ 🔽 Loaistic 3P              |                                        |
| Test Parallelism             |                                        |
| Compare Parameter Estimates  |                                        |
| Equivalence Test             |                                        |
| Curve DOE Analysis           |                                        |
| Make Parameter Table         | Legend<br>N1 N13                       |
| ✓ Plot Actual by Predicted — | — N2 — N14                             |
| Plot Residual by Predicted   | —————————————————————————————————————— |
| Profiler                     | N5                                     |
| Save Formulas                | N6<br>N7                               |
| Custom Inverse Prediction    | N8<br>N9                               |
| Remove Fit                   | 300 — N10                              |
| Sample Time / min            | — N11<br>— N12                         |
| 60-                          | NIL .                                  |
| 0                            |                                        |
|                              |                                        |
| 60-                          |                                        |
| 60 -                         |                                        |
| 0                            |                                        |
|                              | 200                                    |









⊿ ⊂ Curve DOE Analysis

Generalized Regression for Model Parameters

Generalized Regression

for Growth Rate

Generalized Regression

for Inflection Point

⊿ ⊂ Curve DOE Analysis

Generalized Regression for Model Parameters

Generalized Regression

for Growth Rate

Generalized Regression

for Inflection Point

⊿ ⊂ Curve DOE Analysis

Generalized Regression for Model Parameters

Generalized Regression

for Growth Rate

Generalized Regression

for Inflection Point

⊿ ⊂ Curve DOE Analysis

Generalized Regression for Model Parameters

Generalized Regression

for Growth Rate

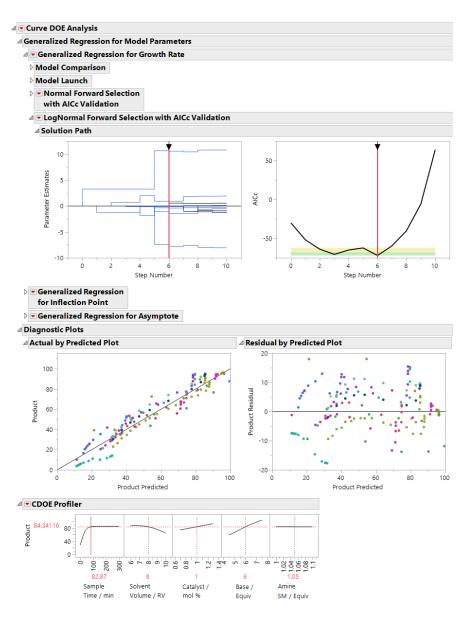
Generalized Regression

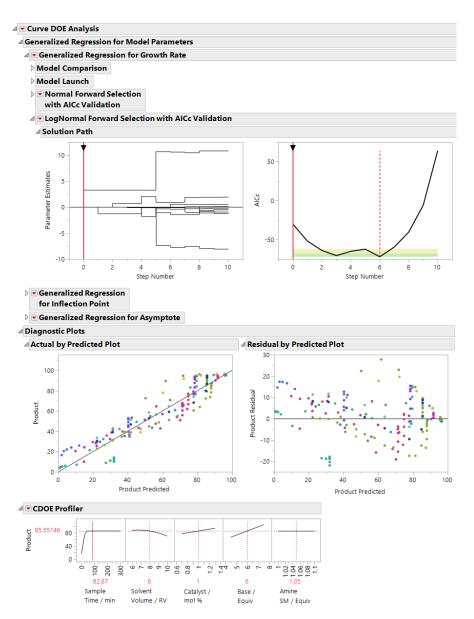
for Inflection Point

⊿ ⊂ Curve DOE Analysis

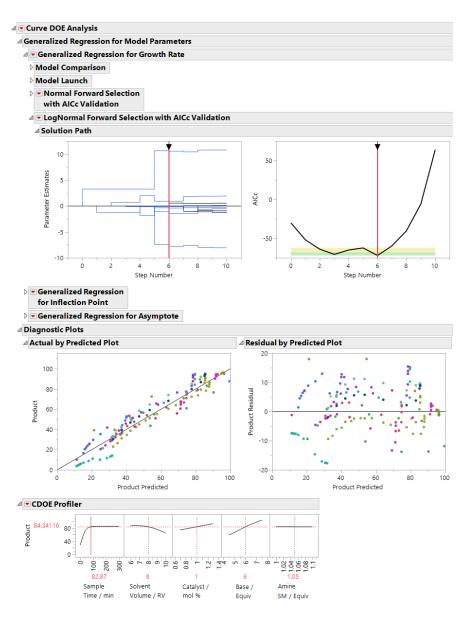
| ⊿ | Generalized | Regression | for Model | Parameters |
|---|-------------|------------|-----------|------------|
|---|-------------|------------|-----------|------------|

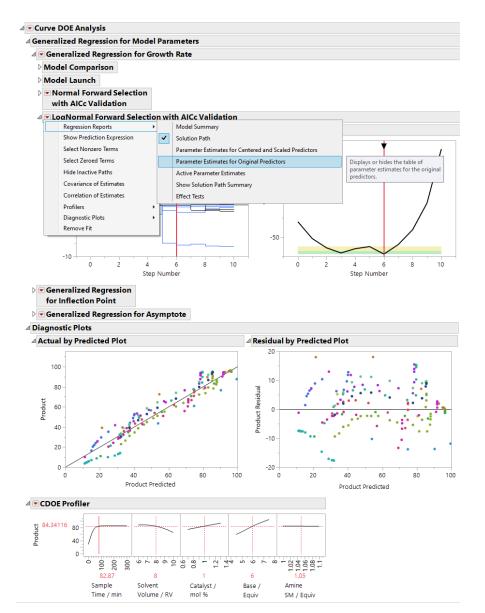
#### ⊿ Generalized Regression for Growth Rate


#### Model Comparison

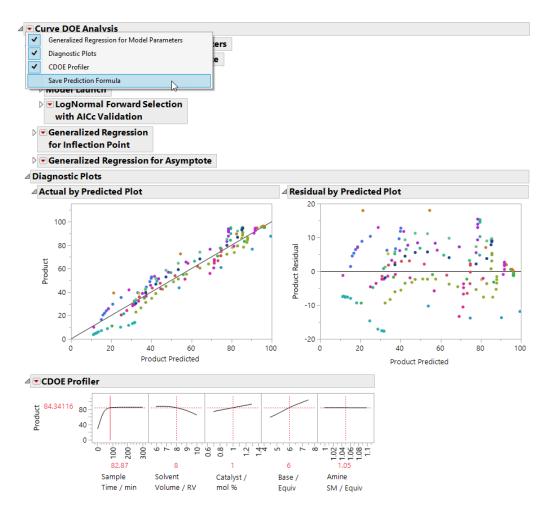

| Normal Forward Selection AICc 6 -39.33529 -45.58699     odel Launch     ingularity Details   sponse Distribution   Iormal   Iormal   auchy   5)   xponential   iamma   /eibull |      | •                 |                   |      |   |           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-------------------|------|---|-----------|-----------|
| odel Launch   ingularity Details   sponse Distribution   lormal   auchy   5)   xponential   aamma   /eibull   ogNormal                                                         | Show |                   |                   |      |   | AICc      | BIC       |
| ingularity Details<br>sponse Distribution<br>lormal<br>auchy<br>5)<br>xponential<br>amma<br>/eibull<br>ogNormal                                                                | ]    | Normal            | Forward Selection | AICc | 6 | -39.33529 | -45.58699 |
| sponse Distribution<br>lormal<br>auchy<br>5)<br>xponential<br>amma<br>/eibull<br>ogNormal                                                                                      | Aode | el Launch         |                   |      |   |           |           |
| lormal  lormal auchy 5) xponential amma /eibull ogNormal                                                                                                                       | Sing | gularity Deta     | ails              |      |   |           |           |
| Iormal<br>auchy<br>5) ~<br>xponential<br>amma<br>/eibull<br>ogNormal                                                                                                           | espo | onse Distribution | ı ———             |      |   |           |           |
| auchy<br>5) ~<br>xponential<br>amma<br>/eibull<br>ogNormal                                                                                                                     | Nor  | mal               | ~                 |      |   |           |           |
| 5) v<br>xponential<br>amma<br>/eibull<br>ogNormal                                                                                                                              | Nor  | mal               |                   |      |   |           |           |
| xponential<br>amma<br>/eibull<br>ogNormal                                                                                                                                      | Cau  | chy               |                   |      |   |           |           |
| amma<br>/eibull<br>ogNormal                                                                                                                                                    | t(5) |                   | ~                 |      |   |           |           |
| /eibull<br>ogNormal                                                                                                                                                            | Expo | onential          |                   |      |   |           |           |
| ogNormal                                                                                                                                                                       | Gam  | ima               |                   |      |   |           |           |
|                                                                                                                                                                                | Weik | oull              |                   |      |   |           |           |
|                                                                                                                                                                                | Logi | Normal            |                   |      |   |           |           |
| eta                                                                                                                                                                            | Beta |                   |                   |      |   |           |           |
| Quantile Regression                                                                                                                                                            | Cox  | Proportional Ha   | azards            |      |   |           |           |
| ox Proportional Hazards                                                                                                                                                        | I —— |                   | I                 |      |   |           |           |

#### ⊿ ⊂ Curve DOE Analysis

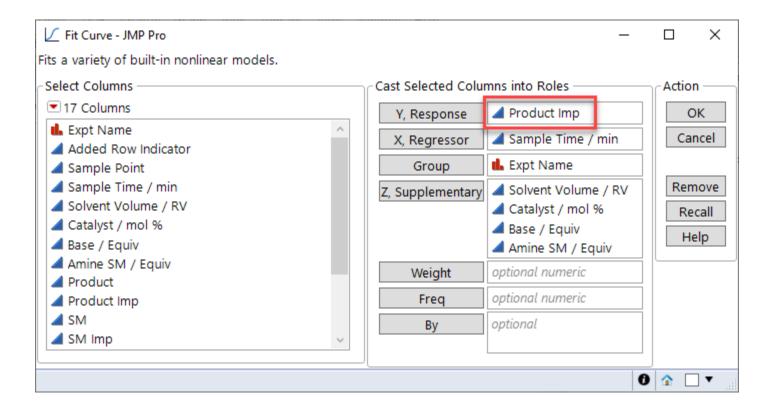

- ⊿ Generalized Regression for Model Parameters
  - ⊿ Generalized Regression for Growth Rate
  - Model Comparison
  - ⊿ Model Launch

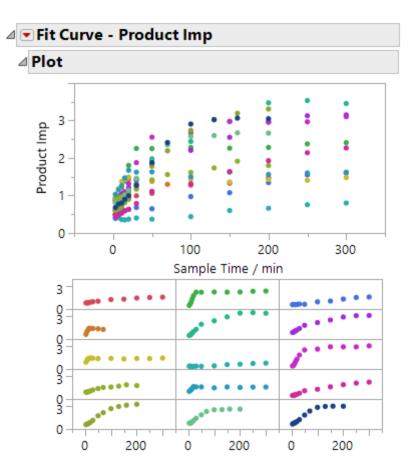

| Singularity Details                 |
|-------------------------------------|
| Response Distribution               |
| Normal                              |
| Estimation Method                   |
| Forward Selection ~                 |
| Advanced Controls                   |
| Enforce Effect Heredity             |
| Initial Displayed Solution Best Fit |
| Force Terms                         |
|                                     |
| Validation Method —                 |
| AlCc ×                              |
|                                     |





