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Introduction

Covalent organic frameworks (COFs) are an emerging class of materials
composed only of light elements such as carbon, nitrogen, oxygen, hydrogen, and
boron.l' COFs are designed in a bottom-up approach by the covalent bonding of one or
more building blocks, following a well-defined geometric pattern dictated by the topology
of the network resulting in organic, crystalline and nanoporous reticular material?! (Fig.1).
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Fig.1. The sketch over the COFs structures: geometry, building blocks and the bonds types

There are various molecular geometries that can be used as building blocks and
several types of chemical bonds that can be used to connect them.B! In this way, it is
possible to form structures with extremely specific characteristics, such as pore size that
can be controlled in the order of angstroms and the physicochemical characteristics of
the pore interior, only adjusting the building blocks used. Therefore, it is possible to think
in the building blocks as Lego pieces, where different pieces can be used to build several
structures with unique characteristics (Fig.2).

Due to this incredible modulation capacity, COFs can be used for several
extremely interesting applications such as heterogeneous catalysis,*6 energy
production, and storage, organic semiconductors,[’l chemical sensing,® thermal

insulators,® and gas capture and storage,['>'"l among others!'? (Fig.3).
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Fig.2. The concept of the building blocks for 2D and 3D structures
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Fig.3. The variety of the COFs application

However, this large chemical diversity can also be a problem. The development
of these materials usually follows a combination of chemical intuition and the use of
available molecules. With several steps of synthesis and characterization that are
repeated until a material with high crystallinity is obtained. This makes its development
very time-consuming, expensive, and requires several trained professionals. And often,
even with all this effort, it is not possible to obtain a material with the desired
characteristics.

To overcome this complex experimental development, we propose a simple and
fast computational approach based on the textural properties such as specific surface
area, pore size, pore volume, and dimensionality to study these materials in the aim to
accelerate their development.

In the presentation reported for the Summit, the structures were classified by
means of unsupervised (Hierarchical Clustering, PCA) and supervised (Multiple Logistic
Regression, Naive Bayes, KNN, SVM) methods coded in JSL (JMP Pro 15). The COFs
were separated in two main groups, named 2D and 3D, based on their geometrical

characteristics. The largest clusters were selected to perform supervised machine



learning stratifying the data by the structure (62.9% 2D and 37.1% 3D) to avoid
disproportion in training/validation ratio (80%/20%). The 2D/3D classification by textural
properties was successfully accomplished with the 100% accuracy (validation) for all
models. Other metrics, such as Entropy R2, Generalized R2, Mean -log(p) were
compared and discussed to select the optimal model. It was shown in the presentation
to the present Summit 2021.

The paper basically focuses on the treatment of the whole dataset — it means that
the data will pass the path from the cleaning until tuning the models. The presentation
rested in the extraction of the clusters utilizing the typical machine learning for 100%
Accuracy. Herewith, we claim the role of imbalanced output and how to resolve this issue
dealing with all the data. Also, in the paper we used a deep learning algorithm,

implementing a boosted Neural Network.

Methodology

For this work 590 COF structures with diverse building blocks, topologies, and
dimensionalities were selected from a database of known as CURATED COFs,!"3l which
compiles several synthesized structures reported in the literature. The textural properties
were calculated using the Zeo++!'4l software, which performs geometric analysis of
porous and crystalline materials based on the formation of the Voronoi networks and
determines a set of structural descriptors for the selected COFs. The set of descriptors
selected can be divides in three classes: i) pore size, ii) specific area and iii) channels

number (Fig.4).
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Fig.4. The computational pipeline for the COFs classification by machine learning

The pore size related descriptors were the large included sphere (LIS), which
gives us information on the pore diameter of the material, the Large Free Sphere (LFS)
and the Large free sphere path (LSFP). These last two are generally similar to the pore

diameter, but for structures that have functional groups within the pore it can be



considerably different, so it is interesting to evaluate these three descriptors. Also related
to the pore size the pore volume (V,) in cm?3/g is used to classify the structures.

