

ISyE 6740 – Spring 2021
Final Report

Team Member Names: Ryan Cooper

Project Title: Analyzing and Improving an MLB Pitcher's Decision Making and Execution With
Machine Learning

Problem Statement

A pitcher in Major League Baseball relies on a combination of strategy, deception, skill, and
execution to be successful. Their sole job is to get an out for each batter they face.

To do so, they analyze the situation for each pitch and ask themselves questions like, "How
many balls and strikes are there? Are any runners on base? What’s the score?” They also
consider decisions like “What pitch should I throw and where? How fast should I throw it?”

Based on the answers to these questions, the pitcher will carefully decide which approach he
thinks has the best chance of sending each batter back to the dugout. The release point of the
ball, spin rate, and breaking amount all contribute towards physically executing each pitch to the
best of his ability.

What if a pitcher could make these decisions based on a seemingly endless library of historical
data? While such a library exists in the form of Baseball Savant at MLB.com, a pitcher cannot
realistically take this library with him to the pitcher’s mound. Most pitchers are likely aware of
their biggest strengths, but do they have any hidden strengths that aren’t being used to their full
potential? How does a pitcher’s actual success and potential success stack up with others?

Data Source

Extensive data for each pitch of Major League Baseball seasons dating back to 2015 are
available from Baseball Savant at MLB.com (https://baseballsavant.mlb.com).

Every pitch contains variables such as the specific batter and pitcher, inning, number of outs,
the count (number of “balls” and “strikes” in the at-bat), runners on base, the score, the pitch
count of the pitcher, the hand he throws with, the types of pitches he is known to throw
(fastball, curveball, change-up, etc.), the “zone” of the pitch (if the strike zone and areas around
it are divided into defined rectangular areas), the release point coordinates of the pitch, the
speed of the pitch, and whether the batter is right handed or left handed. A comprehensive list
of variables and their descriptions is located at https://baseballsavant.mlb.com/csv-docs.

Summarized statistics, like batting average, on-base percentage, number of hits (also split into
doubles, triples, and home runs), win-loss record, ERA (earned run average), walks, and
strikeouts are also available.

There are many methods for obtaining the data, however one of the more straightforward
methods is by using the “baseballr” package for the R programming language
(http://billpetti.github.io/baseballr). This package was developed by Bill Petti and conveniently
extracts and pre-processes most of the Baseball Savant data.

Methodology

Background Research

The Baseball Savant website contains fantastic visualizations of the data by player (pitcher or
batter) (https://baseballsavant.mlb.com/illustrator). Different variables can be adjusted to
visualize their effect on other variables. While this is convenient for data exploration,
comprehensive analysis using multiple players in multiple situations is not possible.

The authors of the MLB Technology blog (https://technology.mlblogs.com) take this data to
another level by conducting analyses that are more along the lines of machine learning with
articles like “Using Clustering Algorithms to Identify Distinct Pitcher Release Points” and “MLB
Pitch Classification”. Additionally, the FanGraphs Baseball website (https://www.fangraphs.com)
contains all sorts of baseball fan-contributed analyses using Baseball Savant data.

Predicting a pitcher’s next pitch and its location from the perspective of a batter appears to be a
well-researched area, but approaching this prediction from the mind of a pitcher is not as widely
available.

Data Access

The data used for this analysis comes from the 2018 Major League Baseball season. It was
obtained using R programming by accessing the “baseballr” package. Each pitch is a data point
with all variables previously described. Since each query only allows a certain number of pitches
to be pulled, a loop allows for pulling short ranges of dates and then concatenating the data.

Overall Approach

Each pitch can be defined as a “success” or a “non-success”. A description of the outcome is
provided for each pitch as part of the raw data, however it is not initially classified in this way.
After some data manipulation, descriptions such as “ball”, “blocked ball”, “hit by pitch”, “hit into
play no out”, “hit into play score”, and “pitchout” are classified as a “non-success” since they all
have negative outcomes for the pitcher. Descriptions like “called strike”, “foul”, “hit into play”,
“missed bunt”, and “swinging strike” are positive outcomes for the pitcher and are assigned as a
“success”.