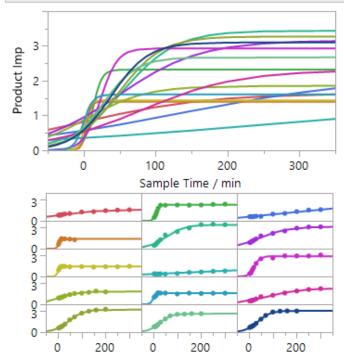



| eneralized Regression for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or Model Pa                                                                                                         | arameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| - Generalized Regressio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on for Grow                                                                                                         | /th Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| Model Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| Model Launch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| Normal Forward Sel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| with AICc Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| 🛛 💌 LogNormal Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selection                                                                                                           | with AICc V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | alidation                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                        | +                                                                                                                                                                                                             |                                                                                   |
| 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ſ                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        | Ĭ                                                                                                                                                                                                             | 1                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         | 50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| Parameter Estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               | /                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               | /                                                                                 |
| E -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         | 0 AIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               | /                                                                                 |
| 0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| e j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               | /                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               | /                                                                                 |
| -5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               | /                                                                                 |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         | -50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        | _ /                                                                                                                                                                                                           |                                                                                   |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                       | -50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                   |
| -10 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 10                                                                                                                                                                                    | -50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 4                                                                                                                                                                                                    |                                                                                                                                                                                                               | 8 10                                                                              |
| -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>Step Nu                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>8 10                                                                                                                                                                                | -50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                        | 6<br>Number                                                                                                                                                                                                   | 8 10                                                                              |
| -10 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step Nu                                                                                                             | umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         | -50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                               | 8 10                                                                              |
| -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Step Nu                                                                                                             | umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Step                                                                                                                                                                                                   |                                                                                                                                                                                                               | 8 10                                                                              |
| -10 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step Nu                                                                                                             | umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         | Wald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prob ><br>ChiSquare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Step                                                                                                                                                                                                   | Number                                                                                                                                                                                                        |                                                                                   |
| -10 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step Nu                                                                                                             | umber<br>al Predictor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s<br>Std Error                                                                                                                                                                          | Wald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prob > _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Step                                                                                                                                                                                                   | Number<br>Upper 95%                                                                                                                                                                                           | Singularity Detai                                                                 |
| -10 - 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Step Nu                                                                                                             | al Predictor<br>Estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Std Error<br>0.0224568                                                                                                                                                                  | Wald<br>ChiSquare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prob ><br>ChiSquare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Step                                                                                                                                                                                                   | Number<br>Upper 95%                                                                                                                                                                                           | Singularity Detai<br>=17.111*Intercept                                            |
| -10 0 2<br>Parameter Estimates<br>Term<br>Base / Equiv <sup>®</sup> Base / Equiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Step Nu                                                                                                             | umber<br>al Predictor<br>Estimate<br>0.1866392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S<br>Std Error<br>0.0224568<br>0.0291016                                                                                                                                                | Wald<br>ChiSquare<br>69.073488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prob ><br>ChiSquare<br><.0001*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Step<br>Lower 95%<br>0.1426248                                                                                                                                                                         | Number<br>Upper 95%<br>0.2306537                                                                                                                                                                              | Singularity Detai<br>=17.111*Intercept                                            |
| -10-02<br>Parameter Estimates<br>Term<br>Base / Equiv/Base / Equiv<br>Solvent Volume / RV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Step Nu                                                                                                             | umber<br>al Predictor<br>Estimate<br>0.1866392<br>-0.168498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Std Error</b><br>0.0224568<br>0.0291016<br>0.2715392                                                                                                                                 | Wald<br>ChiSquare<br>69.073488<br>33.524041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prob > ^<br>ChiSquare<br><.0001*<br><.0001*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Step<br>Lower 95%<br>0.1426248<br>-0.225536                                                                                                                                                            | Number<br>Upper 95%<br>0.2306537<br>-0.11146                                                                                                                                                                  | Singularity Detai<br>=17.111*Intercept                                            |
| -10 0 2<br>Parameter Estimates<br>Term<br>Base / Equiv <sup>®</sup> Base / Equiv<br>Solvent Volume / RV<br>Base / Equiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step Nu                                                                                                             | umber<br>al Predictor<br>Estimate<br>0.1866392<br>-0.168498<br>-1.564481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395                                                                                                                      | Wald<br>ChiSquare<br>69.073488<br>33.524041<br>33.195207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br><.0001*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>-2.096688                                                                                                                                               | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274                                                                                                                                                     | <b>Singularity Deta</b><br>=17.111*Intercept                                      |
| -10 0 2<br>■ Parameter Estimates<br>Term<br>Base / Equiv*Base / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / mol %*Catalyst /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Step Nu                                                                                                             | al Predictor<br>Estimate<br>0.1866392<br>-0.168498<br>-1.564481<br>0.4771401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052                                                                                                         | Wald<br>ChiSquare<br>69.073488<br>33.524041<br>33.195207<br>11.444846                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br><.0001*<br>0.0007*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>-2.096688<br>0.2007076                                                                                                                                  | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022                                                                                                                           | Singularity Deta<br>= 17.111*Intercept                                            |
| -10 - 0 2<br>Parameter Estimates<br>Term<br>Base / Equiv"Base / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / imil %°Catalyst /<br>intercept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Step Nu<br>s for Origina                                                                                            | Al Predictor<br>Estimate<br>0.1866392<br>-0.168498<br>-1.564481<br>0.4771401<br>1.5977317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052<br>0.3939215                                                                                            | Wald<br>ChiSquare<br>69.073488<br>33.524041<br>33.195207<br>11.444846<br>4.3301771                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br>0.0007*<br>0.0374*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>-2.096688<br>0.2007076<br>0.0928613                                                                                                                     | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022                                                                                                                           | Singularity Detai<br>= 17.111*Intercept<br>= 0.6796*Intercept                     |
| Parameter Estimates<br>Term<br>Base / Equiv*Base / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / mol %°Catalyst /<br>Intercept<br>Amine SM / Equiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s for Origina<br>mol %<br>yst / mol %                                                                               | al Predictor<br>Estimate<br>0.1866392<br>-0.168498<br>-1.56481<br>0.4771401<br>1.5977317<br>-0.59341<br>-0.033073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052<br>0.3939215<br>0.0329536                                                                               | Wald           ChiSquare           69.073488           33.524041           33.195207           11.444846           4.3301771           2.2692895                                                                                                                                                                                                                                                                                                                                                                                            | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br>0.0007*<br>0.0374*<br>0.1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>-2.096688<br>0.2007076<br>0.0928613<br>-1.365481                                                                                                        | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022<br>0.1786622                                                                                                              | Singularity Detai<br>= 17.111*Intercept<br>= 0.6796*Intercept                     |
| Parameter Estimates<br>Term<br>Base / Equiv*Base / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / mol %*Catalyst /<br>Intercept<br>Amine SM / Equiv<br>Solvent Volume / RV*Cataly<br>Solvent Volume / RV*Solve<br>Solvent Volume / RV*Solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step Nu<br>s for Origina<br>' mol %<br>yst / mol %<br>int Volume / R'<br>/ Equiv                                    | Al Predictor<br>Estimate<br>0.1866392<br>-0.168498<br>-1.564481<br>0.4771401<br>1.5977317<br>-0.59341<br>-0.033073<br>V 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052<br>0.3939215<br>0.0329536<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                            | Wald           ChiSquare           69.073488           33.524041           33.195207           11.444846           4.3301771           2.2692895           1.0072704                                                                                                                                                                                                                                                                                                                                                                        | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br>0.0007*<br>0.0374*<br>0.1320<br>0.3156<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Step<br>Lower 95%<br>0.1426248<br>-2.096688<br>0.207076<br>0.0928613<br>-1.365481<br>-0.097661<br>0<br>0<br>0<br>0                                                                                     | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022<br>0.1786622<br>0.0315147                                                                                                 | Singularity Detai<br>= 17.111*Intercept<br>= 0.6796*Intercept                     |
| 10     10     0     2     Parameter Estimates     Term     Base / Equiv*Base / Equiv     Solvent Volume / RV     Base / Equiv     Catalyst / mol %*Catalyst /     Intercept     Amine SM / Equiv     Solvent Volume / RV*Cataly     Solvent Volume / RV*Cataly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Step Nu<br>s for Origina<br>' mol %<br>yst / mol %<br>int Volume / R'<br>/ Equiv                                    | Al Predictor<br>Estimate<br>0.1866392<br>-0.188498<br>-1.56481<br>0.4771401<br>1.5977317<br>-0.59341<br>-0.033073<br>V 00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052<br>0.3939215<br>0.0329536<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0              | Wald<br>ChiSquare<br>69.073488<br>33.524041<br>33.195207<br>11.444846<br>4.3301771<br>2.2692895<br>1.0072704<br>0                                                                                                                                                                                                                                                                                                                                                                                                                           | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br>0.0007*<br>0.0374*<br>0.1320<br>0.3156<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Step<br>0.1426248<br>-0.225536<br>-2.096688<br>0.2007076<br>0.0928613<br>-1.365481<br>-0.097661<br>0<br>0<br>0<br>0<br>0<br>0                                                                          | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022<br>0.1786622<br>0.0315147<br>0                                                                                            | Singularity Detai<br>=17.111"Intercept<br>=0.6796"Intercept                       |
| 10     10     0     2     Parameter Estimates     Term     Base / Equiv*Base / Equiv     Solvent Volume / RV*     Solvent Volume / RV*Catalyst     Intercept     Amine SM / Equiv     Solvent Volume / RV*Cataly     Solvent / RV*Cataly     Solven                                                                                                                                                                                  | Step Nu<br>s for Origina<br>mol %<br>yst / mol %<br>nt Volume / R <sup>1</sup><br>/ Equiv<br>e SM / Equiv           | Al Predictor<br>Estimate<br>0.1866392<br>-0.186481<br>0.4771401<br>1.5977317<br>-0.59341<br>-0.033073<br>V 00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052<br>0.3939215<br>0.3939215<br>0.0329536<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Wald<br>Chi5quare<br>69.073488<br>33.524041<br>33.195207<br>11.444846<br>4.3301771<br>2.2692895<br>1.0072704<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                       | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br>0.007*<br>0.1320<br>0.3156<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>0.2096688<br>0.2007076<br>0.0928613<br>-1.365481<br>-0.097661<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022<br>0.1786622<br>0.0315147<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                          | Singularity Detai<br>=17.111"Intercept<br>=0.6796"Intercept                       |
| Parameter Estimates<br>Term<br>Base / Equiv"Base / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / mol %"Catalyst /<br>Intercept<br>Amine SM / Equiv<br>Solvent Volume / RV"Salve<br>Solvent                  | Step Nu<br>s for Origina<br>" mol %<br>yst / mol %<br>int Volume / R <sup>1</sup><br>/ Equiv<br>e SM / Equiv<br>uiv | Al Predictor<br>Estimate<br>0.186392<br>-0.168498<br>-1.564481<br>0.4771401<br>1.5977317<br>-0.59341<br>-0.033073<br>V<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052<br>0.33939215<br>0.0329536<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0             | Wald           ChiSquare           69.07348           33.524041           33.195207           11.444846           4.3301771           2.2692895           1.0072704           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                 | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br>0.007*<br>0.3556<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step<br>0.1426248<br>-0.225536<br>-2.096688<br>0.2027076<br>0.0928613<br>-1.365481<br>-0.097661<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0              | Number<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022<br>0.1786622<br>0.0315147<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                  | Singularity Detai<br>=17.111"Intercept<br>=0.6796"Intercept                       |
| 10     10     0     2     Parameter Estimates     Term     Base / Equiv*Base / Equiv     Solvent Volume / RV*     Solvent Volume / RV*Catalyst     Intercept     Amine SM / Equiv     Solvent Volume / RV*Cataly     Solvent / RV*Cataly     Solven                                                                                                                                                                                  | Step Nu<br>s for Origina<br>" mol %<br>yst / mol %<br>int Volume / R <sup>1</sup><br>/ Equiv<br>e SM / Equiv<br>uiv | Imper           Impertation         Estimate           0.1866392         0.1866392           0.186481         0.4771401           1.5977317         0.033073           0.03073         0           0.00         0           0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S<br>Std Error<br>0.0224560<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7676052<br>0.0329536<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                           | Wald           ChiSquare         69.073488           33.195207         11.44484           11.44484         4.3301771           2.2692895         1.0072704           0         0           0         0           0         0           0         0           0         0           0         0           0         0                                                                                                                                                                                                                        | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br><.0001*<br>0.03756<br>0.03756<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>-2.096688<br>0.2007076<br>0.0926613<br>-1.365481<br>-0.097661<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Number<br>Upper 95%<br>0.2306537<br>-0.11146<br>-1.032274<br>0.7535725<br>3.1026022<br>0.01786622<br>0.0315147<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Singularity Detai<br>=17.111"Intercept<br>=0.6796"Intercept                       |
| Parameter Estimates<br>Term<br>Base / EquivBase / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / mol %"Catalyst /<br>Intercept<br>Amine SM / Equiv<br>Solvent Volume / RV"Solve<br>Solvent Volume / RV"Sate,<br>Solvent / RV"Sate,<br>Solvent / RV"Sate,<br>Solvent / RV<br>Solvent / RV | Step Nu<br>stor Origina<br>mol %<br>mol %<br>mt Volume / R1<br>/ Equiv<br>e SM / Equiv<br>uiv<br>4 / Equiv<br>quiv  | Al Predictor<br>Estimate<br>0.1866322<br>-0.168498<br>-1.554481<br>0.4771401<br>1.5977317<br>-0.59341<br>-0.033073<br>V<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S<br>Std Error<br>0.0224568<br>0.0291016<br>0.2715392<br>0.1410395<br>0.7678052<br>0.3399215<br>0.0329536<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0              | Wald           ChiSquare           69.073488           33.524041           33.15207           11.444846           4.3301771           2.2692895           1.0072704           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                     | Prob ><br>Chi5quare<br><.0001*<br><.0001*<br>0.0007*<br>0.0374*<br>0.1320<br>0.3156<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>-2.096688<br>0.0097661<br>-0.097661<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                    | Number                                                                                                                                                                                                        | Singularity Detai<br>=17.111*Intercept<br>=0.6796*Intercept<br>=-1.3037*Intercept |
| Parameter Estimates<br>Term<br>Base / Equiv"Base / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / mol %"Catalyst /<br>Intercept<br>Amine SM / Equiv<br>Solvent Volume / RV"Solve<br>Solvent Volume / RV"Solve<br>Solvent Volume / RV"Solve<br>Solvent Volume / RV"Salve<br>Solvent Volume / RV"Salve<br>Solvent Volume / RV"Salve<br>Solvent Volume / RV"Salve<br>Solvent Volume / RV"Base / Eq<br>Catalyst / mol %"Base / Eq<br>Catalyst / mol %"Base / Equiv"Amine SM<br>Base / Equiv"Amine SM / Equiv"Amine SM<br>Base / Equiv"Amine SM / Equiv"Amine SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Step Nu<br>stor Origina<br>mol %<br>mol %<br>mt Volume / R1<br>/ Equiv<br>e SM / Equiv<br>uiv<br>4 / Equiv<br>quiv  | Imper           Impertation         Estimate           0.1866392         0.1866392           0.186481         0.4771401           1.5977317         0.033073           0.03073         0           0.00         0           0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S Std Error 0.0224568 0.0291016 0.2715392 0.1410395 0.7678052 0.3939215 0.0329536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                 | Wald           ChiSquare           69.073488           33.524041           33.52507           11.444846           4.3301771           2.2692895           1.0072704           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br><.0001*<br>0.03756<br>0.03756<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Step<br>Lower 95%<br>0.1426248<br>-0.225536<br>-2.096688<br>0.2007076<br>0.0926613<br>-1.365481<br>-0.097661<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Number                                                                                                                                                                                                        | Singularity Detai<br>=17.111"Intercept<br>=0.6796"Intercept                       |
| Parameter Estimates<br>Term<br>Base / EquivBase / Equiv<br>Solvent Volume / RV<br>Base / Equiv<br>Catalyst / mol %"Catalyst /<br>Intercept<br>Amine SM / Equiv<br>Solvent Volume / RV"Solve<br>Solvent Volume / RV"Sate,<br>Solvent / RV"Sate,<br>Solvent / RV"Sate,<br>Solvent / RV<br>Solvent / RV | Step Nu<br>stor Origina<br>mol %<br>mol %<br>mt Volume / R1<br>/ Equiv<br>e SM / Equiv<br>uiv<br>4 / Equiv<br>quiv  | Imperiation           al Predictor           Estimate           0.186392           0.186392           0.186392           0.186392           0.186392           0.186392           0.186392           0.186392           0.186392           0.186392           0.186392           0.186392           0.03073           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 <td>S Std Error 0.0224568 0.0291016 0.2715392 0.1410395 0.7678052 0.3939215 0.0329536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Wald           ChiSquare           69.073488           33.524041           33.15207           11.444846           4.3301771           2.2692895           1.0072704           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0</td> <td>Prob &gt;<br/>ChiSquare<br/>&lt;.0001*<br/>&lt;.0001*<br/>0.0007*<br/>0.3156<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.0000<br/>1.00000<br/>1.0000<br/>1.00000<br/>1.00000<br/>1.00000<br/>1.00000<br/>1.00000</td> <td>Step</td> <td>Number</td> <td>Singularity Deta<br/>=17.111"Intercept<br/>=0.6796"Intercept<br/>=-1.3037"Intercept</td> | S Std Error 0.0224568 0.0291016 0.2715392 0.1410395 0.7678052 0.3939215 0.0329536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                 | Wald           ChiSquare           69.073488           33.524041           33.15207           11.444846           4.3301771           2.2692895           1.0072704           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                     | Prob ><br>ChiSquare<br><.0001*<br><.0001*<br>0.0007*<br>0.3156<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.0000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000 | Step                                                                                                                                                                                                   | Number                                                                                                                                                                                                        | Singularity Deta<br>=17.111"Intercept<br>=0.6796"Intercept<br>=-1.3037"Intercept  |