The specific area related descriptors were the specific gravimetric area (SSA) and
specific volumetric area (SSAV), in square meters per gram and in square meters per
volume unit respectively.

The channel related descriptors were the number of accessible channels, the
dimensionality of the channels, the size of the channels, and the accessible volume
fraction (AVF), which is the percentage of the material composed by pores.

All the data are listed and defined:

COF_name — Name of the structure

LIS - Large included sphere (Pore Diameter) [A]

LFS - Large free sphere [A]

LSFP - large sphere free path [A]

SSA - Specific surface area [m?/g]

SSAV - Specific volumetric surface area m?/cm?

AVF - Accessible volume fraction

V,, - Pore volume cm3/g

N(chan) - Number of accessible channels

DimChan - Dimensionality of the channels (1D, 2D ou 3D)

ChanSize - Channel size [A]

Results

The dataset was screened for missing, negative or zero values, whereas the set
shrank to 580 structures. Thereupon, the outliers two outliers by criterion of quantile
range were excluded from SSA (2 outlier) and Vp (2 outlier) belonging to the same two
points at Q = 3 and the tail quantile of 0.1. Hence, the final number of the structures has
become 576 with no other outliers (Table 1). Now, the cleaned dataset can be subjected
to the machine learning experiments.

The scatter plots demonstrate strong collinearity within two sets of the inputs:
between LIS, LFS and LSFP and between ChanSize X, Y and Z, which is critical while
linear modeling. SSAV has a weak negative correlation with other parameters in 2D and
it is a bit stronger for 3D keeping its negative character. Generally, the 2D dataset is

characterized by more pronounced correlations, than 3D is.



Table 1. The final screening analysis after excluding outliers for 2D (A) and 3D (B) structures
High Number of Outliers

10% 90%
Column
us, A 9.50553  29.506
LFS, A 8.60495  29.106
LSFP, A 948433  29.506
SSA, m2/g 1607.67 276796
SSAV, m2/cm3 985999 1556.34
AVF 0.25414  0.6182
Vp, cm3/g 031535 1.56549
ChanSize X, A 880503 29.1802
ChanSize Y, A 7.88985 2891
ChanSize Z, A 880503 29.1802

Low

Quantile Quantile Threshold Threshold

-50.496
-52.898
-50.581
-18732
-72501

-0.838
-34351

-5232
-55.171

-5232

89.5074 0
90.6091
89.571
6248.83
3267.35
1.71037
531593
90.3055
91.9706
90.3055
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Outliers (Count)

Column

Ls, A

LFS, A

LSFP, A

SSA, m2/g
SSAV, m2/cm3
AVF

Vp, cm3/g
Chansize X, A
ChanSize Y, A

(A) ChanSize Z, A

10% 90% Low
Quantile Quantile Threshold Threshold

578251 26.7402 -57.09
433139 21.1113 -46.008
566509 26.2119 -55975
1036.31 7863.62 -19446
835434 233999 -3678.2
0.10036 0.81916 -2.0561
0.09912 566305 -16.593
5.06368 26.7402 -59.966
3.69199 21.1113 -48.566
503536 26.6137 -59.7

High Number of Outliers
Outliers (Count)
89.6132 0

71.4509
87.8524
283456
6853.67
297559
22.3549
91.7698
73.3692
91.3488
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Table. 2. The scatterplot matrix with correlations for over the input parameters for 2D
Scatterplot Matrix
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Table. 3. The scatterplot matrix with correlations for over the input parameters for 3D
scattgrplat Matrix
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The distribution of the structures to be classified has shown an unbalanced
profile, where the 85%-portion is attributed to 2D. Thus, in order to build a correct
predictive modeling, the training-validation split must be performed under stratification
by “type”, as a binary response of 2D/3D (Fig.5, 6). Also, the profit table for “type” was
adjusted (3D — 0.15 and 2D - 0.85).