The machine learning model will attempt to predict successful pitches for each pitcher based on
3 groupings of variables:

1) Execution/decision variables – related to a pitcher’s raw talent and decision making
(ie: what pitch to throw, where to throw the pitch in or out of the strike zone, how fast,
where the pitch is released form the pitchers hand and how much spin is on it)

 pitch_type, release_speed, release_pos_x, release_pos_z, pfx_x, pfx_z, plate_x,
plate_z, vx0, vy0, vz0, ax, ay, az, effective_speed, release_spin_rate,
release_extension, release_pos_y

2) Situational variables – related to the situation a pitcher is in, not controllable by the

pitcher on the current pitch (ie: whether the batter is left/right handed, the count of balls
and strikes, runners on base, number of outs, the inning, the top/bottom of the strike
zone based on the height of the batter and his stance, the number of batters he has faced
and the number of pitches he has thrown so far, whether or not his team is winning and
by how much, how the infield/outfield are positioned and if they are in a shifted
alignment)

 stand, count, on_base, outs_when_up, inning, sz_top, sz_bot, at_bat_number,
pitch_number, score_difference, if_fielding_alignment, of_fielding_alignment

3) Combined variables – all of the above, combined

Data Preparation

Three of the situational variables are not initially in the form needed for the model and have to
be created from the raw data.

The “count” variable is derived from “balls” hyphenated with “strikes” (ie: 2-1 for 2 balls, 1
strike). Otherwise, the interaction of balls and strikes would not be considered.

The “score_difference” variable is initially separated into a “fld_score” and “bat_score” as part of
the raw data. Subtracting the difference gives a positive (pitcher’s team is winning) or negative
(pitcher’s team is losing) number and also indicates by how much the pitcher’s team is winning
or losing.

The “on_base” variable was initially three separate variables (“on_1b”, “on_2b”, “on_3b”, and
included the player ID of who was on each base). The new variable removes the player ID
indicator, replaces it with whether or not the base is occupied, and concatenates the three (ie:
0-1-0, means there is a runner on 2nd base, and 1-1-0 means there are runners on 1st and 2nd
base). Similar to the “count” variable, the combination of runners on base would otherwise not
be considered.

Several column types must also be converted to numeric/continuous.

Model Selection

Misclassification rate is used to determine which type of model works best for each pitcher. The
best model is where misclassification is the lowest.

JMP 16 Pro’s “Model Screening” feature allows for training, validation, and basic tuning of
multiple machine learning models at the same time. “Model Screening” was run on several
different pitchers with k=5 for cross-validation.

An example of some of the “Model Screening” output using combined variables
(execution/decision and situational) for Clayton Kershaw of the Los Angeles Dodgers is shown
below:

Summary Across the Folds

Validation Set Folds
Method N Trials

Folds
Sum Freq RSquare Mean RASE StdDev RASE Mean AUC Mean MR

Bootstrap Forest 5 472.80 0.3315 0.37311 0.00907 0.8468 0.18740
Decision Tree 5 472.80 0.2846 0.38868 0.00894 0.8079 0.19667
Boosted Tree 5 472.80 0.2491 0.40059 0.00698 0.8154 0.20855
Support Vector Machines 5 471.00 0.2209 0.40258 0.01598 0.8184 0.22593
Neural Boosted 5 471.00 0.2155 0.41340 0.00847 0.8050 0.23613
K Nearest Neighbors 5 472.80 0.0762 . . . 0.30629
Fit Stepwise 5 471.00 0.0738 0.45935 0.01316 0.6721 0.29517
Nominal Logistic 5 471.00 0.0723 0.45269 0.01340 0.7007 0.29977
Generalized Regression Lasso 5 471.00 0.0632 0.46312 0.00921 0.6607 0.29600

Elapsed Time

Method Details Milliseconds Elapsed Time
Decision Tree 639 0:00:00.639
K Nearest Neighbors 1190 0:00:01.190
Nominal Logistic 1279 0:00:01.279
Boosted Tree 3033 0:00:03.033
Generalized Regression Lasso 7405 0:00:07.405
Support Vector Machines 13515 0:00:13.515
Fit Stepwise 23359 0:00:23.359
Bootstrap Forest 26739 0:00:26.739
Neural Boosted 51819 0:00:51.819

Some observations:

 The “Mean MR” (misclassification rate) for the Bootstrap (Random) Forest is the lowest.
In running “Model Screening” for several other pitchers, it became clear that a Random
Forest model is generally best for modeling a successful pitch, regardless of pitcher.