S





- Fit Curve Product Imp
   Model Comparison
   Plot
   Logistic 3P
  - Prediction Model
  - Summary of Fit
  - Parameter Estimates





#### Curve DOE Analysis Generalized Regression for Model Parameters ✓ Generalized Regression for Growth Rate Model Comparison Model Launch LogNormal Forward Selection with AICc Validation Generalized Regression for Inflection Point Generalized Regression for Asymptote ⊿ Diagnostic Plots Residual by Predicted Plot ⊿ Actual by Predicted Plot 1.5 1.0 3 Product Imp Residual 0.5 Product Imp 2. -0.5 -1.0 0 -0.5 1.5 2 2.5 0 0.5 1.5 0 Product Imp Predicted Product Imp Predicted CDOE Profiler Product Imp 1.966362 3 ò 100 200 300 ú r ò Ó ò Ó. 55 - ún Ó 26621 82.87 6 1.05

Catalyst /

mol %

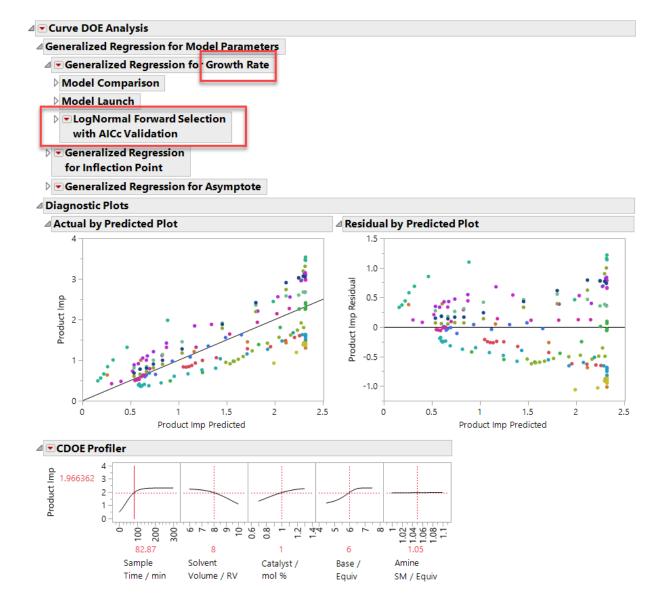
Base /

Equiv

Amine

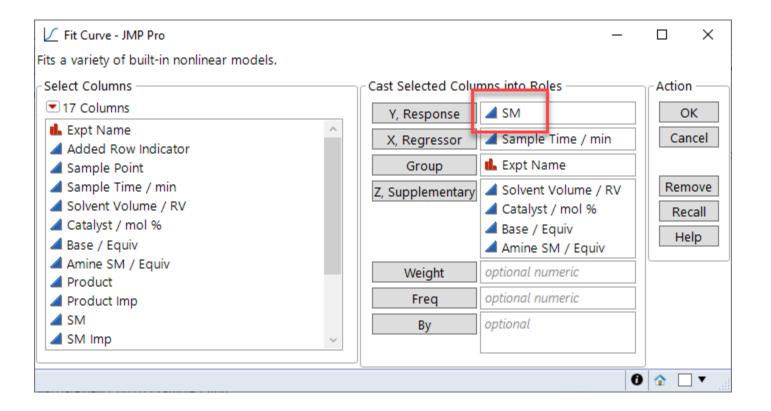
SM / Equiv

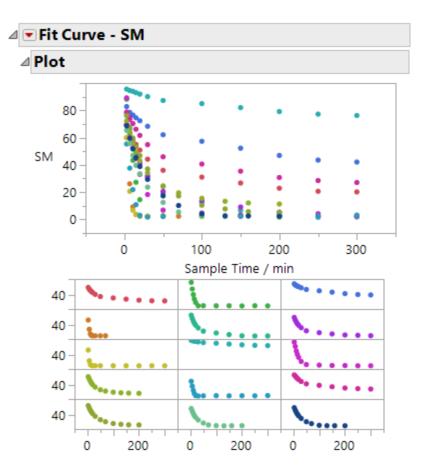
Sample


Time / min

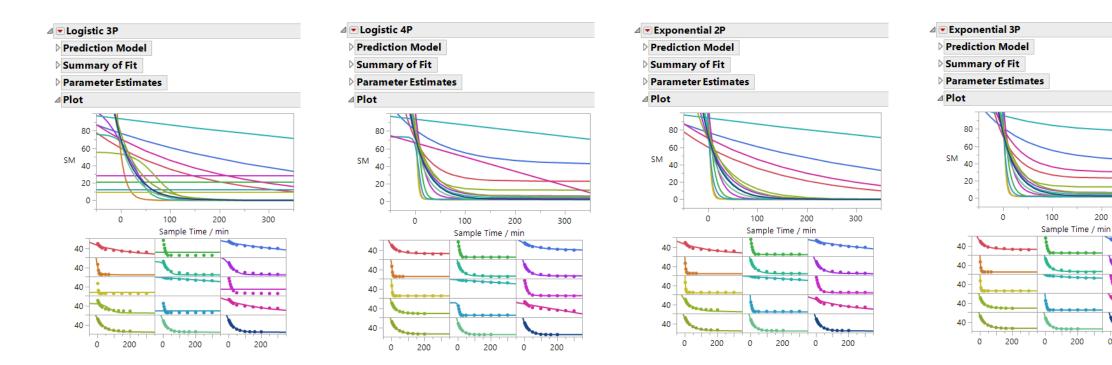
Solvent

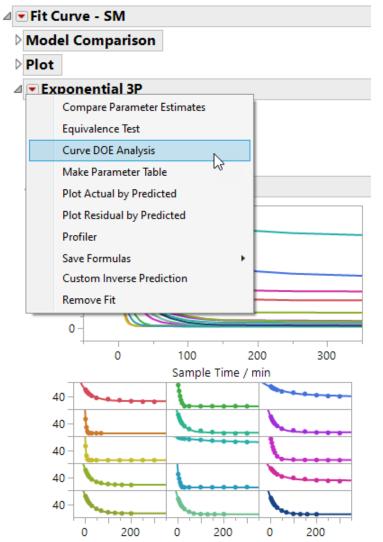
Volume / RV

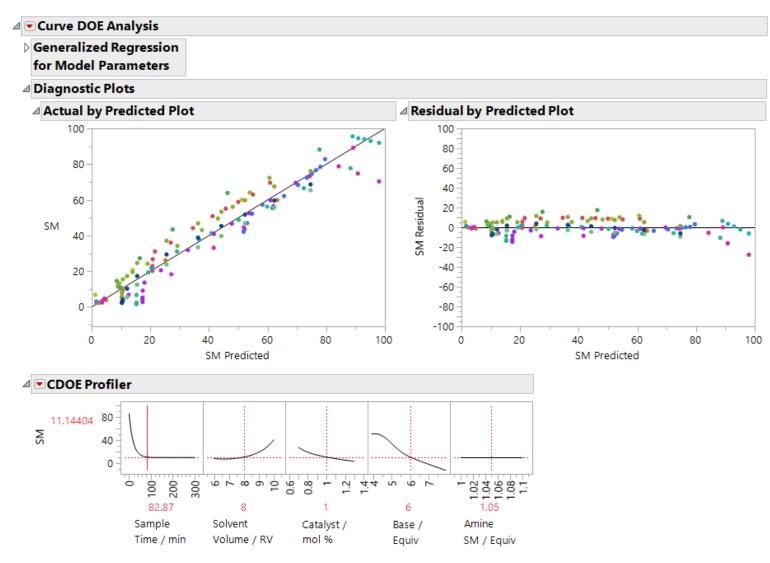

2

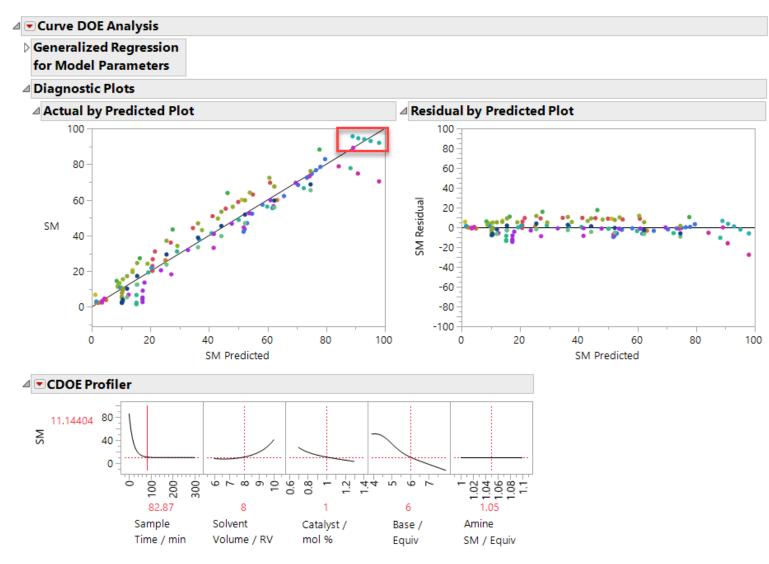

2.5

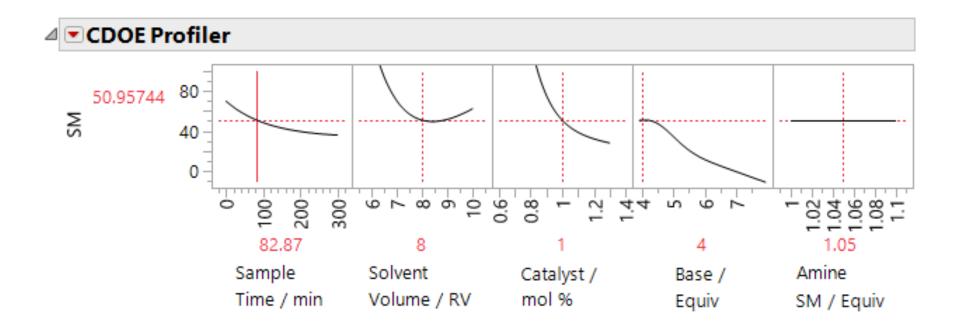




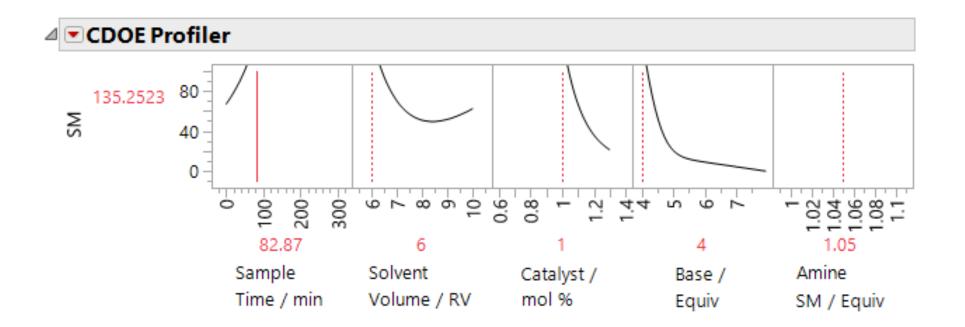


64





| Fit Curve - SM   |           |             |             |           |           |           |           |                 |  |  |
|------------------|-----------|-------------|-------------|-----------|-----------|-----------|-----------|-----------------|--|--|
| Model Comparison |           |             |             |           |           |           |           |                 |  |  |
| Model            | AICc ^    | AICc Weight | .2 .4 .6 .8 | BIC       | SSE       | MSE       | RMSE      | <b>R-Square</b> |  |  |
| Exponential 3P   | 781.18844 | 1           |             | 893.51132 | 427.51924 | 3.2635056 | 1.8065175 | 0.9971092       |  |  |
| Logistic 4P      | 998.38685 | 6.854e-48   |             | 1125.4355 | 1027.7056 | 8.8595311 | 2.9764965 | 0.9930508       |  |  |
| Exponential 2P   | 1012.3501 | 6.366e-51   |             | 1096.8573 | 2109.1502 | 14.446235 | 3.8008203 | 0.9857383       |  |  |
| Logistic 3P      | 1532.4875 | 7.2e-164    |             | 1644.8104 | 30538.513 | 233.11842 | 15.268216 | 0.793503        |  |  |


















#### Exponential 3P

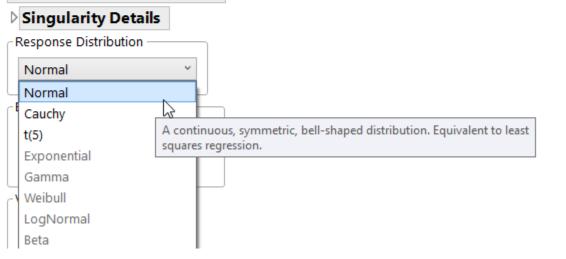
Prediction Model

a = Asymptote

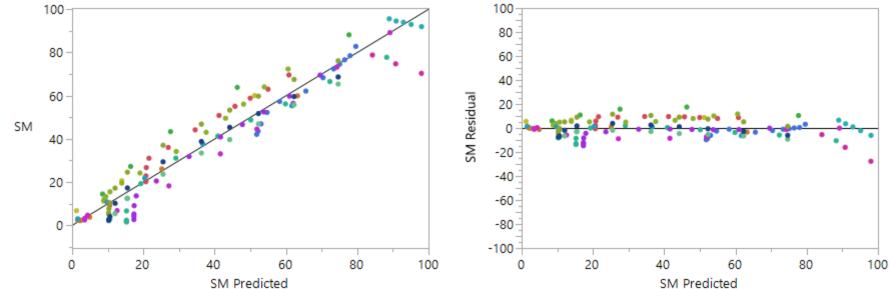
b = Scale

| /  | Group | Asymptote    | Growth Rate  |    | Scale      |
|----|-------|--------------|--------------|----|------------|
| 1  | N1    | 22.867857654 | -0.025230049 | 48 | 146326097  |
| 2  | N2    | 1.4481425305 | -0.101923433 | 12 | .96878526  |
| 3  | N3    | 41.996217734 | -0.010872558 | 39 | 131356511  |
| 4  | N4    | 1.7514216034 | -0.236676633 | 11 | .17315056  |
| 5  | N5    | 4.5055740659 | -0.036396107 | 79 | 418733351  |
| 6  | N6    | 6.1012035335 | -0.031638593 | 67 | 319873264  |
| 7  | N7    | 2.4152494821 | -0.29774875  | 1. | 1.1796014  |
| 8  | N8    | 74.594130571 | -0.007720537 | 20 | 725202973  |
| 9  | N9    | 2.9957492718 | -0.062309523 | 10 | 5.65985095 |
| 10 | N10   | 12.860706683 | -0.036963998 | 65 | 615700289  |
| 11 | N11   | 1.8686494638 | -0.135956892 | 83 | 181872531  |
| 12 | N12   | 30.116992898 | -0.021342944 | 50 | 610337466  |
| 13 | N13   | 5.8948190062 | -0.028967266 | 75 | 115805735  |
| 14 | N14   | 2.2783260949 | -0.04095745  | 70 | 945997632  |
| 15 | N15   | 2.2343745293 | -0.03296952  | 72 | 208209911  |

#### Curve DOE Analysis


Generalized Regression for Model Parameters

- **Generalized Regression for Asymptote**
- Generalized Regression for Scale
- Generalized Regression for Growth Rate


#### Model Comparison

| Show         | Response<br>Distribution | Estimation<br>Method | Validation<br>Method | Nonzero<br>Parameters | AICc      | BIC       | Generalized<br>RSquare |
|--------------|--------------------------|----------------------|----------------------|-----------------------|-----------|-----------|------------------------|
| $\checkmark$ | Normal                   | Forward Selection    | AICc                 | 6                     | -49.06564 | -55.31734 | 0.9285941              |

#### ⊿ Model Launch





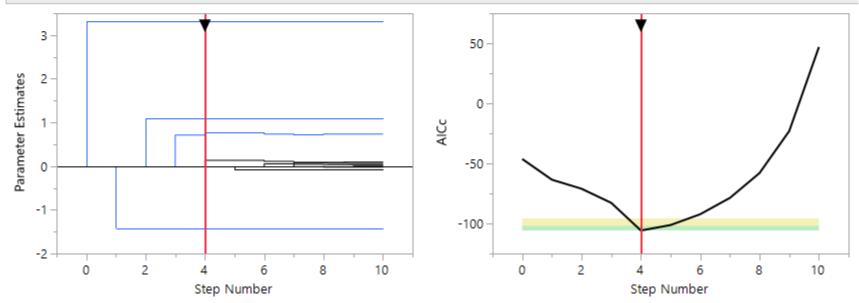


#### 4.8054227983

- + Solvent Volume / RV (Solvent Volume / RV 1.5113228449
- + Solvent Volume / RV ( Base / Equiv -3.380524086
- + -22.51564084 Catalyst / mol %
- + 15.580413139 Base / Equiv

| 34.1  | 65675219                                                                                                                                                                                              |                     |  |  |  |  |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|--|--|--|
