

STEAMS Approach: Preparing the Freshest Steamed Dumplings 08/28/2020 JMP Discovery USA Summit Online 2020

Patrick Giuliano (Abbott), Mason Chen (SOHS), Charles Chen (Applied Materials), Yvanny Chang (PHS),

Project Charter

Problem Statements

- Most foods like dumplings are made without precise control of cooking parameters
- Dumpling "taste" may be adversely affected by improper cooking time
 - Taste considers factors such as crispiness and firmness, which is linked to cooking time
- Sooner or later, A.I. and robotics will be an important part of the food industry
 - o COVID-19 has highlighted and likely accelerated the need for this

Project Objectives

- Use thermal physics, A.I. Modelling, and Automation to standardize the cooking procedure
- Adjust the model until it can accurately predict time needed to cook dumplings based on given inputs
- Minimize human interaction in the preparation of dumplings through cooking method and production method

Why Dumplings?

Utility as a food for the COVID-19 Era

- They are easy to cook
- The method of cooking (namely boiling) kills foreign particles that might be living on it
- There is little human interaction in the cooking of dumplings, so risk of spread is much lower

Design & Process space that is intuitive and extendable

- Consider familiar physical problem involving heat transfer physics.
- Consider familiar process parameters such as time, temperature, mass.
- Consider familiar hand-held measurement equipment subject to typical sources of repeatability and reproducibility variation.

Thermal Conduction energy transfer in the form of thermal energy (heat) goes from the cooker wall into the water.

Natural Convection water boiling generates cavitation bubble collapse and turbulent flow, creating heat **energy gradients**.

Diffusion energy transfer in the form of thermal energy (heat) goes into the dumpling mass, changing the configuration of the meat proteins.

Technology: Cooking Method and Process Monitoring

- **1. Boiling Cooker:** Composition of cooking vessel (metal vs stone), energy delivery method (electric vs gas).
- **1. Temperature/Time Regulation**: Cooking medium temperature regulation by Infrared (IR) and time by digital timer.
- **1. Dumpling Composition**: Composition controlled by weighing balance.

Engineering: Experimental Setup/Design/Execution

Phase I: Decide on Tools (Balance Scales, Utensils, Cooking Pots, Mixing Bowls). Consider equipment accuracy/ precision as applicable)

Phase 2: Dumpling Assembly Process Line Layout, including headcount allocation and utilization (takt) among each cook & master Chef.

Phase 3: DSD DOE – Optimal Orthogonality, Power, and Uniformity

Phase 4: Proper experimental execution: Preparing the dumplings to the indicated experimental settings, measuring/recording the response (cooking time).

Phase 5: Analysis and effective interpretation of data in JMP, summary of results, conclusions, and next steps.

Engineering: Data Collection Plan

- Collect Information on: Meat Type, Meat Mass, Veggie Mass (Cabbage/Mushroom), Total Dumpling Mass, Batch Size, Water Temp.
- Collect 18 DSD runs and measure the response Rising Time.

	Randomized Rat		Maat		Vegi	Vegi	Dumpling Batch Siz		Water	Dumpling
Run No.	Run No	(ment%)	Type	Meat (g)	Cabbage	Mushroom	Weight		Temp	Rising Time
	KULINO	(meat %)	туре		(g)	(g)	(g)	(Count)	(deg C)	(min:s)
1	9	0.8	Pork	80	16	4	25	4	95	1:21
2	11	0.8	Shrimp	140	28	7	25	7	75	3:20
3	18	0.5	Shrimp	125	100	25	25	10	95	0:55
4	16	0.5	Shrimp	34	27.2	6.8	17	4	85	0:50
5	2	0.65	Pork	110.5	47.6	11.9	17	10	95	1:20
6	1	0.5	Pork	125	100	25	25	10	75	7:36
7	12	0.5	Shrimp	50	40	10	25	4	95	1:05
8	3	0.5	Pork	59.5	47.6	11.9	17	7	95	1:10
9	17	0.65	Shrimp	95.55	41.2	10.3	21	7	85	1:38
10	15	0.8	Shrimp	168	33.6	8.4	21	10	95	2:04
11	13	0.65	Shrimp	65	28	7	25	4	75	5:19
12	4	0.65	Pork	95.55	41.2	10.3	21	7	85	3:27
13	5	0.8	Pork	200	40	10	25	10	85	2:25
14	6	0.5	Pork	42	33.6	8.4	21	4	75	2:01
15	14	0.8	Shrimp	54.4	10.9	2.7	17	4	95	0:46
16	7	0.8	Pork	136	27.2	6.8	17	10	75	2:42
17	8	0.8	Pork	54.4	10.9	2.7	17	4	75	1:59
18	10	0.5	Shrimp	85	68	17	17	10	75	1:52

