
Using JMP to Compare Models from Various Environments

Lucas Beverlin

October 15, 2020

1 October 15, 2020

JMP Can Do Many Things

JMP 15 Pro has several platforms that can build a model:

• Fit Model

• Neural

• Partition

• Nonlinear

• And more!

2 October 15, 2020

And Compare the Models

The Model Comparison platform can be used to compare fits from
various JMP platforms, to help the user determine which model is
best.

(Figure 10.1 from the Predictive and Specialized Modeling pdf
within the JMP 15 Pro help.)

3 October 15, 2020

But It Can’t Do Everything

There are some models that JMP cannot fit, and some limitations
to those that it can:

• A neural network with more than two hidden layers, e.g.
autoencoders, convolutional neural networks, etc., and/or
activation functions other than the usual 3 JMP Pro offers

• Projection pursuit regression

• Multivariate adaptive regression splines (MARS)

4 October 15, 2020

Software That Can Fit Other Models

• R

• Python

• MATLAB

Of course, there are many more, but for this talk we’ll focus on
these three. The ideas here can easily extend to basically any
software!

5 October 15, 2020

The Power of Model Comparison

We can use the Model Comparison platform to compare model fits
from other software too!

What you need:

• The model predictions from whatever you used to fit the
model.

• If you split the data into training/validation/test sets,
something that delineates those sets.

6 October 15, 2020

Calling R from JMP

JMP’s scripting language (JSL) can create its own R session and
run code from it.

https://www.r-project.org

Notes: I am using R 3.6.3 for this demonstration. JSL can call any
version of R ¿= 2.9.1

7 October 15, 2020

Calling Python from JMP

JSL can create its own Python session and run code from it.

https://python.org

Notes: While JSL can call the newest version of Python, which at
the time of recording was 3.8.5, it cannot call versions of Python
greater than 3.6.x if you use the Anaconda installer. Thus, I am
using Python 3.6.5 for this demonstration. JMP recommends
Python ¿= 3.6.5.

8 October 15, 2020

Calling MATLAB from JMP

JSL can create its own MATLAB session and run code from it.

https://www.mathworks.com/products/matlab.html

Notes: I am using Matlab R2019b for this demonstration. JSL can
call any version of MATLAB ¿= R2012a (7.14.0).

9 October 15, 2020

Using JSL to Fit Models and Run Model Comparison

So how do we tie this all together?

1 Fit each model, sending each software the data, and which set
(training/validation/test) each observation resides.

2 Output the model fits, and add them to the JMP data table.
(Be sure to name them so that you can tell one from the
other!)

3 Depending on the model, you may want some model
diagnostics. Those can be outputted as well.

4 Use the Model Comparison platform to compare all the fits,
and it will present tables for output showing the best in each
set (training/validation/test).

10 October 15, 2020

Model Fitting

For the first step, we can do one of two things:

1 Tell JMP via JSL to call your software of choice, send it the
data, and the code to fit it.

2 Create a dataset with a validation column, and schedule it to
run on your software of choice, outputting what you need
(predictions, diagnostic plots, etc.).
Warnings:

Make sure all software has what it needs to fit the model!
Make sure all software has finished running before proceeding!
Make sure the output format is something JMP can read!
Make sure the predictions from each model correspond to the
correct observations from the original data set!

11 October 15, 2020

What I Used to Fit Models

In R I used the following additional packages to fit a neural
network:

• Keras

• Tensorflow

In Python, I used the following libraries:

• Keras

• Tensorflow

• numpy - to do a few calculations

• pandas - to manipulate the data a bit

• matplotlib - to create plots

In MATLAB, I used the deep learning toolbox.

12 October 15, 2020

Adding Predictions to the JMP Data Table

1 If you used JMP to call the software, you can use JSL code to
retrieve the predictions and add them to the data table.

2 If the software ran on its own, and saved the output, you can
ask JMP to read the output, and add it as a new column. We
can also read the diagnostic plots, assuming they were saved
as graphics files.

To help with identification later, I recommend adding the following
property for each prediction column you add:

dt << Set Property("Predicting" ,{:mvalue , Creator("R")})

Here this will call the model’s creator as R in the output. Of
course, choose whatever string you wish to identify each model,
particularly if multiple models come from the same software.

13 October 15, 2020

Model Comparison

Note that you can also use the Validation column here as a Group
variable instead of a By variable.

14 October 15, 2020

Model Comparison Output

Here, had you used Validation as a Group variable, this would be
one table instead of three.