| + So  | + Solvent Volume / RV • (Solvent Volume / RV • -0.437773887)                                                                                                                                          |                     |  |  |  |  |  |  |  |  |  |
| + Ba  | se / Equiv • ( Base / Equiv • 1.9283370001 )                                                                                                                                                          |                     |  |  |  |  |  |  |  |  |  |
| • Exp | (0.3868444112<br>+ -0.067025251 • Solvent Volume / RV<br>+ Solvent Volume / RV • (Base / Equiv • 0.0143427946)<br>+ -0.099281912 • Catalyst / mol %<br>+ Base / Equiv • (Base / Equiv • -0.013697589) | , Sample Time / min |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                                                                                       |                     |  |  |  |  |  |  |  |  |  |

| Model Specification                  |             |                                 |                                 |                        |  |
|--------------------------------------|-------------|---------------------------------|---------------------------------|------------------------|--|
| Select Columns                       | Pick Role   | riables                         | Personality:                    | Generalized Regression |  |
| 7 Columns                            | Y           | <ul> <li>Growth Rate</li> </ul> | Distribution                    |                        |  |
| L Expt Name                          |             | optional                        | Company Conde                   | LogNormal              |  |
| Solvent Volume / RV                  |             |                                 | Censor Code:                    |                        |  |
| 🔺 Catalyst / mol %<br>🔺 Base / Equiv | Freq        | optional numeric                | Help                            | Run                    |  |
| Amine SM / Equiv                     | Validation  | optional numeric                | Recall                          |                        |  |
| A Growth Rate                        | Censor      | optional                        |                                 | ] Keep dialog open     |  |
| 🥼 -Growth Rate                       |             |                                 | Remove                          |                        |  |
|                                      | Ву          | optional                        |                                 |                        |  |
|                                      |             |                                 |                                 |                        |  |
|                                      | Construct N | Iodel Effects                   |                                 |                        |  |
|                                      | Add         | Solvent Volume /                | RV & RS                         | ^                      |  |
|                                      | Cross       | Catalyst / mol %                |                                 |                        |  |
|                                      | Nest        | Base / Equiv & RS               |                                 |                        |  |
|                                      |             | Amine SM / Equiv                | / & KS<br>RV*Solvent Volume / R | v                      |  |
|                                      | Macros      | Solvent Volume /                | RV*Catalyst / mol %             | *                      |  |
|                                      | Degree      | 2 Catalyst / mol %*             |                                 |                        |  |
|                                      | Attributes  |                                 |                                 |                        |  |
|                                      | Transform   | Catalyst / mol %*               | Base / Equiv                    |                        |  |
|                                      | 🗌 No Inte   | rcept Base / Equiv*Base         | e / Equiv                       | $\sim$                 |  |


#### Generalized Regression for -Growth Rate

#### Model Comparison Response Estimation Validation Nonzero Show Distribution Method Method **Parameters** AICc ✓ LogNormal Forward Selection AICc 6 -105.8128 -112.0645

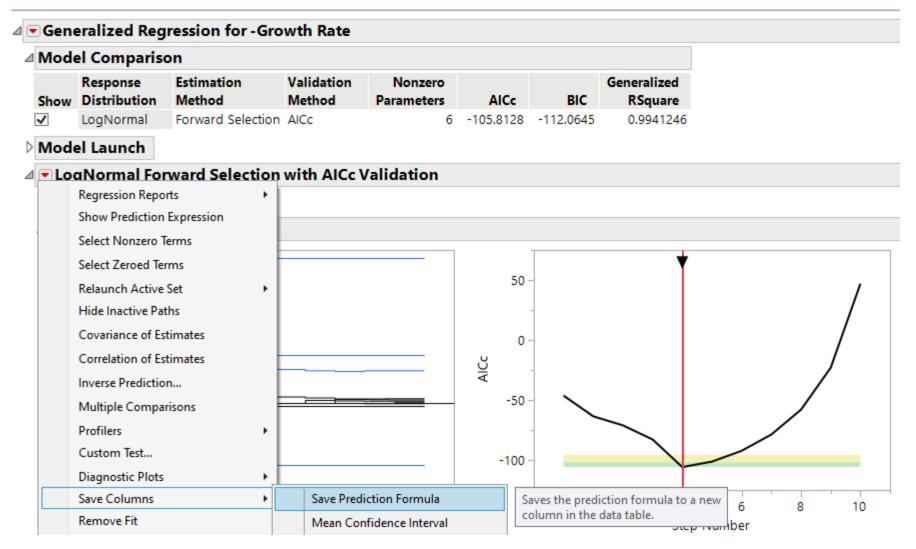
~ Normal Forward Selection AICc Model Launch