type Mosaic Plot Contingency Table

2 1.00 type
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Fig.5. 2D/3D distribution histogram Fig.6. The training-validation split stratified by “type”

It is worth noting that non-continuous parameters, such a ChanDim and N(chan)
can play an essential role as variables, having some issues in the regression (linear or
logistic) with well-known instability during the parameters estimation. In other cases, for
non-linear or non-parametric models, this feature is not encountered (Fig.7). It is seen
that absolute majority of monodimensional channels (91.0%) is typical for 2D, whereas

the 3D class possesses tridimensional and two-dimensional at the ratio of > 2.3.
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Fig.7. The distribution of the number of channels over the channels dimensionalities for 2D and 3D
structures.

Starting with KNN (Kmax = 100, Euclidean distance), the minimal misclassification
rate or (1-Accuracy)x 0.01 of 8.7% with F1 = 0.995 are the results at K = 3 (Fig.8). The
mean values of the neighbors’ distances and the modes for 3D are shifted to higher
values both for training and validation. To develop this model, all the variables

(continuous and nominal) were involved. This leads us to conclusion that both types of



the structures can be considered as mean clusters, whose coordinates are the principal
components.
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As for the multiple logistic regression, after removing all the variables at p > 0.05
and excluding those with unstable status in the parameters estimation, the model has
got three main factors: LIS, SSA and SSAV (Fig.9). In other words, specific surface area
and pore diameter are the main characteristics in the linear classification with a non-
significant lack of fit (p = 1.000). The profit matrix has given 7.83% of balanced
misclassification, whereas F1 = 0.952. In the contrast to KNN, this model has given less
accuracy, but it involved only three parameters to distinguish 2D/3D COFs. In the other
hand, the accuracy for KNN during validation has turned out to be worse than at training
- as opposed to the case of multiple logistic regression, where the training has higher

misclassification (8.89%) than validation.

Source LogWorth ) PValue Parameter Estimates
SSA, m2/g 43.176 0.00000] Term Estimate Std Error ChiSquare Prob>ChiSq
Lis, A 26.957 0.00000}  Intercept 5.2346197) 1.1716133 19.96
SSAV, m2/cm3 16.104 0.00000, Lis, A 0.0620989 53.29
Lack Of Fit SSA, m2/g -0.0023846] 0.000362 43.40
Source DF -Loglikelihood ChiSquare SS5AV, m2/cm3 {0.00499744 ) 0.0009125 30.00
Lack Of Fit 456 76.315587  152.6312 For log odds of 2D/3D
Saturated 459 0.000000 Prob>ChiSq
Fitted 3 76.315587
Decision Matrix Confusion Matrix
Training Validation Specified Profit Matrix Training Validation
Decision Decision Decision Predicted Predicted
Actual Count Actual Count Actual 2D 3D Actual Count Actual Count
type 2D 3D| |type 20 3D |2D 0 -0176| |type 2D 3D| [type 2D 3D
2D 359 34| |2D 90 8| (3D -1 0 2D 387 6| |2D 97 1
3D 7 _61] 13D 1 16 3D 25 43| |3D 6 1
Decision Decision

Actual Rate Actual Rate
type 2D 3D |type 2D 3D
2D 0.913 0.087 |2D 0.918 0.082

3D 0.103 0.897 |3D 0.059 0.941
Misclassification  Misclassification
Rate Rate
0.0889 0.0783

Fig.9. The summary on the Multiple Logistic Regression

The Quadratic Discriminant Analysis involving only three main variables from
Multiple Logistic Regression (SSA, LIS and SSAV) basically demonstrates quite weak
classification — the improved decision matrix on validation gives MR 13.91% at F1 =
0.912 (Fig.10).

