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Introduction 

Covalent organic frameworks (COFs) are an emerging class of materials 

composed only of light elements such as carbon, nitrogen, oxygen, hydrogen, and 

boron.[1] COFs are designed in a bottom-up approach by the covalent bonding of one or 

more building blocks, following a well-defined geometric pattern dictated by the topology 

of the network resulting in organic, crystalline and nanoporous reticular material[2] (Fig.1). 

 

Fig.1. The sketch over the COFs structures: geometry, building blocks and the bonds types 

 

There are various molecular geometries that can be used as building blocks and 

several types of chemical bonds that can be used to connect them.[3] In this way, it is 

possible to form structures with extremely specific characteristics, such as pore size that 

can be controlled in the order of angstroms and the physicochemical characteristics of 

the pore interior, only adjusting the building blocks used. Therefore, it is possible to think 

in the building blocks as Lego pieces, where different pieces can be used to build several 

structures with unique characteristics (Fig.2). 

Due to this incredible modulation capacity, COFs can be used for several 

extremely interesting applications such as heterogeneous catalysis,[4–6] energy 

production, and storage, organic semiconductors,[7] chemical sensing,[8] thermal 

insulators,[9] and gas capture and storage,[10,11] among others[12] (Fig.3). 



 

Fig.2. The concept of the building blocks for 2D and 3D structures   

 

 

Fig.3. The variety of the COFs application 

 

However, this large chemical diversity can also be a problem. The development 

of these materials usually follows a combination of chemical intuition and the use of 

available molecules. With several steps of synthesis and characterization that are 

repeated until a material with high crystallinity is obtained. This makes its development 

very time-consuming, expensive, and requires several trained professionals. And often, 

even with all this effort, it is not possible to obtain a material with the desired 

characteristics. 

To overcome this complex experimental development, we propose a simple and 

fast computational approach based on the textural properties such as specific surface 

area, pore size, pore volume, and dimensionality to study these materials in the aim to 

accelerate their development. 

In the presentation reported for the Summit, the structures were classified by 

means of unsupervised (Hierarchical Clustering, PCA) and supervised (Multiple Logistic 

Regression, Naive Bayes, KNN, SVM) methods coded in JSL (JMP Pro 15). The COFs 

were separated in two main groups, named 2D and 3D, based on their geometrical 

characteristics. The largest clusters were selected to perform supervised machine 



learning stratifying the data by the structure (62.9% 2D and 37.1% 3D) to avoid 

disproportion in training/validation ratio (80%/20%). The 2D/3D classification by textural 

properties was successfully accomplished with the 100% accuracy (validation) for all 

models. Other metrics, such as Entropy R2, Generalized R2, Mean -log(p) were 

compared and discussed to select the optimal model. It was shown in the presentation 

to the present Summit 2021.  

The paper basically focuses on the treatment of the whole dataset – it means that 

the data will pass the path from the cleaning until tuning the models. The presentation 

rested in the extraction of the clusters utilizing the typical machine learning for 100% 

Accuracy. Herewith, we claim the role of imbalanced output and how to resolve this issue 

dealing with all the data. Also, in the paper we used a deep learning algorithm, 

implementing a boosted Neural Network.  

 

Methodology 

For this work 590 COF structures with diverse building blocks, topologies, and 

dimensionalities were selected from a database of known as CURATED COFs,[13] which 

compiles several synthesized structures reported in the literature. The textural properties 

were calculated using the Zeo++[14]  software, which performs geometric analysis of 

porous and crystalline materials based on the formation of the Voronoi networks and 

determines a set of structural descriptors for the selected COFs. The set of descriptors 

selected can be divides in three classes: i) pore size, ii) specific area and iii) channels 

number (Fig.4). 

 

Fig.4. The computational pipeline for the COFs classification by machine learning 

  

The pore size related descriptors were the large included sphere (LIS), which 

gives us information on the pore diameter of the material, the Large Free Sphere (LFS) 

and the Large free sphere path (LSFP). These last two are generally similar to the pore 

diameter, but for structures that have functional groups within the pore it can be 



considerably different, so it is interesting to evaluate these three descriptors. Also related 

to the pore size the pore volume (Vp) in cm³/g is used to classify the structures. 

The specific area related descriptors were the specific gravimetric area (SSA) and 

specific volumetric area (SSAV), in square meters per gram and in square meters per 

volume unit respectively.  

The channel related descriptors were the number of accessible channels, the 

dimensionality of the channels, the size of the channels, and the accessible volume 

fraction (AVF), which is the percentage of the material composed by pores. 