#### LogNormal Forward Selection with AICc Validation

- Model Summary
- ⊿ Solution Path



Generalized


RSquare

0.9941246

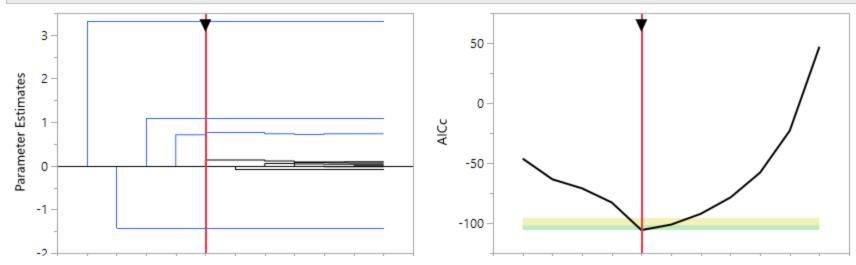
0.9914435

BIC

8 -63.39106 -81.72666



| Parameter   | Estima | tes       |       |       |                  |            |     |             |                    |
|-------------|--------|-----------|-------|-------|------------------|------------|-----|-------------|--------------------|
|             |        |           |       |       | Wald             | Prob >     |     |             |                    |
| Parameter   | Group  | Estimate  | Std I | Error | ChiSquare        | ChiSquare  | Lov | ver 95%     | Upper 95%          |
| Asymptote   | N1     | 22.867858 | 0.94  | 29534 | 588.12622        | <.0001*    | 2   | 21.019703   | 24.716012          |
| Scale       | N1     | 48.146326 | 1.6   |       | Table Chile      |            | •   | 4.966198    | 51.326454          |
| Growth Rate | N1     | -0.02523  | 0.0   |       | Table Style      |            |     | 0.029876    | -0.020584          |
| Asymptote   | N2     | 1.4481425 | 0.7   |       | Columns          |            | •   | .0294338    | 2.8668512          |
| Scale       | N2     | 120.96879 | 3.2   |       | Sort by Column.  |            |     | 14.67599    | 127.26158          |
| Growth Rate | N2     | -0.101923 | 0.0   |       | Make into Data 1 | Table      |     | Creates a   | a new data table   |
| Asymptote   | N3     | 41.996218 | 1.8   |       | Make Combined    | Data Table |     | 8 the value | es in the [[TableB |
| Scale       | N3     | 39.131357 | 1.7   |       |                  |            |     | 5.737057    | 42.525656          |
| Growth Rate | N3     | -0.010873 | 0.0   |       | Make Into Matrix | C          |     | 0.014141    | -0.007604          |
| Asymptote   | N4     | 1.7514216 | 0.9   |       | Format Column.   |            |     | 0.033233    | 3.5360763          |
| Scale       | N4     | 119.17315 | 8.0   |       | Show Properties  |            |     | 03.45358    | 134.89272          |
| Growth Rate | N4     | -0.236677 | 0.0   |       |                  |            |     | 0.273948    | -0.199405          |
| Asymptote   | N5     | 4.5055741 | 0.8   |       | Copy Column      |            |     | .8453776    | 6.1657706          |
| Scale       | N5     | 79.418733 | 1.8   |       | Copy Table       |            |     | 5.741327    | 83.09614           |
| Growth Rate | N5     | -0.036396 | 0.0   |       | -                |            |     | 0.040312    | -0.03248           |
| Asymptote   | N6     | 6.1012035 | 0.8   |       | Simulate         |            |     | .3845257    | 7.8178814          |
| Scale       | N6     | 67.319873 | 1.    |       | Bootstrap        |            |     | 63.84646    | 70.793286          |
| Growth Rate | N6     | -0.031639 | 0.00  | 20688 | 233.87727        | <.0001*    |     | -0.035693   | -0.027584          |

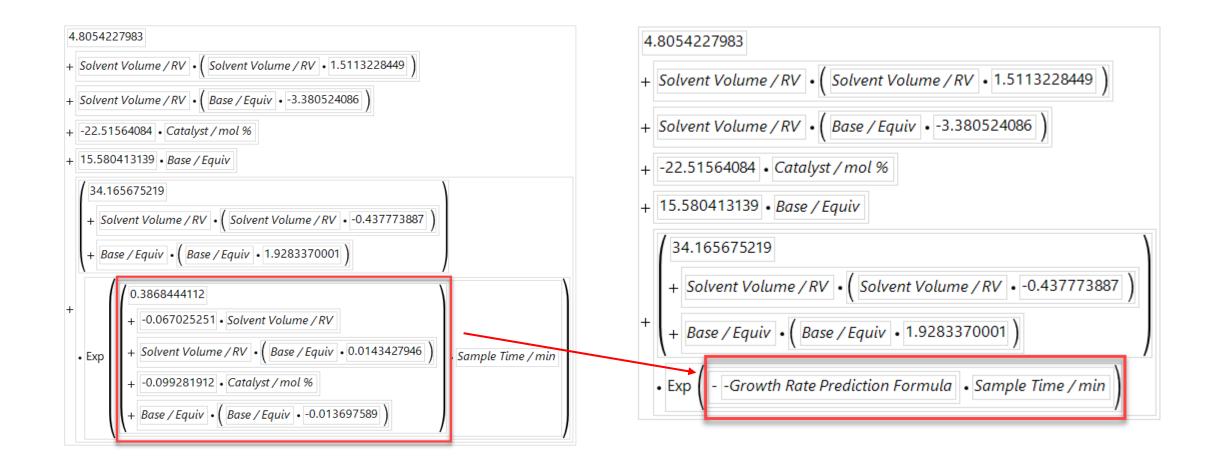

|    | Expt<br>Name | Solvent<br>Volume / RV | Catalyst / mol<br>% | Base /<br>Equiv | Amine SM /<br>Equiv | Growth Rate  | -Growth Rate |  |
|----|--------------|------------------------|---------------------|-----------------|---------------------|--------------|--------------|--|
| 1  | N1           | 8                      | 1.3                 | 4.5             | 1                   | -0.025230049 | 0.0252300488 |  |
| 2  | N2           | 8                      | 0.7                 | 7.5             | 1.1                 | -0.101923433 | 0.1019234335 |  |
| 3  | N3           | 10                     | 1                   | 4.5             | 1.1                 | -0.010872558 | 0.010872558  |  |
| 4  | N4           | 6                      | 1                   | 7.5             | 1                   | -0.236676633 | 0.2366766326 |  |
| 5  | N5           | 6                      | 0.7                 | 6               | 1.1                 | -0.036396107 | 0.0363961067 |  |
| 6  | N6           | 10                     | 1.3                 | 6               | 1                   | -0.031638593 | 0.0316385934 |  |
| 7  | N7           | 6                      | 1.3                 | 7.5             | 1.05                | -0.29774875  | 0.2977487499 |  |
| 8  | N8           | 10                     | 0.7                 | 4.5             | 1.05                | -0.007720537 | 0.0077205372 |  |
| 9  | N9           | 10                     | 0.7                 | 7.5             | 1                   | -0.062309523 | 0.0623095232 |  |
| 10 | N10          | 6                      | 1.3                 | 4.5             | 1.1                 | -0.036963998 | 0.0369639976 |  |
| 11 | N11          | 10                     | 1.3                 | 7.5             | 1.1                 | -0.135956892 | 0.1359568915 |  |
| 12 | N12          | 6                      | 0.7                 | 4.5             | 1                   | -0.021342944 | 0.0213429442 |  |
| 13 | N13          | 8                      | 1                   | 6               | 1.05                | -0.028967266 | 0.0289672656 |  |
| 14 | N14          | 8                      | 1                   | 6               | 1.05                | -0.04095745  | 0.0409574504 |  |
| 15 | N15          | 8                      | 1                   | 6               | 1.05                | -0.03296952  | 0.0329695197 |  |
|    |              |                        |                     |                 |                     |              |              |  |

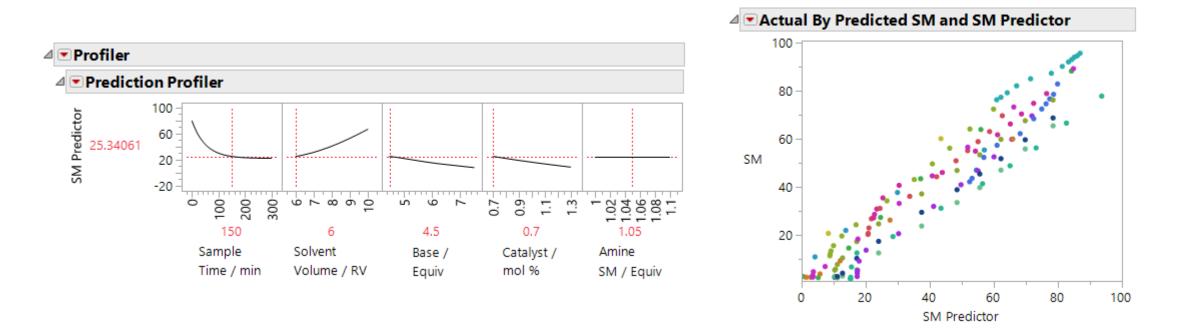
| 🍽 Fit Model - JMP Pro         |             |                                         |                   | - 🗆 ×                  |
|-------------------------------|-------------|-----------------------------------------|-------------------|------------------------|
| Model Specification           |             |                                         |                   |                        |
| Select Columns                | Pick Role   | riables                                 | Personality:      | Generalized Regression |
| 7 Columns                     | Y           | Growth Rate                             | Distribution      | LogNormal ×            |
| 🔥 Expt Name                   |             | optional                                |                   | Logivorniai            |
| Solvent Volume / RV           |             |                                         | Censor Code:      |                        |
| Catalyst / mol % Base / Equiv | Freq        | optional numeric                        | Help              | Run                    |
| Amine SM / Equiv              | Validation  | optional numeric                        | Recall            | T Kaan dialan anan     |
| d Growth Rate                 | Censor      | optional                                |                   | ] Keep dialog open     |
| 🚄 -Growth Rate                |             |                                         | Remove            |                        |
|                               | Ву          | optional                                |                   |                        |
|                               |             |                                         |                   |                        |
|                               | Construct M | odel Effects                            |                   |                        |
|                               | Add         | Solvent Volume / RV                     |                   | ^                      |
|                               | Cross       | Catalyst / mol % & R                    | lS                |                        |
|                               | Nest        | Base / Equiv & RS<br>Amine SM / Equiv & | RS                |                        |
|                               | Macros      |                                         |                   | v                      |
|                               |             | 2 Solvent Volume / RV                   | *Catalyst / mol % |                        |
|                               |             | Catalyst / mol %*Cat                    | •                 |                        |
|                               | Attributes  |                                         |                   |                        |
|                               | Transform   |                                         |                   |                        |
|                               | L No Inter  | cept Base / Equiv*Base / E              | -quiv             | ×                      |

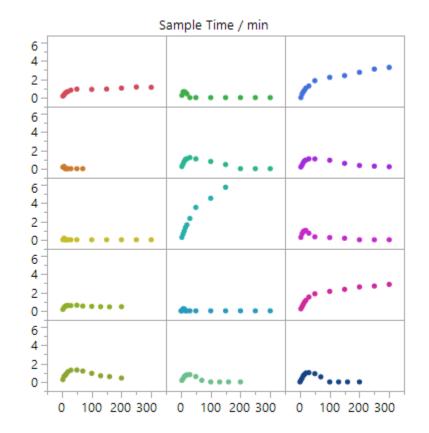
#### Model Comparison Response Estimation Validation Nonzero Generalized Show Distribution Method Method Parameters AICc BIC RSquare ✓ LogNormal Forward Selection AICc -105.8128 -112.0645 0.9941246 6 ~ Normal Forward Selection AICc 8 -63.39106 -81.72666 0.9914435