Statistics: Definitive Screening Designs (DSD)

- DSD: Definitive Screening Design
 - Fold-over pairing is exploited in order to reduce your sample size (does all corner pairing to increase Power and orthogonality).

Properties of DSDs:

- Small number of DOE runs
- Main effects Orthogonal (No Resolution II Confounding)
- Main effects uncorrelated with 2-way Interactions (No Resolution III Confounding)
- 2-Way Interactions are not fully confounded with each other (Resolution IV Confounding)
- Estimable quadratic effects in a three level design (Non-Linear)

Here is the plot with the quadratic effects added in! You can see here that the power of the DSD is that the main effects are also uncorrelated with the quadratic effects.

Color Map on Correlations

Statistics: Design Diagnostics

Observed certain Confounding:

Cabbage

Meat Type

Meat (g)

Mushroom

- Resolution II: Batch Size with Meat (g)
- Resolution III: Meat (g) with Meat (g)* Vegi (Cabbage)
- Confounding associated with one Design Constraint:

Meat + Vegi (Cabbage)+ Vegi (Mushroom)= Dumpling Weight

Meat (g) 150 100 50 |r| Vegi Cabbage 80 60 40 20 **Identified 6 Independent Variables** Mushroom Entered Parameter 20 15 10 Vegi Intercept Meat Type{Shrimp-Pork} Dumpling Weight (g) 24 22 20 18 Meat (g) Vegi Cabbage 16 Batch Size Dumpling Weight (g)(17,25) (Count) Batch Size (Count)(4,10) Water Temp (deg C)(75,95) Water Temp (deg C) 90 85 80 75 50 150 20 Pork 60 15 16 20 24 6 Vegi Batch Size

Weight (g)

(Count)

Statistics: Stepwise Regression Goodness of Fit

Stepwise Regression Model showed very good goodness-of-fit (GoF).

Effect Summary

Source	LogWorth	PValue
Meat (g)*Water Temp (deg C)	2.527	0.00297
Meat Type	2.511	0.00308
Meat Type*Vegi Cabbage	2.502	0.00315
Dumpling Weight (g)*Dumpling Weight (g)	2.488	0.00325
Batch Size (Count)*Water Temp (deg C)	2.426	0.00375
Vegi Cabbage*Water Temp (deg C)	2.354	0.00443
Meat (g)*Batch Size (Count)	2.184	0.00654
Dumpling Weight (g)(17,25)	1.919	0.01204 ^
Water Temp (deg C)(75,95)	1.899	0.01263 ^
Meat (g)*Meat (g)	1.858	0.01387
Dumpling Weight (g)*Water Temp (deg C)	1.844	0.01431
Vegi Cabbage*Dumpling Weight (g)	1.827	0.01489
Vegi Cabbage	1.736	0.01837 ^
Batch Size (Count)(4,10)	1.698	0.02004 ^
Meat (g)	1.663	0.02171 ^
Water Temp (deg C)*Water Temp (deg C)	1.530	0.02952

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	16	185862.15	11616.4	40105.68
Error	1	0.29	0.289644	Prob > F
C. Total	17	185862.44		0.0039*

Summary o	of Fit
-----------	--------

S

RSquare	0.999998
RSquare Adj	0.999974
Root Mean Square Error	0.538186
Mean of Response	139.4444
Observations (or Sum Wgts)	18

- Iterative procedure with an inexact solution.
- Significant overfit risk

Model coefficients explain >99% of the variability in Rising Time.