 Predicting successes is generally easier to predict than non-successes, however errantly
predicting a success when it is actually a non-success is far more common than predicting
a non-success that turns out to be a success.

 While the Random Forest model is best with respect to misclassification rate, it is much
more computationally intensive. A Decision Tree model may be a better tradeoff when it
comes to accuracy versus speed.

For simplicity, considering there were 799 different pitchers in the 2018 MLB season, three
different Random Forest models with 30 trees each will be used for each pitcher who threw at
least 100 pitches (reduces the number of pitchers to 688). Since each player will have an
execution/decision, situational, and combined variables model, this results in a total of 2064
different Random Forest classifiers. The data will be split into a training set (80%) and
validation set (20%) for evaluation

An initial test of this approach using the “sklearn” package in Python with Clayton Kershaw
results in the following accuracy rates for the validation set:

Player Combined
Variables

Execution/
Decision Situational

Clayton Kershaw 0.8259 0.7962 0.5987

The misclassification rate for the JMP model using all variables combined was 0.1874. This one
shows 0.1741 (1 minus accuracy of 0.8259), so the choice of using a Random Forest model with
30 trees seems reasonable for each pitcher.

Evaluation and Final Results

The resulting 3 models can be used to evaluate actual versus predicted success rates for each
pitcher and determine which pitchers might benefit from the models the most. Then, a deeper
dive into the variables that result in the highest probability of a successful pitch can be
performed.

Actual vs. Predicted Success Rate

A plot of actual versus predicted success rate is provided for each model, comparing all pitchers.
Success rates are the accuracy of only successes. Non-successes are omitted.

Each data point is colored by number of pitches in the validation set to demonstrate the impact
that having less data has on success rates.

Combined Variables

Execution/Decision

Situational

Generally, each model under-predicts lower success rates and over-predicts higher success
rates. However, with more data for each pitcher, the models become much more accurate.

A plot of the difference between predicted and actual success rates for each of the two models
using separate variables (execution/decision and situational) is shown below.

This plot reveals that the models over-predict success rates for most pitchers that have a
substantial amount of data, but that difference is much closer than it is for pitchers without as
much data.

The spread for pitchers with more data is also much less for the execution/decision model (up to
just over 0.05 over-predicted) compared to that of the situational model (up to just over 0.10
over-predicted.

This suggests execution/decision variables have a more substantial impact on success rate, since
the predicted success rates of that model are generally closer to the actual success rate, as long
as there is enough data.

Model Accuracy vs. Actual Success Rate

To determine which pitchers might benefit the most from the models, it can be assumed that a
high model accuracy greater than the actual success rate means there is potential for
improvement. As long as there is enough data, a pitcher could choose and execute a pitch with
a high probability of success based on information from the model.

It is important to note that the model accuracy is the rate of correctly classified successes and
non-successes, whereas the actual success rate is just based off of successes.

Combined Variables

Execution/Decision

Situational

From earlier analysis, ensuring a pitcher has enough data for evaluation is important when using
these models for prediction. Given this important finding, Tyler Chatwood, Francisco Liriano,
and Kyle Gibson appear to be good candidates who could benefit the most from learning more
about their execution and decision making tendencies under different situations.

Their actual success rate is low, but the predictably for their models is high. There is also a
substantial amount of data available, limiting the possibility for skewed results.

Finding the Highest Probability of a Successful Pitch

Tyler Chatwood has the highest combined variables model accuracy and the lowest actual
success rate of the three pitchers previously mentioned. Taking a deeper dive into the variables
that result in the highest probability of a successful pitch can reveal more about his tendencies.