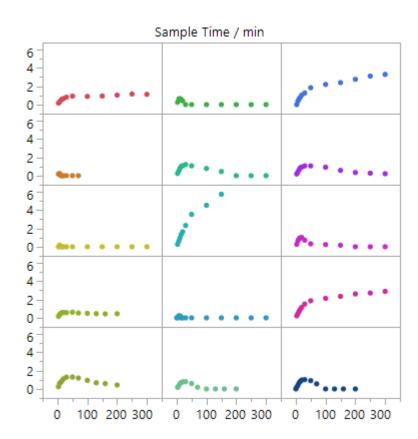
Model Launch

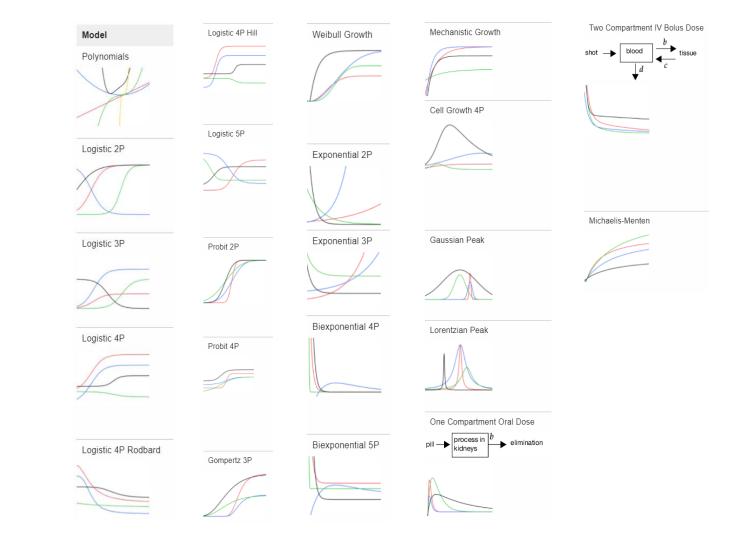
- LogNormal Forward Selection with AICc Validation
  - Model Summary
- ⊿ Solution Path



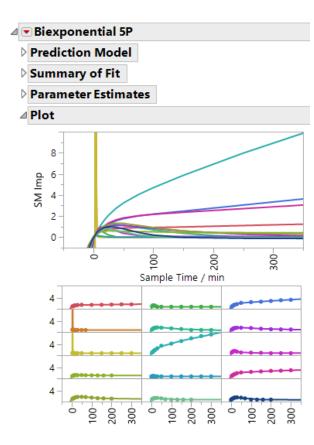


#### Generalized Regression for -Growth Rate Model Comparison Response Estimation Validation Generalized Nonzero Show Distribution Method Method AICc BIC Parameters RSquare ✓ LogNormal Forward Selection AICc 6 -105.8128 -112.0645 0.9941246 Model Launch LogNormal Forward Selection with AICc Validation Regression Reports ٠ Show Prediction Expression Select Nonzero Terms Select Zeroed Terms 50 Relaunch Active Set . Hide Inactive Paths Covariance of Estimates 0 Correlation of Estimates AICc Inverse Prediction... -50 Multiple Comparisons Profilers Custom Test... -100 **Diagnostic Plots** ۲ Save Columns Save Prediction Formula Saves the prediction formula to a new ٠ 6 10 8 column in the data table. Remove Fit Mean Confidence Interval occo readber

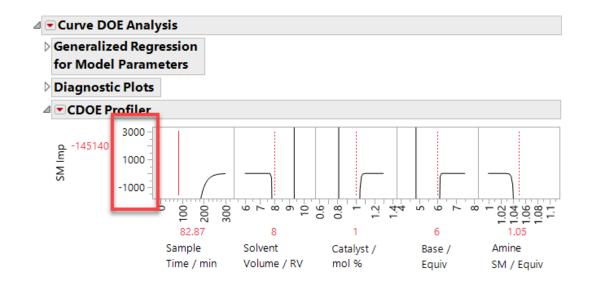

| $\overline{)}$ | Expt | Solvent<br>Volume | Catalyst | Base / | Amine SM | Growth | -Growth |   | rth Rate<br>liction |                |   |
|----------------|------|-------------------|----------|--------|----------|--------|---------|---|---------------------|----------------|---|
|                | Name | / RV              | / mol %  | Equiv  | / Equiv  | Rate   | Rate    |   | Column In           | fo             |   |
| 1              | N1   | 8                 | 1.3      | 4.5    | 1        | -0.025 | 0.0252  |   | Chandradia          | e Attributes   |   |
| 2              | N2   | 8                 | 0.7      | 7.5    | 1.1      | -0.101 | 0.1019  |   |                     |                |   |
| 3              | N3   | 10                | 1        | 4.5    | 1.1      | -0.010 | 0.0108  |   | Column P            | roperties      | • |
| 4              | N4   | 6                 | 1        | 7.5    | 1        | -0.236 | 0.2366  | 순 | Formula             |                |   |
| 5              | N5   | 6                 | 0.7      | 6      | 1.1      | -0.036 | 0.0363  |   | Recode              |                |   |
| 6              | N6   | 10                | 1.3      | 6      | 1        | -0.031 | 0.0316  |   | New Form            | ula Column     | , |
| 7              | N7   | 6                 | 1.3      | 7.5    | 1.05     | -0.297 | 0.2977  |   | Insert Colu         |                | , |
| 8              | N8   | 10                | 0.7      | 4.5    | 1.05     | -0.007 | 0.0077  |   |                     |                |   |
| 9              | N9   | 10                | 0.7      | 7.5    | 1        | -0.062 | 0.0623  |   | Delete Col          | umns           |   |
| 10             | N10  | 6                 | 1.3      | 4.5    | 1.1      | -0.036 | 0.0369  | 0 | Label/Unla          | abel           |   |
| 11             | N11  | 10                | 1.3      | 7.5    | 1.1      | -0.135 | 0.1359  | 0 | L'al-ID             |                |   |
| 12             | N12  | 6                 | 0.7      | 4.5    | 1        | -0.021 | 0.0213  | 1 | Link ID             |                |   |
| 13             | N13  | 8                 | 1        | 6      | 1.05     | -0.028 | 0.0289  |   | Sort                |                |   |
| 14             | N14  | 8                 | 1        | 6      | 1.05     | -0.040 | 0.0409  |   | Conv Colu           | imn Properties |   |
| 15             | N15  | 8                 | 1        | 6      | 1.05     | -0.032 | 0.0329  |   |                     | •              |   |
|                |      |                   |          |        |          |        |         |   | Copy Colu           | imns           |   |

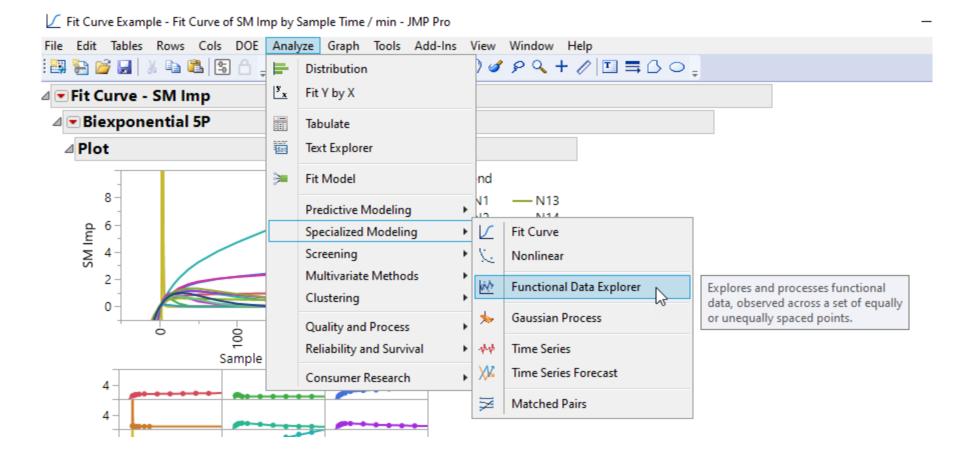

|    | Expt | Sample<br>Time / | Solvent<br>Volume / | Catalyst / | Base / | Amine<br>SM / |          | Product  |         | Product   | Product<br>Imp |              | -Growth Rate<br>Prediction |
|----|------|------------------|---------------------|------------|--------|---------------|----------|----------|---------|-----------|----------------|--------------|----------------------------|
|    | Name | min              | RV                  | mol %      | Equiv  | Equiv         | Product  | Imp      | SM      | Predictor | Predictor      | SM Predictor | Formula                    |
| 1  | N1   | 3                | 8                   | 1.3        | 4.5    | 1             | 29.37459 | 0.835080 | 69.6229 | 29.5252   | 0.78054        | 60.823894854 | 0.0248591549               |
| 2  | N1   | 7                | 8                   | 1.3        | 4.5    | 1             | 35.85010 | 0.828343 | 63.0270 | 32.5001   | 0.80048        | 54.961328808 | 0.0248591549               |
| 3  | N1   | 11               | 8                   | 1.3        | 4.5    | 1             | 39.81607 | 0.842789 | 58.8567 | 35.5291   | 0.82043        | 49.954770117 | 0.0248591549               |
| 4  | N1   | 15               | 8                   | 1.3        | 4.5    | 1             | 43.43785 | 0.869276 | 55.1016 | 38.5707   | 0.84035        | 45.679231092 | 0.0248591549               |
| 5  | N1   | 20               | 8                   | 1.3        | 4.5    | 1             | 47.53072 | 0.929187 | 50.8791 | 42.3264   | 0.86518        | 41.201713038 | 0.0248591549               |
| 6  | N1   | 30               | 8                   | 1.3        | 4.5    | 1             | 53.96907 | 0.995378 | 44.2265 | 49.3969   | 0.91445        | 34.50828182  | 0.0248591549               |
| 7  | N1   | 50               | 8                   | 1.3        | 4.5    | 1             | 61.91892 | 1.061143 | 36.0956 | 60.4207   | 1.01012        | 26.956999806 | 0.0248591549               |
| 8  | N1   | 100              | 8                   | 1.3        | 4.5    | 1             | 66.73583 | 1.282049 | 31.0905 | 71.0601   | 1.21940        | 21.546516392 | 0.0248591549               |
| 9  | N1   | 150              | 8                   | 1.3        | 4.5    | 1             | 70.97244 | 1.332256 | 26.7644 | 72.6443   | 1.37219        | 20.794234497 | 0.0248591549               |
| 10 | N1   | 200              | 8                   | 1.3        | 4.5    | 1             | 74.55535 | 1.479735 | 22.9344 | 72.8455   | 1.47125        | 20.689636071 | 0.0248591549               |
| 11 | N1   | 250              | 8                   | 1.3        | 4.5    | 1             | 76.61089 | 1.559971 | 20.6754 | 72.8704   | 1.53063        | 20.675092546 | 0.0248591549               |
| 12 | N1   | 300              | 8                   | 1.3        | 4.5    | 1             | 77.02376 | 1.604085 | 20.2519 | 72.8735   | 1.56456        | 20.673070392 | 0.0248591549               |


|    | Expt | Sample<br>Time / | Solvent<br>Volume / | Catalyst / | Base / | Amine<br>SM / |          | Product  |         | Product   | Product<br>Imp |              | -Growth Rate<br>Prediction |
|----|------|------------------|---------------------|------------|--------|---------------|----------|----------|---------|-----------|----------------|--------------|----------------------------|
|    | Name | min              | RV                  | mol %      | Equiv  | Equiv         | Product  | Imp      | SM      | Predictor | Predictor      | SM Predictor | Formula                    |
| 1  | N1   | 3                | 8                   | 1.3        | 4.5    | 1             | 29.37459 | 0.835080 | 69.6229 | 29.5252   | 0.78054        | 60.823894854 | 0.0248591549               |
| 2  | N1   | 7                | 8                   | 1.3        | 4.5    | 1             | 35.85010 | 0.828343 | 63.0270 | 32.5001   | 0.80048        | 54.961328808 | 0.0248591549               |
| 3  | N1   | 11               | 8                   | 1.3        | 4.5    | 1             | 39.81607 | 0.842789 | 58.8567 | 35.5291   | 0.82043        | 49.954770117 | 0.0248591549               |
| 4  | N1   | 15               | 8                   | 1.3        | 4.5    | 1             | 43.43785 | 0.869276 | 55.1016 | 38.5707   | 0.84035        | 45.679231092 | 0.0248591549               |
| 5  | N1   | 20               | 8                   | 1.3        | 4.5    | 1             | 47.53072 | 0.929187 | 50.8791 | 42.3264   | 0.86518        | 41.201713038 | 0.0248591549               |
| 6  | N1   | 30               | 8                   | 1.3        | 4.5    | 1             | 53.96907 | 0.995378 | 44.2265 | 49.3969   | 0.91445        | 34.50828182  | 0.0248591549               |
| 7  | N1   | 50               | 8                   | 1.3        | 4.5    | 1             | 61.91892 | 1.061143 | 36.0956 | 60.4207   | 1.01012        | 26.956999806 | 0.0248591549               |
| 8  | N1   | 100              | 8                   | 1.3        | 4.5    | 1             | 66.73583 | 1.282049 | 31.0905 | 71.0601   | 1.21940        | 21.546516392 | 0.0248591549               |
| 9  | N1   | 150              | 8                   | 1.3        | 4.5    | 1             | 70.97244 | 1.332256 | 26.7644 | 72.6443   | 1.37219        | 20.794234497 | 0.0248591549               |
| 10 | N1   | 200              | 8                   | 1.3        | 4.5    | 1             | 74.55535 | 1.479735 | 22.9344 | 72.8455   | 1.47125        | 20.689636071 | 0.0248591549               |
| 11 | N1   | 250              | 8                   | 1.3        | 4.5    | 1             | 76.61089 | 1.559971 | 20.6754 | 72.8704   | 1.53063        | 20.675092546 | 0.0248591549               |
| 12 | N1   | 300              | 8                   | 1.3        | 4.5    | 1             | 77.02376 | 1.604085 | 20.2519 | 72.8735   | 1.56456        | 20.673070392 | 0.0248591549               |