Statistics: Main Effect and Interaction Effect

- Observed Significant Interaction Effects
- Due to previous Design Constraint, the DSD DOE was not well structured. The observed interactions may be due to competing physics and/or alias structure.
- Top four parameters are: (1) Water Temp, (2) Meat, (3) Vegi Cabbage, (4) Meat Type (Shrimp or Pork). Batch Size is less important which may indicate the heat transfer was quite uniform and least impacted by Batch Size. Dumpling Weight was aliased with Meat and Vegi.

Term	Orthog Estimate	
/ater Temp (deg C)(75,95)	-58.22628	
Meat (g)	-48.30165	
Meat (g)-95.55)*Water Temp (deg C)	34.58808	
/egi Cabbage	28.43649	
Meat Type[Shrimp-Pork]*(Vegi Cabbage-41.16)	24.86501	
Meat Type[Shrimp-Pork]	-20.66667	
Dumpling Weight (g)(17,25)	9.70467	

Statistics: Reduced model

Statistics: Prediction Profiler

Case III (Shrimp): Cooking time ~ 309 +/- 89 Seconds

Case II (Temp=92): Cooking time ~ 236 +/- 100 Seconds

Case IV (Batch=7): Cooking time ~ 189 +/- 7 Seconds

Case V (Dumpling Weight=24): Cooking time ~ 595 +/-118 Seconds

How to Optimize Cooking Process:

- Faster Time
- Lower Variance in Duration
- Max Throughput
- Power Saving

Engineering: Optimize Dumpling Process

How to Optimize Cooking Process:

- Faster Rising Time
- Lower Variance in Duration
- Max Throughput
- **Power Savings**

Batch Size (Count) •

Dumpling Weight (g) Dumpling Rising Time (sec)

Water Temp (deg C) 2 • Dumpling Rising Time (sec)

Monte Carlo Simulation

Consider HACCP Control windows and Measurement Device Capability.

Engineering: HACCP and ISO 22000

	E	Madala a	Landar	N4	CCD	Malthattan				ACUL
	Function	Variables	Leader	Wember		Validation	Wonitoring	Verification		
Α	Prepare Vegi Ingradient	Dry Duration	Sean	Alan	Container Labeling	Define how to cut vegi	Vegi Container Labeling	Dry all vegi pieces		Stillcal-control 10
В	Mix, Stir (2 meat x 2 vegi x 3 ratios)	1.Meat, 2.Vegi, 3. Ratio (25%, 50%, 75%)	Leo/Matt	Kathy's Boy	Weight Ratio +/- 1%	Weight Tolerance +/1 gram	Check Meat/Vegi Ratio	Visual Inspection on Ratio/Stir Efficiency	3	
с	Dumpling Weight (3) X Pi Type (2)	4. Weight (20, 25,30),5. Pi	Kathy	Kathy's Daughter	Dumpling Weight +/- 0.5gm	Weight tolerance within +/-0.1 gram	Pi Type Labeling	Meet Dumpling Weight Target within +/-0.5 gram	7	of HACCP
D	Make Dumplings (Shape, Number)	6. Shape/Maker, 7. Batch Size (5,10,15)	Julianne's Mom	Julianne	Zero Tolerance on the Batch Size	Trainging between two Dumpling Makers	Count the Number of Dumpings	Any broken Dumpling (record how many)	01	Conduct Hazard Analysis
		2 Initial Water Temp (750, 850, 950) 9			Control Water Temp	Define Infrared	Take Multiple	Chack Dumplings are	02	Establish Critical Control Points
E	Cooking (Water Temp)	Pan Size (Water Depth)	Christina	Brianna	+/- 2C?	Measurement	Readings every 30 seconds?	fully cooked	03	Establish Critical Limits
F	Dumpling Duration (Rising time)	3 more mins after last piece rised up?	Allan	Julianne's	Rising up time within 0.3 second between	Measure the Pan Contact Area of the	Count the duration of	Check all Dumplings	04	Establish Monitoring Procedures
				Sister	two operators	Bottom Surface	the last one rising up	are fully cooked	05	A Establish Corrective Action
G	Traveller	Define Traveller Template or use Laptop	Mason	Charles	No Missing or typo Information	All A-F Categories are listed	Traveller with each Dumpling Plate Treatment	Check all informaiton filled by each Group Leader	06	Verification
					No Typo on Data	Create IMP DSD	Check all information	Double Check the Data	07	Recordkeeping
Η	JMP Data Entry		Patrick	JeAnne	Entry	Datasheet	available on the traveller	Entry (no trpo or missing)	Source: "A Uniform a	pproach to HACCP [®] by Dr. Al Baroudi. President, Food Safety Institute International