Decision Tree after 14 splits showed that ChanSize of all three directions (X, Y
and Z) and LSFP did not contribute to the model (Fig. 11) and, hence, the model was re-
launched and tuned excluding these parameters (Fig. 12). Simplified model has not lost
the accuracy (F1 = 0.979) and the profit value in the respective matrix — its validation
misclassification rate is 3.48% with balanced distribution of the misclassified data, and
less than for training (4.34%) and F1 = 0.974. The model has shown to be more accurate

than multiple logistic regression and does not overfit the data.



Canonical Plot

Score Summaries

10 Number Percent Entropy
o 05 Source Count Misclassified Misclassified RSquare -2Loglikelihood
B i s e S T o I | 0 I Training 461 46 997831 0.02543 375.916
2 ot Validation 115 10 8.69565 0.35961
3 -0.5
-1.0
-6 -4 -2 2
Canonicall Training Validation
Predictor Discriminant Predictor Discriminant
Predicted Decision Predicted Decision
Actual Count Actual Count Actual Count Actual Count
type 2D 3D | |type 2D 3D type 2D 3D | |type 2D 3D
2D 366 27| (2D 344 49 2D 91 7| |2D 83 15
3D 19 49 El 8 60 3D 3 14 3D 1 16
Predicted Decision Predicted Decision

Actual Rate Actual Rate
type 2D 3D |type 2D 3D

Actual Rate Actual Rate
type 2D 3D |type 2D 3D

2D 0931 0.069 |2D 0.875 0.125| |2D 0,929 0.071|2D 0.847 0.153
D 0.279 0721 (3D 0.118 0.882 3D 0.176 0.824 (3D 0,059 0.941

Misclassification Misclassification

Rate Rate

0.1236 0.1391

Fig.10. The Discriminant Analysis summary
Split History Column Contributions
1.00 o ‘ Number

Validation Data in Red L Term of splits G2 Portion
g 30 o SSA, m2/g 2 15191527 1 04874
2 050 = LFs, A 1 57.2377907 0.1836
2 g N(chan) 3 42.2447362 0.1355
0.25 ChanDim 1 213822535 0.0686
s, A 3 16.6407191| | 0.0534
0-000 : = = Vp, cm3/g 2 11.3624606 | | 0.0365
1 AVF 1 5.48716937 0.0176
Number:o1. spiits SSAV, m2/cm3 1 544155099 0.0175
LSFP, A 0 0 0.0000
ChanSize X, A 0 0 0.0000
ChanSize v, A 0 0 : 0.0000
ChanSize Z, A 0 0 0.0000

Fig.11. The overall model of Decision Tree to classify 2D/3D structures

Similar situation is encountered with Bootstrap Forest (10 terms sampled per
split, 12 terms, the minimum size split = 5) — two variables related to the ChanSize,
namely X and Z, contribute poorly to the model (< 0.01), giving quite high MR (6.09%)
and F1 (0.963). (Fig.13). Thus, the tuned Bootstrap Forest (5 terms per split, 10 terms,
the minimal split =
misclassification rate in validation (3.48%) and F1 = 0.979 (Fig.14) due to the re-

distribution in 2D classification: from 6.1% of misclassified after tuning the MR was

5) revealed a decrease of the trees (only two trees), the

reduced down to 3.1%.

The Boosted Tree (140 layers, 5 splits per tree, the learning rate = 0.1) let us to
exclude two last variables (ChanSize Z and LSFP) for more adequate fitting (Fig.15) and
the resulted tuned (adjusted) Boosted Tree gave more reduced number of the layers (88
layers, 10 splits per tree, learning rate = 0.1) (Fig.16, 17). Moreover, the metrics of the

model underwent the significant improvement fur to better attribution of 2D structures:



MR for 2D in the initial full model was 3.1%, whereas after tuning, MR became 1.0%,

which does not change after the 36" layer.
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Fig.12. Tuned Decision Tree model's summary: the split tree structure, split history, the variable contribution,
decision and confusions matrices
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Fig.13. The overall Bootstrap Forest model's summary: the variable contribution, cumulative validation
progress, decision and confusions matrices.
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Fig.14. Tuned Bootstrap Forest model’'s summary: the variable contribution, cumulative validation progress,
decision and confusions matrices.