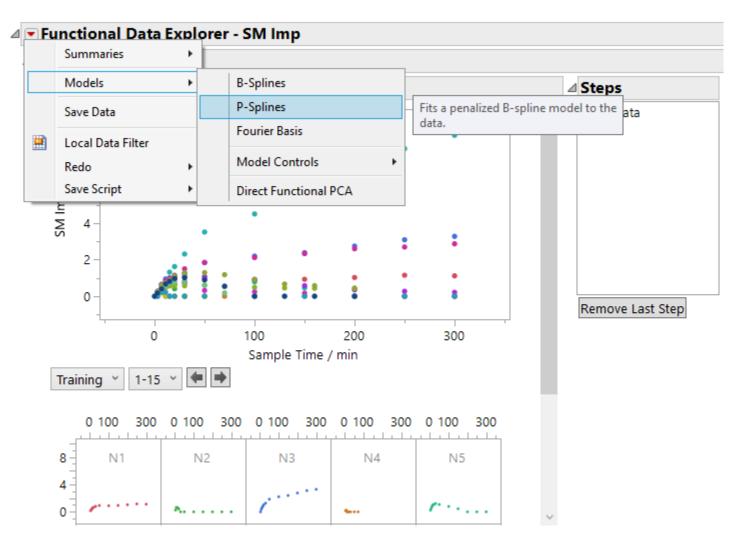








| ▼ Fit Curve - SM Imp |           |             |             |           |           |           |           |                 |  |  |  |
|----------------------|-----------|-------------|-------------|-----------|-----------|-----------|-----------|-----------------|--|--|--|
| ✓ Model Comparison   |           |             |             |           |           |           |           |                 |  |  |  |
| Model                | AICc ^    | AICc Weight | .2 .4 .6 .8 | BIC       | SSE       | MSE       | RMSE      | <b>R-Square</b> |  |  |  |
| Biexponential 5P     | -248.5568 | 1           |             | -122.6224 | 0.5726787 | 0.00556   | 0.0745653 | 0.9980244       |  |  |  |
| Biexponential 4P     | -211.1367 | 7.4874e-9   |             | -82.2548  | 1.1118453 | 0.0094224 | 0.0970691 | 0.9961644       |  |  |  |



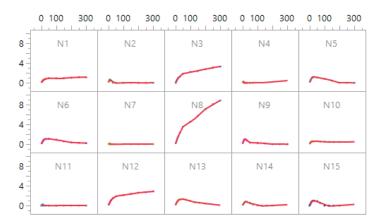


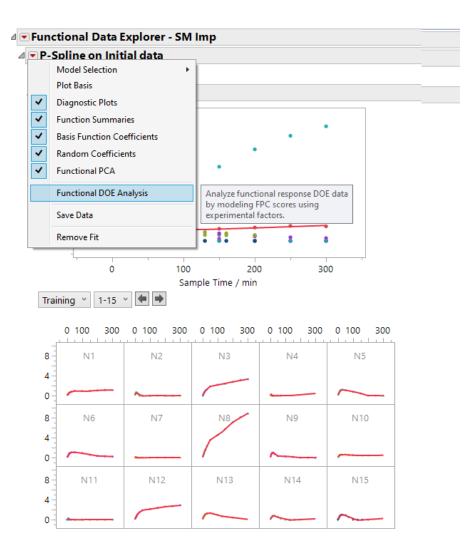


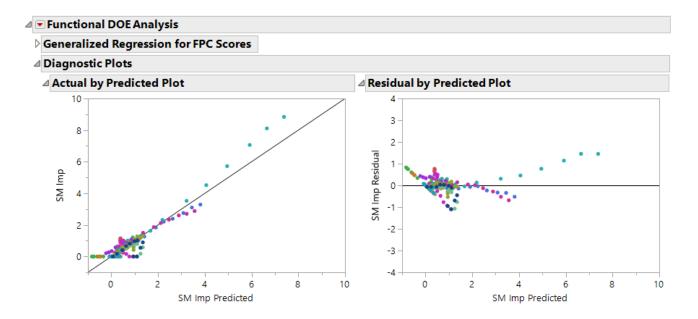
| 👾 Functional Data Expl                                                                                                                                                                                                                                                                                                                                            | 👬 Functional Data Explorer - JMP Pro 🦰 |            |                     |                      |                                                                                                                                           |   |                  |                                |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|--------------------------------|--|--|--|--|
| <ul> <li>Functional Data Expl</li> <li>Stacked Data Format</li> <li>Stacked data format.</li> <li>Select Columns</li> <li>17 Columns</li> <li>Expt Name</li> <li>Added Row Indica</li> <li>Sample Point</li> <li>Sample Time / mi</li> <li>Solvent Volume /</li> <li>Catalyst / mol %</li> <li>Base / Equiv</li> <li>Amine SM / Equiv</li> <li>Product</li> </ul> | Rows as Functions<br>ator<br>n<br>RV   | Columns as |                     | tput<br>put<br>ction | mns into Roles<br>SM Imp<br>optional numeric<br>Sample Time / min<br>Expt Name<br>Solvent Volume / RV<br>Catalyst / mol %<br>Base / Equiv |   | Car<br>Rem<br>Re | ×<br>K<br>ncel<br>nove<br>call |  |  |  |  |
| <ul> <li>Product Imp</li> <li>SM</li> <li>SM Imp</li> </ul>                                                                                                                                                                                                                                                                                                       |                                        | ~          | Fre<br>Valida<br>By | ition                | Amine SM / Equiv<br>optional numeric<br>optional numeric<br>optional                                                                      |   |                  |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                   |                                        |            |                     |                      |                                                                                                                                           | 8 | ☆ [              |                                |  |  |  |  |

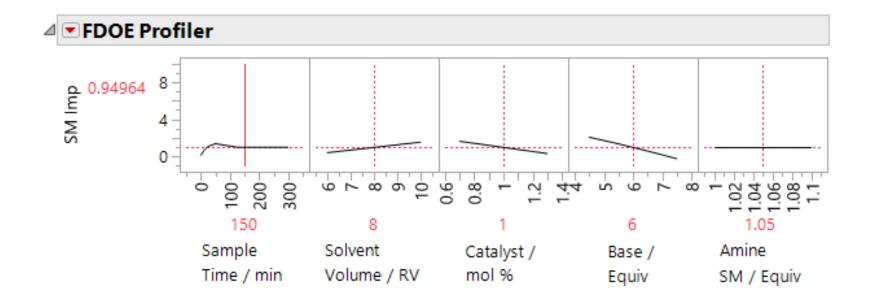


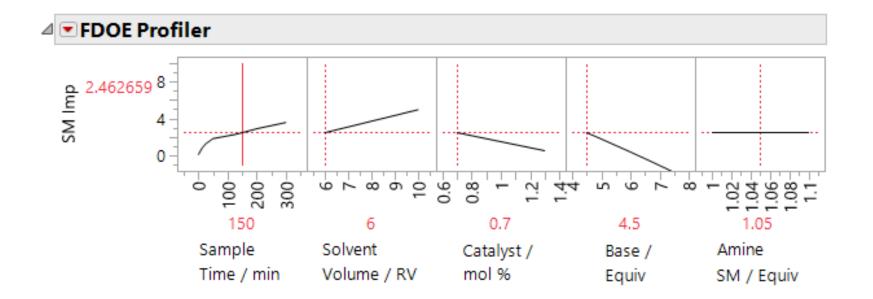



⊿ 💌 Functional Data Explorer - SM Imp


⊿ 💌 P-Spline on Initial data


Model Controls


Model Selection

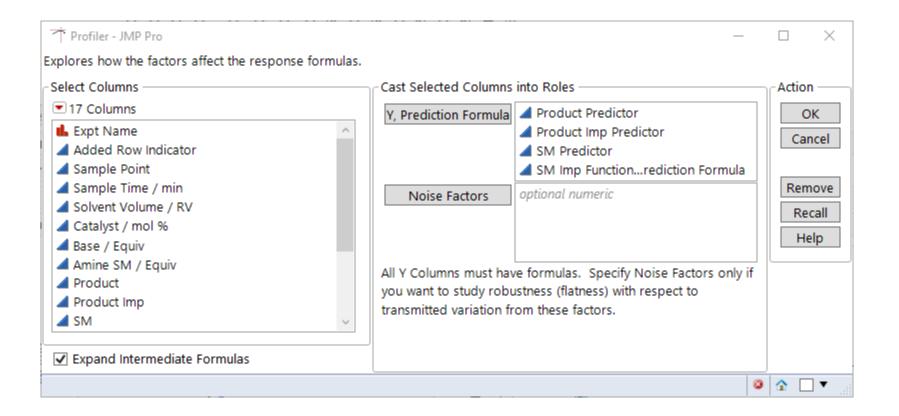




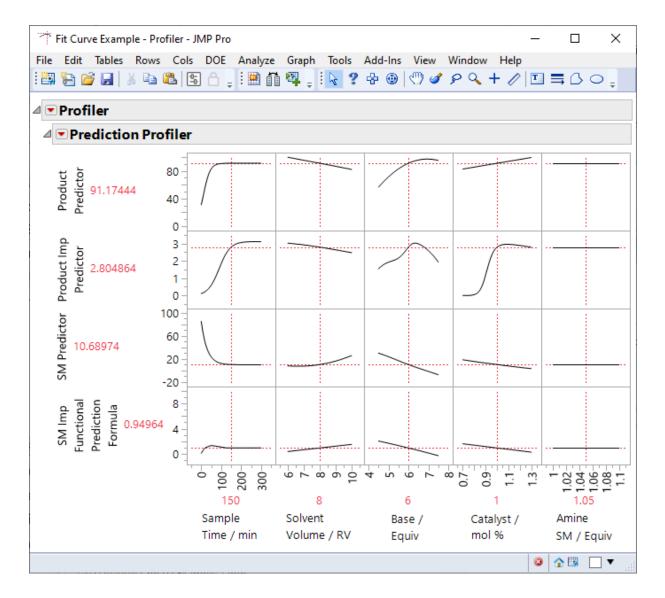







#### Profiler For All Four Responses


#### 📴 Fit Curve Example - JMP Pro

| File Edit Tables Rows Cols DO                                                    | E      | Analyze     | Grap           | h Tools    | Add-Ins    | View | Window   | Help    | р                                  |                     |
|----------------------------------------------------------------------------------|--------|-------------|----------------|------------|------------|------|----------|---------|------------------------------------|---------------------|
| i 🛤 😜 🎽 🖬   🐰 ங 🛝   🗊 A                                                          | Ŧ      | :           |                | Graph Bu   | uilder     |      |          |         |                                    |                     |
| Fit Curve Example                                                                | Þ      | ۹ 🔪         | ₽.             | Bubble P   | lot        |      |          |         |                                    |                     |
| Design Definitive Screening Design<br>Source                                     | ^      | $  \rangle$ | 이<br>지지<br>지지다 | Scatterpl  | lot Matrix |      |          |         |                                    |                     |
| Model                                                                            |        |             |                | Parallel P | Plot       |      |          |         |                                    |                     |
| <ul> <li>DOE Dialog</li> <li>Product CDOE Logistic3P</li> </ul>                  |        |             |                | Cell Plot  |            |      |          |         |                                    |                     |
| <ul> <li>Product CDOE LogisticsP</li> <li>Product Imp CDOE Logistic3P</li> </ul> |        |             | 渓              | Scatterpl  | lot 3D     |      | Sam      | nle     | Sample                             | Solvent<br>Volume / |
| SM CDOE Expon3P                                                                  |        |             | 3              | Contour    | Plot       |      | Poi      | -       | Time / min                         | RV                  |
| <ul> <li>SM Imp Fit Curve Overfit</li> <li>SM Imp FDOE P Spline</li> </ul>       |        | •           | Δ              | Ternary F  | Plot       |      |          | 1       | 3                                  | ę                   |
| Profiler - All 4 Responses                                                       |        | •           | 4              |            | 21-1       |      |          | 2       | 7                                  | 8                   |
| Profiler with Target Ranges                                                      | $\sim$ | •           | <b>**</b>      | Surface F  | Plot       |      |          | 3       |                                    | }                   |
| Columns (17/0)                                                                   |        | •           | *              | Profiler   | G          |      |          |         | interactive grap<br>to explore how |                     |
| ۹                                                                                |        | •           | 2              | Contour    | Profiler   |      | _ predic | ted res | sponse changes                     |                     |
| 🔥 Expt Name                                                                      | $\sim$ | •           |                | Mixture    | Profiler   |      | chang    | e facto | or settings.                       | {                   |
| Added Row Indicator                                                              |        | •           | <b>X</b>       | Custom     | Profiler   |      | <u> </u> | 7       | 50                                 | {                   |
| 🚄 Sample Point                                                                   |        | •           | *              | Excel Pro  | ofiler     |      |          | 8       | 100                                | {                   |
| 🚄 Sample Time / min                                                              |        | •           |                |            |            |      |          | 9       | 150                                | 8                   |
| Solvent Volume / RV                                                              |        | •           |                | Legacy     |            | •    | •        | 10      | 200                                | 8                   |
| 🚄 Catalyst / mol %                                                               |        | -           | -              | 4 814      |            | ,    |          |         | 250                                | ,                   |