ard-Analysic

• <u>Introduction to HACCP</u>: https://www.slideshare.net/Adrienna/introduction-to-haccp-57715003

• <u>HACCP Description Chart</u>: https://www.researchgate.net/figure/HACCP-DESCRIPTION-CHART_tbl5_260401936

Mathematics: Monte Carlo Robust Design Simulation

ummary Report						
Overall						
Column	Main Effect	Total Effect	.2	.4	.6	.8
Meat (g)	0.2	0.463				
Vegi Cabbage	0.112	0.338				
Batch Size (Count)	0.183	0.237				
Water Temp (deg C)	0.044	0.147				
Meat Type	0.049	0.112				
Dumpling Weight (g)	0.047	0.063				
Dumpling Rising	Time (sec)					
Column	Main Effect	Total Effect	.2	.4	.6	.8
Water Temp (deg C)	0.121	0.406				
Meat (g)	0.079	0.354				
Vegi Cabbage	0.103	0.306				
Meat Type	0.114	0.263				
Batch Size (Count)	0.034	0.151				
Dumpling Weight (g)	0.065	0.075				
Throughput (Tot	al Weight/	Cooking Ti	me)			
Column	Main Effect	Total Effect	.2	.4	.6	.8
Meat (g)	0.48	0.503				
Batch Size (Count)	0.241	0.257				
Vegi Cabbage	0.151	0.167				
Dumpling Weight (g)	0.061	0.084				
Meat Type	0.001	0.002				
Water Temp (deg C)	0.001	0.001				
Power Comsump	otion					
Column	Main Effect	Total Effect	.2	.4	.6	.8
Vegi Cabbage	0.081	0.54				
Meat (g)	0.042	0.531				
Batch Size (Count)	0.275	0.304				
Meat Type	0.031	0.071				

0.011

0.014

0.033

0.028

Water Temp (deg C)

Dumpling Weight (g)

How to Optimize Cooking Process:

Faster Time, Less Duration Variance, Maximize Throughput and Power Savings through Monte Carlo Simulation

Artificial Intelligence: Neural Modeling

- The previous Stepwise Regression Modeling approach could not predict Throughput and Power Consumption well.
- We can utilize AI Neural Algorithm to facilitate prediction.
- This model ignores physics. Good thing or bad thing?

Diff between R-Squared may suggest

an Overfit problem!