All the data are listed and defined:  

COF_name – Name of the structure 

LIS - Large included sphere (Pore Diameter) [Å] 

LFS - Large free sphere [Å] 

LSFP - large sphere free path [Å] 

SSA - Specific surface area [m2/g] 

SSAV - Specific volumetric surface area m²/cm³ 

AVF - Accessible volume fraction 

Vp - Pore volume cm³/g 

N(chan) - Number of accessible channels 

DimChan - Dimensionality of the channels (1D, 2D ou 3D) 

ChanSize - Channel size [Å] 

 

Results 

The dataset was screened for missing, negative or zero values, whereas the set 

shrank to 580 structures. Thereupon, the outliers two outliers by criterion of quantile 

range were excluded from SSA (2 outlier) and Vp (2 outlier) belonging to the same two 

points at Q = 3 and the tail quantile of 0.1. Hence, the final number of the structures has 

become 576 with no other outliers (Table 1). Now, the cleaned dataset can be subjected 

to the machine learning experiments.  

The scatter plots demonstrate strong collinearity within two sets of the inputs: 

between LIS, LFS and LSFP and between ChanSize X, Y and Z, which is critical while 

linear modeling. SSAV has a weak negative correlation with other parameters in 2D and 

it is a bit stronger for 3D keeping its negative character. Generally, the 2D dataset is 

characterized by more pronounced correlations, than 3D is. 

 

 

 

 

 



Table 1. The final screening analysis after excluding outliers for 2D (A) and 3D (B) structures 

    
 

Table. 2. The scatterplot matrix with correlations for over the input parameters for 2D 

 
 

Table. 3. The scatterplot matrix with correlations for over the input parameters for 3D 

 
 

The distribution of the structures to be classified has shown an unbalanced 

profile, where the 85%-portion is attributed to 2D. Thus, in order to build a correct 

predictive modeling, the training-validation split must be performed under stratification 

by “type”, as a binary response of 2D/3D (Fig.5, 6). Also, the profit table for “type” was 

adjusted (3D – 0.15 and 2D – 0.85). 



 
 

Fig.5. 2D/3D distribution histogram Fig.6. The training-validation split stratified by “type” 

 

It is worth noting that non-continuous parameters, such a ChanDim and N(chan) 

can play an essential role as variables, having some issues in the regression (linear or 

logistic) with well-known instability during the parameters estimation. In other cases, for 

non-linear or non-parametric models, this feature is not encountered (Fig.7). It is seen 

that absolute majority of monodimensional channels (91.0%) is typical for 2D, whereas 

the 3D class possesses tridimensional and two-dimensional at the ratio of > 2.3.  

 

 
Fig.7. The distribution of the number of channels over the channels dimensionalities for 2D and 3D 

structures. 

 

Starting with KNN (Kmax = 100, Euclidean distance), the minimal misclassification 

rate or (1-Accuracy)× 0.01 of 8.7% with F1 = 0.995 are the results at K = 3 (Fig.8). The 

mean values of the neighbors’ distances and the modes for 3D are shifted to higher 

values both for training and validation. To develop this model, all the variables 

(continuous and nominal) were involved. This leads us to conclusion that both types of 



the structures can be considered as mean clusters, whose coordinates are the principal 

components.   

 

 

 
Fig.8. The summary of KNN: the model selection, the confusion matrices of training and validation, the 

distributions of the neighbors distances over the training-validation split 



As for the multiple logistic regression, after removing all the variables at p > 0.05 

and excluding those with unstable status in the parameters estimation, the model has 

got three main factors: LIS, SSA and SSAV (Fig.9). In other words, specific surface area 

and pore diameter are the main characteristics in the linear classification with a non-

significant lack of fit (p = 1.000). The profit matrix has given 7.83% of balanced 

misclassification, whereas F1 = 0.952. In the contrast to KNN, this model has given less 

accuracy, but it involved only three parameters to distinguish 2D/3D COFs. In the other 

hand, the accuracy for KNN during validation has turned out to be worse than at training 

- as opposed to the case of multiple logistic regression, where the training has higher 

misclassification (8.89%) than validation.  

 
Fig.9. The summary on the Multiple Logistic Regression 

 

The Quadratic Discriminant Analysis involving only three main variables from 

Multiple Logistic Regression (SSA, LIS and SSAV) basically demonstrates quite weak 

classification – the improved decision matrix on validation gives MR 13.91% at F1 = 

0.912 (Fig.10).  

