LUBRICANT RESEARCH USING JMP NON-LINEAR REGRESSION

Discovery Summit Americas 2020 13 – 15 October 2020

F. W. Girshick, Technology 2020-US-45MP-580

Performance you can rely on.

Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020

© 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved. Confidential to Infineum

INTRODUCTIONS

BACKGROUND OF LUBRICANT RESEARCH

TYPES OF QUESTIONS WE WANT TO ANSWER

NON-LINEAR MODEL EXAMPLES

NON-LINEAR ANALYSIS EXAMPLES

CONCLUSIONS AND FUTURE

Introductions

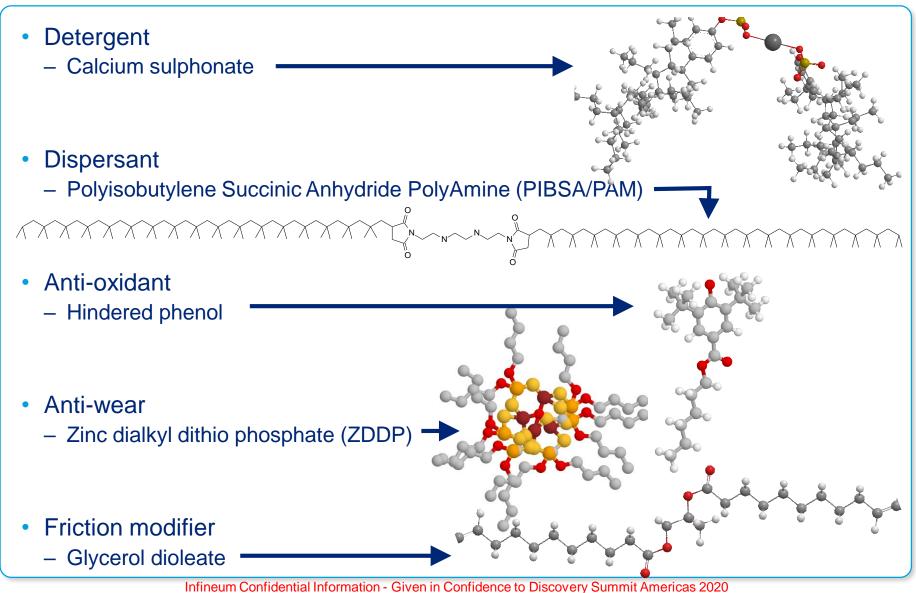
M TRA

R

JAN SALAP

Introduction: Who am I?

- Fred W. Girshick
- Researcher for a specialty chemical company
 - Manufacturer of chemical additives for lubricants and fuels
 - Have a global Statistics Group, for help with more complicated situations
- Experience with various forms of (reciprocating internal combustion) engine oils
 - Passenger Car, On- and off-highway trucks, railroad, aviation, stationary engines
- My specialty for the past 19 years is Large Engines
 - I'll show you what they are later
- Previous user of SAS and currently JMP
- Not a sophisticated user
 - Tend to do the same type of analyses over and over
 - Still learning
- Better at Microsoft Excel than JMP
 - Use Excel to prepare dataset for import into JMP
 - Often export results to Excel for graphing and export to PowerPoint or Word
- No real-time "live action" demonstrations today
 - Screen shots and pointing


Introduction: Lubricants

- Lubricants are needed any time or place there are moving parts
 - Engines
 - Transmissions
 - Gears
 - Pumps
 - Motors
 - etc.
- Lubricants can be solid, liquid, or gas
- Engine oils contain:
 - Base stock: the "oil" stream refined from crude oil
 - Additives: detergent, dispersant, anti-oxidant, anti-wear, friction modifier, anti-foam, corrosion inhibitor, viscosity modifier, *etc*.
 - Each additive type has many different chemical options
 - Not all engine oils contain all additive types: only what's needed
- Today's talk addresses:
 - Liquid lubricants (engine oils)
 - For Reciprocating Internal Combustion Engines (RICE)

Introduction: Components (examples)

^{© 2020} INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.

Large Engines

PRECISION

PRECISION

KOr.

10.00

STA LOS

0

T

10.00

100

Large engines

Not large engines: •

Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020 & © 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.

Performance you can rely on

Large engines

- Railroad •
 - Locomotives

4400 Hp

- Stationary natural gas engines ٠
 - Compressing natural gas in pipelines
 - · To get it from where it exists to your house
 - Recycling household garbage (landfill)
 - Recycling farm waste (biogas)

5900 Hp

98,000 Hp

Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020 © 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.

Marine

Ships at sea

•

Types of Questions We Want to Answer

578

Types of questions

- How well does this bench test predict real-world performance?
- How does performance depend on concentration of this additive?
- How does the structure of this additive affect performance?
 - e.g., If I make the chain longer or more branched?
 - e.g., If I change the ratio of polar and non-polar parts?
- Can I predict performance from composition?
- How long will this product last before it needs to be changed?
 - *e.g.*, passenger cars are either 3000 miles; 5000 miles; 7500 miles; 10,000 miles (depending who you ask)
- How much better is my premium product than my "mainline" product?
- How does my product compare to my competitor's product?