0.6761

0.7998

Training

Validation

253.18985

121.77823

odel NI anH	(2)				
Training			Validation		
Dumpling	Rising Time (sec)		Dumpling R	ising Time	(sec)
Measures	Value		Measures	Value	1
RSquare	0.3672192		RSquare	0.3508172	
RMSE	93.497643		RMSE	40.74726	•
Mean Abs Dev	60.629446		Mean Abs Dev	35.949221	
-LogLikelihoo	d 71.482497		-LogLikelihood	30.757963	
SSE	104901.71		SSE	9962.0353	
Sum Freq	12		Sum Freq	6	
Throughpu	it (Total Weight/O	Cooking Time)	Throughput	(Total Wei	ght/(
Measures	Value		Measures	Value	_
RSquare	0.2523678		RSquare	0.6201162	
RMSE	0.4370311		RMSE	0.7400616	1
Mean Abs Dev	0.3274427		Mean Abs Dev	0.5838333	
-LogLikelihoo	d 7.0942505		-LogLikelihood	6.7075004	
SSE	2.2919539		SSE	3.2861474	
Sum Freq	12		Sum Freq	6	
Power Com	sumption		Power Come	umption	
Measures	Value		Measures	Value	
RSquare	0.315295		RSquare	0.1881791	
RMSE	504919.09		RMSE	306566.13	
Mean Abs Dev	368566.65		Mean Abs Dev	266780.12	
-LogLikelihoo	d 174.6131		-LogLikelihood	84.312764	
SSE	3.059e+12		SSE	5.639e+11	
Sum Freq	12		Sum Freq	6	
6	norslined				
Ge	RSquare Joglikeli	hood			

Artificial Intelligence: Recursive Partitioning

The previous Stepwise Regression Modeling could not predict the Throughput and Power Consumption well. Here we utilize AI Recursive Partitioning Algorithm. The R-squared may be lower for this model compared to the others due to limited sample size, but the model is still good with R-squared at least 50% across all three Y-axes. This is also where we determined our 85 C threshold.

	Number						Water Temp (deg C)>=85				Water Temp (deg C)<85			
Faster Rising Time	RSquare	RASE	N	of Splits	AICc	Co	ount ean	11 92,818182	LogWorth 0.9985476	Difference 50.5714	Count Mean	7	LogWorth 1,4889354	Difference
	0.726	53.188693	18	4	213.777	Ste	d Dev	48.799218	0.5505410	50.5714	Std Dev	129.45748		150.5

Throughput

RSquare	RASE	N	Number of Splits	AICc
0.595	0.5760438	18	4	50.8616

Nater Te	emp (deg C)	<95		Water Temp (deg C)>=95							
Count	11	LogWorth	Difference	Count	7	LogWorth	Difference				
Mean	0.9876265	1.1550878	0.52791	Mean	2.0450419	0.6328377	1.30018				
Std Dev	0.4717115			Std Dev	1.1354728						

	Number					Dumplin	Dumpling Weight (g)<21			Dumpling Weight (g)>=21			
Power Saving	RSquare	RASE	RASE N	of Splits	AICc	Count	7 62011071	LogWorth	Difference	Count	11	LogWorth	Difference
	0.497	379924.59	18	4	533.236	Std Dev	185661.66	1.5052009	204794	Std Dev	622615.49	0.0529205	037708

Summary/Conclusions

- Performed a Dumpling cooking experiment by designing a study using as an 18-run Definitive Screening Design (DSD).
 - Performed model diagnostics to ensure adequate prospective, orthogonality, uniformity and Power.
- Executed experiment systematically.
- Inferred on the cooking time response using the DSD structure modeled with a Stepwise Regression approach using more than one convergence criterion.
- Determined A.I. will not win with such a small sample set, but given a significantly larger data set, may provide "hidden" insights.
- Optimized dumpling cooking experiment.
 - Identified/ quantified Throughput & Power Savings as key metrics.
 - Used Robust Design Monte Carlo Simulation by incorporating all HACCP control points including measurement capability (precision) as inputs.
 - Used Neural Modeling and Recursive Partitioning to go deeper in quantifying our understanding of the physics.

References

- <u>Dumpling Cooking Modeling and Simulation</u>, Zhu Qiang: 9th International Symposium on Advanced Control of Chemical Processes The International Federation of Automatic Control June 7-10, 2015, Whistler, British Columbia, Canada
- <u>Boiling, steaming or rinsing?(physics of the Chinese cuisine)</u>, Andrey Varlamov, Zheng Zhou, Yan Chen, Fudan University, Shanghai, China, 2018
- Introduction to HACCP: https://www.slideshare.net/Adrienna/introduction-to-haccp-57715003
- <u>HACCP Description Chart</u>: https://www.researchgate.net/figure/HACCP-DESCRIPTION-CHART_tbl5_260401936