Decision Tree after 14 splits showed that ChanSize of all three directions (X, Y 

and Z) and LSFP did not contribute to the model (Fig. 11) and, hence, the model was re-

launched and tuned excluding these parameters (Fig. 12). Simplified model has not lost 

the accuracy (F1 = 0.979) and the profit value in the respective matrix – its validation 

misclassification rate is 3.48% with balanced distribution of the misclassified data, and 

less than for training (4.34%) and F1 = 0.974. The model has shown to be more accurate 

than multiple logistic regression and does not overfit the data.  

 



 
Fig.10. The Discriminant Analysis summary  

 

 

 

Fig.11. The overall model of Decision Tree to classify 2D/3D structures 

 

Similar situation is encountered with Bootstrap Forest (10 terms sampled per 

split, 12 terms, the minimum size split = 5) – two variables related to the ChanSize, 

namely X and Z, contribute poorly to the model (< 0.01), giving quite high MR (6.09%) 

and F1 (0.963). (Fig.13). Thus, the tuned Bootstrap Forest (5 terms per split, 10 terms, 

the minimal split = 5) revealed a decrease of the trees (only two trees), the 

misclassification rate in validation (3.48%) and F1 = 0.979 (Fig.14) due to the re-

distribution in 2D classification: from 6.1% of misclassified after tuning the MR was 

reduced down to 3.1%. 

The Boosted Tree (140 layers, 5 splits per tree, the learning rate = 0.1) let us to 

exclude two last variables (ChanSize Z and LSFP) for more adequate fitting (Fig.15) and 

the resulted tuned (adjusted) Boosted Tree gave more reduced number of the layers (88 

layers, 10 splits per tree, learning rate = 0.1) (Fig.16, 17). Moreover, the metrics of the 

model underwent the significant improvement fur to better attribution of 2D structures: 



MR for 2D in the initial full model was 3.1%, whereas after tuning, MR became 1.0%, 

which does not change after the 36th layer. 

 

 

 
Fig.12. Tuned Decision Tree model’s summary: the split tree structure, split history, the variable contribution, 

decision and confusions matrices 

 

 



 
Fig.13. The overall Bootstrap Forest model’s summary: the variable contribution, cumulative validation 

progress, decision and confusions matrices. 

 

 
Fig.14. Tuned Bootstrap Forest model’s summary: the variable contribution, cumulative validation progress, 

decision and confusions matrices. 

 

 



 
Fig.15. The Boosted Tree summary for the full model: the variable contribution, decision and confusions 

matrices 

 

 
Fig.16. The Boosted Tree summary after tuning: the variable contribution, decision and confusions matrices 

 

 
Fig.17. The cumulative MR progress with the layers for the full model – MR(Full) and for the tuned model – 

MR (Adj)  

 

Regarding the Support Vector Machine which comprises all the variables, this 

model misclassified the structures at the same MR (<1%), as KNN did with quite 

balanced distribution in the confusion matrix at validation (Fig.18). But a huge difference 

between validation and training may speak for underfitting, although such a difference in 

the case of KNN is more pronounced. Thus, in spite of the equal F1 at validation (0.995), 

the model underfits less than KNN.  



 

 
Fig.18. The Support Vector Machine results: the parallel plots of the variables vs. real distribution and the 

predicted 2D/3D distribution - over training and validation. The confusion matrices for training and validation. 

 

 After arranging all the models by their metrics into Tables 4, we can conclude that 

during the training, the Tree family has shown itself more efficient by the key KPIs. 

Support Vector Machines stays on the third position in training, but is a leader model at 

the validation. Comparing the ROCs (Fig. 19), the main three models reveal their 

effectiveness: Boosted Tree, SVM and Bootstrap Forest. 

 

Table 4. The model comparison by performance at training 

Model 
Entropy 

R2 
Generalized 

R2 
Mean 
-Log p 

MR 
Average  

Profit 
AUC 

Boosted Tree 0.9690 0.9799 0.013 0.0022 -4∙10-4 0.9999 

Classification Tree 0.7916 0.8545 0.0872 0.0304 -0.013 0.9828 

Support Vector Machines 0.7807 0.8461 0.0917 0.0282 -0.015 0.9920 

Bootstrap Forest 0.7391 0.8136 0.1091 0.0412 -0.02 0.9865 

Logistic Regression 0.6043 0.7001 0.1655 0.0672 -0.028 0.9533 

Discriminant Analysis  0.0254 0.0371 0.4077 0.0998 -0.036 0.9456 

 



 
Fig.19. The ROC curves for training over all the involved models 

 
The situation is a bit different at the validation: Classification Tree, SVM and 

Boosted Tree keep leadership as on ROCs (Fig.20), as by tabulated KPIs (Table 5). The 

only significant difference between the AUCs for SVM is demonstrated by the 

Discriminant Analysis, however, p is not small enough (0.0481) to reject Ho about the 

non-significant difference between the models by their AUC (Table 6).  