15 October 15, 2020

Example: Boston Housing
We will use the classic Boston Housing dataset. (Harrison &
Rubinfeld 1978)

• mvalue - Median value of a house in thousands

• crim - Per capita crime rate by town

• zn - Proportion of residential land zoned for lots over 25,000 ft2

• indus - Proportion of non-retail business acres per town

• chas - 1 if the tract borders the Charles River, and 0 otherwise

• nox - NOx concentration (parts per 10 million)

• rooms - Average number of rooms per dwelling

• age - Proportion of owner-occupied units built before 1940

• distance - Weighted distance to 5 Boston employment centers

• radial - Index of accessibility to radial highways

• tax - Full-value property tax rate per $10,000

• pt - Pupil/teacher ratio by town

• b = 1000(B − 0.63)2, where B = proportion of African Americans by
town

• lstat - % lower status of the population

16 October 15, 2020

Models to Consider

With the Model Comparison platform, we can compare all types of
models to one dataset. In this presentation, we’ll consider the
following:

Linear Regression

17 October 15, 2020

Ridge Regression

Ridge regression is linear regression with the constraint that∑m
k=1 β

2
k ≤ c, or, equivalently,

β̂ = min
β

n∑
i=1

(
yi − β0 −

m∑
k=1

βkxki

)2

+ λ

m∑
k=1

β2k.

This method shrinks the coefficients toward 0.

18 October 15, 2020

The Lasso

The lasso is linear regression with the constraint that∑m
k=1 |βk| ≤ c, or, equivalently,

β̂ = min
β

n∑
i=1

(
yi − β0 −

m∑
k=1

βkxki

)2

+ λ

m∑
k=1

|βk| .

This method can eliminate inputs whose contribution to the
response is weak.

19 October 15, 2020

The Lasso and Ridge Regression

Lasso Ridge Regression

Thanks James, Witten, Hastie, and Tibshirani!

20 October 15, 2020

Regression Trees

21 October 15, 2020

Regression Trees

Regression trees are models where the input space is partitioned
into areas, and the prediction is the average response of the
observations in that area.

Thanks James, Witten, Tibshirani, and Friedman!

22 October 15, 2020

Neural Networks

23 October 15, 2020

Neural Networks

Neural networks are nonlinear models whose representation can be
drawn as a series a neurons, much like how we believe the brain
works.

• Each input can be passed to nodes in a hidden layer.

• At the hidden layer, the inputs are pushed through an
activation function, and an output is calculated.

• Each output can be passed to a node in another hidden layer,
or be an output of the network.

Notes on the Neural platform within JMP Pro:

• There are only three options for activation functions: Linear,
Hyperbolic Tangent, and Gaussian Radial Basis.

• JMP Pro only allows for 2 hidden layers. Deep learning neural
networks, such as autoencoders, often have dozens.

24 October 15, 2020

Projection Pursuit Regression

Projection pursuit regression, originally proposed by Friedman and
Stuetzle (1981), is a model whose predictions take the form:

y =

k∑
i=1

βifi(α
′X).

One can see that this is somewhat analogous to a neural network
with one hidden layer with k nodes, each with activation function
fi. However, here, fi is also estimated, as it is usually a smoother
or a spline fit. (The fi’s are called ridge functions.) Of course, by
altering the α and βi, the optimal smooth will change, so fitting is
usually done stagewise.

25 October 15, 2020

Model Comparison in Action - JMP Journal Output

Do note that I had difficulty setting the seeds for the neural
networks fit in Keras for R and Python, so some of your results will
differ slightly from mine.

26 October 15, 2020

Model Comparison in Action - R Neural Network
Diagnostic Plot

27 October 15, 2020

Model Comparison in Action - R Projection Pursuit
Ridge Function Plots

28 October 15, 2020

Model Comparison in Action - Python Diagnostic
Plot

29 October 15, 2020

Model Comparison in Action - MATLAB Diagnostic
Plot

30 October 15, 2020

Model Comparison in Action - Linear Regression
Diagnostic Plots and Output

31 October 15, 2020

Model Comparison in Action - Lasso Diagnostic
Plots and Output

32 October 15, 2020

Model Comparison in Action - Ridge Regression
Diagnostic Plots and Output

33 October 15, 2020

Which Model Fit Best?

• Here we appear to see that the projection pursuit model fit
the training data the best, as well as the validation data.
However, it was worst on the test data!

• It appears that JMP’s neural network fit the test data best.

• Here, I would recommend JMP’s neural network since the fit
is fairly consistent across all three sets of data.

34 October 15, 2020

Conclusions

• The Model Comparison platform is a powerful tool for
comparing the predictive ability of multiple models.

• This flexibility can be extended to include models that were
not fit with JMP!

• This can allow for several complex models to be fit
simultaneously, and once the results are in, they can all be
compared.

35 October 15, 2020

References

Friedman, J. and Stuetzle, W. “Projection Pursuit Regression,”
Journal of the American Statistical Association, Vol. 76, 817-823,
1981.

Harrison, D. and Rubinfeld, D.L. “Hedonic Prices and the Demand
for Clear Air,” J Environ. Economics & Management, Vol. 5,
81-102, 1978.

Hastie, T., Tibshirani R. and Friedman J. The Elements of
Statistical Learning, Springer, New York, 12th printing, 2017.

James, G., Witten, D., Hastie, T. and Tibshirani, R. An
Introduction to Statistical Learning with Applications in R.
Springer, New York, 8th printing, 2017.

36 October 15, 2020