Column Contributions

Number
Term of Splits
ChanDim 266
N(chan) 182
SSA, m2/g 49
SSAV, m2/cm3 61
AVF 46
LFS, A 34
Vp, cm3/g 22
s, A 19
ChanSize X, A 9
ChanSize Y, A 9
ChanSize Z, A 2
LSFP, A 1

Fig.15. The Boosted Tree summary for the full model: the variable contribution, decision and confusions

matrices

Column Contributions

Number
Term of Splits GA2 -
ChanDim 173 14788.2565.
N(chan) 306 10700569
SSA, m2/g 87 2708.25816:Jj
AVF 73 2267.8157:‘
SSAV, m2/cm3 68 210146698 | :
LFS, A 36 1497.87456) |
Vp, cm3/g 58 1186.98528_|
Ls, A 45 980941258
ChanSize X, A 15 499.499875 |
ChanSize Y, A 19 466658052

Fig.16. The Boosted Tree summary after tuning: the variable contribution, decision and confusions matrices

Fig.17. The cumulative MR progress with the layers for the full model — MR(Full) and for the tuned model —

MR (Adj)

Regarding the Support Vector Machine which comprises all the variables, this
model misclassified the structures at the same MR (<1%), as KNN did with quite
balanced distribution in the confusion matrix at validation (Fig.18). But a huge difference
between validation and training may speak for underfitting, although such a difference in

the case of KNN is more pronounced. Thus, in spite of the equal F1 at validation (0.995),
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the model underfits less than KNN.

Decision Matrix

Training Validation Specified Profit Matrix
Decision Decision Decision
Actual Count Actual Count Actual 2D 3D
type 2D 3D| |type 2D 3D| 2D 0 -0.176
2D 389 4| |2D 95 3 3D -1 0
3D 1 67 3D 1 16
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Predicted | Misclassification Predicted |Misclassification
Actual Rate Rate | Actual Rate Rate
type 2D 3D 0.0304 |type 2D 3D 0.0087
2D 0.990 0.010 2D 1.000 0.000
3D 0.147 0.853 3D 0.059 0.941

Predicted Predicted
Actual Count Actual Count
type 2D 3D type 2D 3D
2D 389 4 2D 98 0
3D 10 58 3D 1 16

Fig.18. The Support Vector Machine results: the parallel plots of the variables vs. real distribution and the
predicted 2D/3D distribution - over training and validation. The confusion matrices for training and validation.

After arranging all the models by their metrics into Tables 4, we can conclude that
during the training, the Tree family has shown itself more efficient by the key KPIs.
Support Vector Machines stays on the third position in training, but is a leader model at
the validation. Comparing the ROCs (Fig. 19), the main three models reveal their

effectiveness: Boosted Tree, SVM and Bootstrap Forest.

Table 4. The model comparison by performance at training
Entropy Generalized Mean Average

L R2 R? Logp MR pronit AUC
Boosted Tree 0.9690 09799  0.013 00022 -410* 0.9999
Classification Tree 0.7916  0.8545  0.0872 0.0304 -0.013 0.9828

Support Vector Machines  0.7807 0.8461 0.0917 0.0282 -0.015 0.9920
Bootstrap Forest 0.7391 0.8136 0.1091 0.0412 -0.02 0.9865
Logistic Regression 0.6043 0.7001 0.1655 0.0672 -0.028 0.9533
Discriminant Analysis 0.0254 0.0371 0.4077 0.0998 -0.036 0.9456
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Fig.19. The ROC curves for training over all the involved models

The situation is a bit different at the validation: Classification Tree, SVM and
Boosted Tree keep leadership as on ROCs (Fig.20), as by tabulated KPIs (Table 5). The

only significant difference between the AUCs for SVM is demonstrated by the

Discriminant Analysis, however, p is not small enough (0.0481) to reject H, about the

non-significant difference between the models by their AUC (Table 6).