 Thus, for the sufficient classification of the COFs structures by the textural 

properties, we can recommend KNN (K = 3), SVM (γ = 0.5, cost = 1, number of the 

support vectors = 147), Classification Tree (14 splits). 

 
Table 5. The model comparison by performance at validation 

Model 
Entropy 

R2 
Generalized 

R2 
Mean 
-Log p 

MR 
Average  

Profit 
AUC F1 

Support Vector Machines 0.8469 0.8956 0.0641 0.0174 -0.01 0.9940 0.995 

Classification Tree 0.8439 0.8934 0.0654 0.0174 -0.013 0.9964 0.979 

Boosted Tree 0.8169 0.8735 0.0767 0.0261 -0.01 0.9934 0.990 

Bootstrap Forest 0.8130 0.8707 0.0783 0.0261 -0.013 0.9928 0.979 

Logistic Regression 0.6928 0.7762 0.1287 0.0609 -0.021 0.9838 0.952 

Discriminant Analysis 0.3596 0.4585 0.2683 0.0870 -0.032 0.9706 0.912 

 

 

 
Fig.20. The ROC curves for validation over all the involved models 

 

 
 
 
 
 



Table 6. The AUC difference analysis 

Model vs. Model 
AUC 

Difference 
Std 

Error 
Lower 
95% 

Upper 
95% 

χ2 p>χ2 

Bootstrap Forest SVM -0.001 0.0096 -0.020 0.0177 0.0155 0.9009 

Boosted Tree SVM -0.001 0.0023 -0.005 0.0038 0.0708 0.7902 

Logistic Regression SVM -0.010 0.0084 -0.027 0.0063 1.4723 0.2250 

Discriminant Analysis SVM -0.023 0.0118 -0.047 -0.000 3.9061 0.0481* 

Classification Tree SVM 0.0024 0.0072 -0.012 0.0164 0.1127 0.7371 

Bootstrap Forest Logistic Regression 0.0090 0.0112 -0.013 0.0310 0.6423 0.4229 

Boosted Tree Logistic Regression 0.0096 0.0081 -0.006 0.0254 1.4186 0.2336 

Bootstrap Forest Discriminant Analysis 0.0222 0.0159 -0.009 0.0534 1.9472 0.1629 

Boosted Tree Discriminant Analysis 0.0228 0.0115 0.0002 0.0454 3.9178 0.0478* 

Logistic Regression Discriminant Analysis 0.0132 0.0082 -0.003 0.0293 2.6001 0.1069 

Bootstrap Forest Classification Tree -0.004 0.0050 -0.013 0.0062 0.5203 0.4707 

Boosted Tree Classification Tree -0.003 0.0068 -0.016 0.0104 0.1925 0.6608 

Logistic Regression Classification Tree -0.013 0.0094 -0.031 0.0059 1.7836 0.1817 

Discriminant Analysis Classification Tree -0.026 0.0146 -0.055 0.0029 3.107 0.0780 

Bootstrap Forest Boosted Tree -0.001 0.0092 -0.019 0.0174 0.0043 0.9480 

 

 

Finally, all the available variables served for the boosted Neural Network of 39 

sigmoidal activation functions incorporated in a single layer (Fig.21) after one tour of 

iterations with squared penalty method. Comparing training and validation matrices, one 

can easily see that neither over- nor underfitting occurred – this also is proven by minor 

difference between the Entropy R2 and Generalized R2. The respective interactive html-

coded calculator (profiler) and the estimates for each activation function summary are 

uploaded to a Git-Hub repository: https://github.com/Nazarkovsky/COFs-dimensionality-

prediction.-Boosted-Neural-Network. 

 
Fig.21. The Neural Network summary, confusion matrix and the diagram 



 

Conclusion 

As a conclusion, we recommend to test the most efficient models, SVM, KNN and 

Neural Network on new data to improve the performance of the proposed techniques, if 

necessary. After testing the models with thousands of the structures, we can take the 

final decision on the selection of the preferred machine learning algorithm (or an 

ensemble of the models) to be deployed and utilized as an application or interactive table 

to predict the dimensionality of the covalent organic frameworks. This study is helpful for 

the future predictive modeling of the physicochemical properties for each type of COFs. 
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