#### Profiler For All Four Responses



#### Profiler For All Four Responses





#### Fit Multiple Curves to Chemical Reaction Response Compare Model

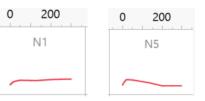
- Fit Curve Choose multiple curves to fit.
  - Review Model Comparison and Model Diagnostics to select a Model.

| ▼ Fit Curve        |           |             |             |           |           |           |           |           |  |  |
|--------------------|-----------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|--|--|
| ⊿ Model Comparison |           |             |             |           |           |           |           |           |  |  |
| Model              | AICc ^    | AICc Weight | .2 .4 .6 .8 | BIC       | SSE       | MSE       | RMSE      | R-Square  |  |  |
| Logistic 4P        | 774.21661 | 1           |             | 901.26526 | 287.54791 | 2.4788613 | 1.57444   | 0.9980418 |  |  |
| Logistic 3P        | 925,40129 | 1.481e-33   |             | 1037.7242 | 970.09161 | 7.4052794 | 2.7212643 | 0.9933937 |  |  |
| Weibull Growth     | 1132.045  | 1.989e-78   |             | 1244.3679 | 3138.5071 | 23.958069 | 4.8946981 | 0.9786268 |  |  |
| Logistic 5P        | 1358.7337 | 1.19e-127   |             | 1481.4682 | 5000.6892 | 49.511775 | 7.0364604 | 0.9659454 |  |  |
| Probit 4P          | 1463.7303 | 1.88e-150   |             | 1590.7789 | 14459.122 | 124.64761 | 11.164569 | 0.9015335 |  |  |

- What diagnostic to assess to determine one model better than another?
- Response Fit Curve selections
  - Prod, Prod Imp Logistic 3P, SM Exponential 3P, SM Imp FDE P Spline

### Subject Matter Expert Guided Selection - Product

• May not always choose pre-loaded formula with best "Statistical" diagnostic results

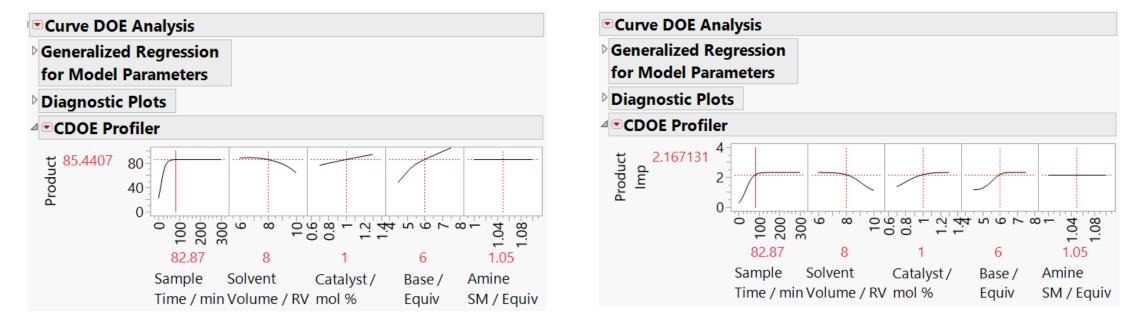

| Model Comparison |           |             |          |           |           |           |           |                 |  |
|------------------|-----------|-------------|----------|-----------|-----------|-----------|-----------|-----------------|--|
| Model            |           | AICc Weight | .2.4.6.8 | BIC       | SSE       | MSE       | RMSE      | <b>R-Square</b> |  |
| Exponential 3P   | 766.00441 | 1           |          | 878.32729 | 392.18215 | 2.9937568 | 1.7302476 | 0.9973292       |  |
| Logistic 3P      | 925.40129 | 2.44e-35    |          | 1037.7242 | 970.09161 | 7.4052794 | 2.7212643 | 0.9933937       |  |

- For Product, Exponential 3P diagnostics better so why choose Logistic 3P
  - In this instance both very good. Subject matter proposal:
- The Exponential 3p is the same curve as kinetic reaction first order with fitted limits Kinetic:  $A = A_f + (A_0 - A_f)e^{-kt}$  Exponential  $a+b\cdot Exp(c\cdot Sample Time / min)$
- Looking at the curves, the shape is more sigmoidal, suggesting more complex kinetics than first order so Exponential 3P lacks shape flexibility.
- Logistic 3P, lacks similarity to kinetic equations, more effective at describing sigmoidal curves.
- Taking more samples near time point 0 may have helped discriminate between formulas.

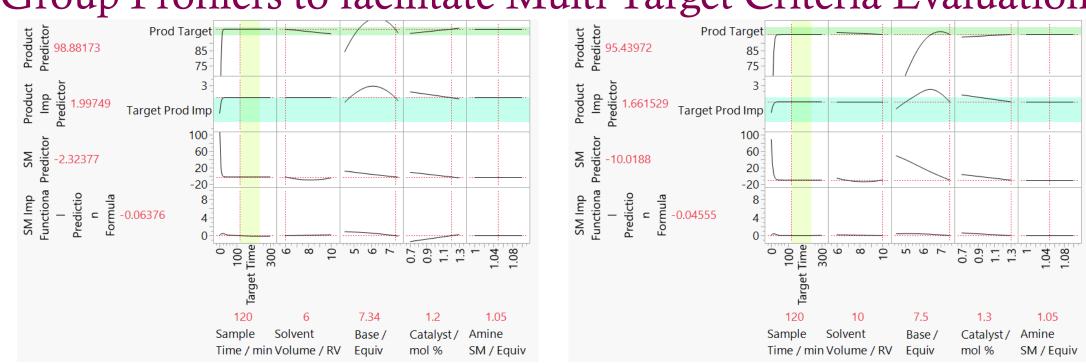
#### Subject Matter Expert Guided Selection – SM Imp

- SM imp can be formed and consumed (to form Product Imp). The pathways could occur at different rates to the extreme where one pathways is switched off.
  - N3, N8, N12 SM Imp increases.
    - Pathways: Formation On, Consumption Off.
  - Other Expts SM Imp rate plateaus or peaks and reduces.
  - Pathways: Formation On, Consumption On.
- None of the pre-loaded formulas could adequately fit the variety of profiles shapes created by the combined pathway effect.
- FDE P spline fitted making use of greater curve shape fitting flexibility.
- Ambitions is for First principle fitting approximation but in case ambition scaled back to empirical fitting approximation.






#### Select Curve DoE on formula parameter coefficients Compare Response Distributions


| urve DOE Analysis<br>eneralized Regression for Model Parameters |              |                   |            |            |           |           |             |  |  |  |  |
|-----------------------------------------------------------------|--------------|-------------------|------------|------------|-----------|-----------|-------------|--|--|--|--|
|                                                                 |              |                   |            |            |           |           |             |  |  |  |  |
| Generalized Regression for Growth Rate                          |              |                   |            |            |           |           |             |  |  |  |  |
| Mode                                                            | el Compariso | n                 |            |            |           |           |             |  |  |  |  |
|                                                                 | Response     | Estimation        | Validation | Nonzero    |           |           | Generalized |  |  |  |  |
| Show                                                            | Distribution | Method            | Method     | Parameters | AICc      | BIC       | RSquare     |  |  |  |  |
| ✓                                                               | Normal       | Forward Selection | AICc       | 6          | -39.33529 | -45.58699 | 0.942605    |  |  |  |  |
| ✓                                                               | Normal       | Forward Selection | AICc       | 8          | -38.70316 | -57.03876 | 0.981357    |  |  |  |  |
| ✓                                                               | Gamma        | Forward Selection | AICc       | 6          | -91.45945 | -97.71115 | 0.995610    |  |  |  |  |
| ✓                                                               | Weibull      | Forward Selection | AICc       | 7          | -80.04912 | -91.09276 | 0.994417    |  |  |  |  |
|                                                                 |              | Forward Selection |            | G          | -88.25012 | 04 50100  | 0.994819    |  |  |  |  |

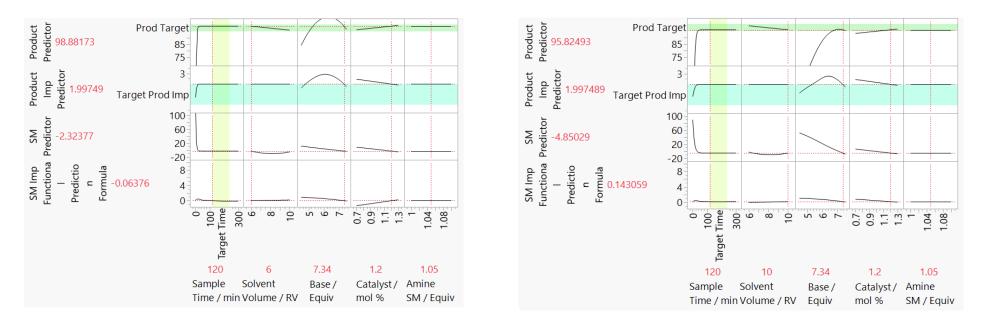
• What diagnostic to assess to determine one model better than another?

#### DoE Profiler for each reaction response



- Review profiles to understand factor influence on reaction response behaviour.
- Assess which factor settings have potential to comply with all response target criteria.




#### Group Profilers to facilitate Multi Target Criteria Evaluation

**Response Target Criteria** 

Product, 95.0% or more (horizontal green) Product Imp, 2.0% or less (horizontal green/blue) Reaction Time, 120 – 240 mins (vertical green) Interested in the Group Profiler top 2 rows

## Relating Group Profiler to Process Insight

- Key Responses: Prod and Prod Imp Group Profiler top 2 rows
- Visualises impact over timeline of changing factor levels on key responses
- Factor combinations exist predicting Responses achieving target criteria
  - SM Amine not influential (Flat line), High Base minimise solvent influence (Flatter line)
  - Factor combinations limited due to sensitivity in Base and Catalyst acceptable levels
  - 12–240 mins, 6–10 vols, Base 7.34–7.5 eq, Catalyst 1.2–1.3 mol%, SM Amine 1.0–1.10 eq



### Summary: Fit Curve Pre-loaded formula Improvements

Fit Curve Pre-loaded formulas

- User Specify lower and upper bounds to theoretical values
- User Specify lower and upper asymptotes to meet defined lower and Upper theoretical values
- Help with alerts to over-fitted pre-loaded equations
- Improved AICs performance to detect over fitting
  - Until then check Model Diagnostics observed vs predicted results
  - How good should formula fit be on each experiment?
    - Majority of formulae parameter coefficients, for every experiment, statistically significant?

### Summary: Curve DoE Improvements

Curve DoE

- For DSDs, default to 2-stage analysis approach.
- Bound original Y response to theoretical possible results eg 0 100% product.
- Select appropriate distribution to apply to fit curve parameter coefficients.
  - Gradient lies within 0 -1, therefore Beta distribution a better descriptor than a Gaussian(Normal) distribution?
  - Expand possible distribution options to cover distribution which reflect better features and number ranges observed in parameter coefficients estimates eg values always negative.
- What Design choices are most suited for reaction profile experimentation modelling Factorials, Definitive Screening Designs, Response Surface Modelling, space filling?



- 2-step Analysis approach.
  - i) Fit Curve on each experiments Chemical responses.

ii) Curve DoE analysis on Fit Curve coefficients, converted back into Chemical responses and visualised in CDOE profiler.

- Tries to introduces subject matter knowledge into Analysis approach.
- Curve DoE gives insight into which factors influential on each response.
  - Solvent, Base, Catalyst factors at least influential on one response. Some factors interact, some are non-linear. The detail is available if needed.
  - SM Amine non-influential on responses.
  - The Group Profiler shows the factors combined net influence on responses.
- Unfinished approach, shows potential, we will continue to develop and refine approach.

#### Acknowledgements

AstraZeneca

• Rob Cox, Brendan Nixon

#### **Confidentiality Notice**

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com