Thus, for the sufficient classification of the COFs structures by the textural

properties, we can recommend KNN (K = 3), SVM (y = 0.5, cost = 1, number of the

support vectors = 147), Classification Tree (14 splits).

Table 5. The model comparison by performance at validation

Model R2 R2
Support Vector Machines  0.8469 0.8956
Classification Tree 0.8439 0.8934
Boosted Tree 0.8169 0.8735
Bootstrap Forest 0.8130 0.8707
Logistic Regression 0.6928 0.7762
Discriminant Analysis 0.3596 0.4585
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1.0 Predictor AUC
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Fig.20. The ROC curves for validation over all the involved models



Table 6. The AUC difference analysis

Model
Bootstrap Forest

Boosted Tree
Logistic Regression
Discriminant Analysis
Classification Tree
Bootstrap Forest
Boosted Tree
Bootstrap Forest
Boosted Tree
Logistic Regression
Bootstrap Forest
Boosted Tree
Logistic Regression
Discriminant Analysis

Bootstrap Forest

vs. Model DiffAeLrJeci]ce
SVM -0.001
SVM -0.001
SVM -0.010
SVM -0.023
SVM 0.0024

Logistic Regression 0.0090
Logistic Regression 0.0096
Discriminant Analysis ~ 0.0222

Discriminant Analysis ~ 0.0228

Discriminant Analysis  0.0132
Classification Tree -0.004
Classification Tree -0.003
Classification Tree -0.013
Classification Tree -0.026
Boosted Tree -0.001

Std Lower
Error 95%
0.0096 -0.020
0.0023 -0.005
0.0084 -0.027
0.0118 -0.047
0.0072 -0.012
0.0112 -0.013
0.0081 -0.006
0.0159 -0.009
0.0115 0.0002
0.0082 -0.003
0.0050 -0.013
0.0068 -0.016
0.0094 -0.031
0.0146 -0.055

0.0092 -0.019

Upper
95%
0.0177
0.0038
0.0063
-0.000
0.0164
0.0310
0.0254
0.0534
0.0454
0.0293
0.0062
0.0104
0.0059
0.0029

0.0174

) G 9'G
0.0155 0.9009
0.0708 0.7902
1.4723 0.2250
3.9061 0.0487*
0.1127 0.7371
0.6423 0.4229
1.4186 0.2336
1.9472 0.1629
3.9178 0.0478*
2.6001 0.1069
0.5203 0.4707
0.1925 0.6608
1.7836 0.1817
3.107 0.0780

0.0043 0.9480

Finally, all the available variables served for the boosted Neural Network of 39

sigmoidal activation functions incorporated in a single layer (Fig.21) after one tour of

iterations with squared penalty method. Comparing training and validation matrices, one

can easily see that neither over- nor underfitting occurred — this also is proven by minor

difference between the Entropy R? and Generalized R?. The respective interactive html-

coded calculator (profiler) and the estimates for each activation function summary are

uploaded to a Git-Hub repository: https.//github.com/Nazarkovsky/COFs-dimensionality-

prediction.-Boosted-Neural-Network.
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type

Value  Measures Value

Generalized RSquare 0.9963629  Generalized RSquare 0.9974741
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Fig.21. The Neural Network summary, confusion matrix and the diagram



Conclusion

As a conclusion, we recommend to test the most efficient models, SVM, KNN and
Neural Network on new data to improve the performance of the proposed techniques, if
necessary. After testing the models with thousands of the structures, we can take the
final decision on the selection of the preferred machine learning algorithm (or an
ensemble of the models) to be deployed and utilized as an application or interactive table
to predict the dimensionality of the covalent organic frameworks. This study is helpful for

the future predictive modeling of the physicochemical properties for each type of COFs.
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