To do this, JMP’s profiler tool can be used. It allows for determining the “maximum desirability”
of a model. In this case, the desirability is having a probability of success as close to 1 as
possible.

Each variable is assessed by importance in prediction and ordered by that importance.

The output of the maximum desirability tool in the profiler for Tyler Chatwood’s combined
variables model is shown below:

The basic idea of the output is that each variable has a desirability curve where the ideal value is
“1”. Each variable is optimized to maximize that desirability. Some variables do not matter as
much and are more of a straight line, but others have different ranges where the predicted
success is heavily affected by a difference in the variable.

In Tyler Chatwood’s maximum desirability model, ‘plate_z’, and ‘plate_x’ are very influential
because they are all related to the ball’s location as it crosses the plate, and ‘sz_bot’ is the
bottom position of the strike zone (which it appears Chatwood relies on for success). The
parabolic nature of the success curve shows that a certain range results in more successes (the
strike zone).

‘vx0’ and ‘vz0’ are related to the break on the ball in the ‘x’ and ‘z’ directions as it approaches
home plate, so this also clearly has an influence. If there is little break, the pitch is less
successful. Higher break is also not good and may indicate a wild pitch. There is clearly a
“sweet spot” for break.

It is important to note that this maximum desirability model was run without holding any of the
categorical variables constant, or without restricting any of the situational variables, resulting in
a very high probability of success (0.990631). These variables can be altered interactively to

explore the model in more depth. For example, changing the ‘count’ variable to 2-0 (2 balls, 0
strikes), allowing the bases to be loaded (‘on_base’ variable to 1-1-1), and switching the
handedness of the batter from ‘R’ (right) to ‘L’ (left), results in a 0.762 success probability
holding all other conditions constant. To maximize desirability of success under these
conditions, Tyler Chatwood might need to change his approach on other variables.

Altering variables based on the situation and execution/decision of the pitcher results in different
success probabilities and can help the pitcher understand what changes are more or less likely to
be successful. They can discover hidden strengths that they were not aware of.

Limitations and Possible Extensions

As there are with any model, limitations exist. Several of these limitations are potential
extensions that could be explored further.

Some of them include the following:

 Since the model is built by pitch, it is very heavily influenced by the strike zone (as seen
in the JMP profiler while finding the highest probability of a successful pitch). It is fairly
easy to classify balls out of the strike zone as non-successes based on the positioning,
and these positioning factors are the most predictive. Instead, it might be interesting to
break the model down by balls that are hit into play.

 Each individual batter’s strengths are not consider as factors. In fact, the batter is not

considered at all in the model. This would require extensive modification to each pitcher’s
model. Something along these lines might be considered.

1) Predicted accuracy relative to the pitcher’s overall strengths
2) Predicted accuracy relative to the individual batter’s weaknesses
3) Pitcher’s success rate relative to whether the pitch was geared more towards the

pitcher’s overall strengths or the individual batter’s weaknesses

 Rounding the probabilities of a successful pitch into a classification model can create a
false sense of confidence that the result of the pitch is strictly a “success” or a “non-
success”. For example, the 1st fold of the Clayton Kershaw model shows that pitches with
a probability of just over 0.50 are classified as successes, and just under 0.50 for non-
successes. Transforming the model into more of a logistic regression might be something
for further exploration.

 For some pitchers, there are not enough pitches to conduct a thorough analysis. A
threshold of at least 100 pitches was selected for this analysis to try and avoid this issue,
but investigating sample size might be good to consider in the future.

 Some continuous variables found to obtain the maximum desirability may not be easy to
attain, or perhaps even unrealistic. For example, a high spin rate may contribute to more
success, but obtaining the highest spin rate is incredibly difficult and potentially
unreasonable for a pitcher to repeat consistently. The JMP profiler (particularly JMP Pro
16) has a new feature that allows for restricting the range of a variable. Modeling the
variables as more of a distribution, as opposed to a straight range of numbers, may also
be worth looking into.