Non-Linear

Mairis

THE TRANS

Linear or Non-Linear

"Non-linear" means non-linear in the parameters, not the variables **Non-linear** Linear or y = m * x + b $y = a * x^2 + b * x + c$ $v = a * x^3 + b * x^2 + c * x + d$ $y = a * e^{b * x}$ Ln(y) = Ln(a) + b * x $y = a + b * x^c$ $y = \frac{a}{(x+b)}$ $\frac{1}{v} = \frac{(x+b)}{(a)} = \frac{x}{a} + c$ $y = \frac{(a * x)}{(h + x)}$ Michaelis-Menten $y = a + b * \left[1 + e^{\left(\frac{-x}{c}\right)}\right]$ This paper

Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020

© 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.

Radiator

Compressor

Gas engine oil oxidation

Engine oil oxidation

- For our purposes, oxidation is degradation caused by reaction with oxygen
 - Strictly speaking, chemical oxidation can occur without oxygen
- Common examples are when apple slices turn brown or old milk goes sour
- Engine oils are mostly hydrocarbon molecules
 - They are exposed to high temperatures during engine operation
 - Fuel combustion generates free radicals, which promote oxidation
 - Free radicals are molecular fragments with unpaired electrons
 - Unstable and reactive, they "attack" other molecules to pair their electrons
- Oxidation of engine oil leads to undesirable consequences:
 - Oil thickening higher viscosity than engine design needs & lower fuel economy
 - Acid formation acid corrodes metal parts
 - Deposit formation deposits can block oil passages and impede moving parts
- Oxidation is often measured by Infrared (IR)
 - Units: Absorbance per centimeter (A/cm)
 - Engine manufacturers publish limits at which oil must be changed

Engine oil oxidation – test design

 Two natural gas engine manufacturers 						
 Called XXX and YYY for the example 						
Three oils	Tod	ay, only analyzing one				
 Called BLUE, RED, and GREEN for the example 	engine model in detail					
• 2 x 3 design						
 Each oil in each engine design 						
 Run for about 14 months 						
 10,000 operating hours 						
– At ≥95% of maximum load		If you drove near maximum				
 Oil samples taken every week to 10 days 		engine output, and average				
 Total 600 samples 		70 mph, that would be 700,000 miles				
 Many parameters measured 		700,000 miles				
 About 20 oil properties 						
 Physical measurements of wear 						
 Physical measurements of deposits 						
Concentrate on oxidation for this example						
Infineum Confidential Information - Given in Confidence to Dis	scoverv S	ummit Americas 2020				

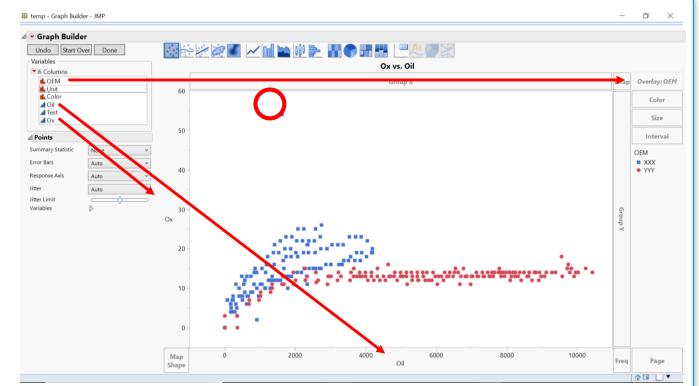
Engine oil oxidation – dataset

- Showing simplified JMP dataset
 - Color = oil formulation
 - Oil = age of oil since last change, hours
 - Test = duration of test, hours
 - Ox = oxidation in A/cm
- Rows are color-coded *per* Color variable
- Rows are assigned markers:
 - Square for XXX
 - Circle for YYY
- Full dataset contains many more measurements of oil properties
 - And parameters of oil composition
 - And physical engine measurements

File Edit Tables			ols DO	-		ph Tools	s View	Window	Help	
8 6 6 9	*				y x	* 🖉 🖕				
💌 temp	\triangleright	٩								
Source	Г			OEM	Unit	Color	Oil	Test	Ох	
		•	1	XXX	AAAA	BLUE	0	0	0	
		•	2	XXX	AAAA	BLUE	0.25	0	0	
		•	3	XXX	AAAA	BLUE	285	285	4	
		•	4	XXX	AAAA	BLUE	621	621	6	
Columns (6/0)		•	5	XXX	AAAA	BLUE	960	960	8	
L OEM L Unit		•	6	XXX	AAAA	BLUE	1290	1290	10	
Color			7	XXX	AAAA	BLUE	1623	1623	54	
a Oil			8	XXX	AAAA	BLUE	0	1623	0	
🚄 Test		•	9	XXX	AAAA	BLUE	314	1937	6	
┛ Ox		•	10	XXX	AAAA	BLUE	637	2260	8	
		•	11	XXX	AAAA	BLUE	0	2412	0	
			12	XXX	AAAA	BLUE	216	2628	4	
		•	13	XXX	AAAA	BLUE	500	2912	7	
		•	14	XXX	AAAA	BLUE	786	3198	9	
		•	15	XXX	AAAA	BLUE	1138	3550	10	
		•	16	XXX	AAAA	BLUE	1334	3746	12	
		•	17	XXX	AAAA	BLUE	1498	3910	12	
			18	XXX	AAAA	BLUE	1665	4077	13	
		•	19	XXX	AAAA	BLUE	1833	4245	13	
		•	20	XXX	AAAA	BLUE	2057	4469	14	
		•	21	XXX	AAAA	BLUE	2173	4585	14	
			22	xxx	AAAA	BLUE	2320	4732	13	
			23	XXX	AAAA	BLUE	2510	4922	15	
			24	XXX	AAAA	BLUE	2677	5089	15	
			25	XXX	AAAA	BLUE	2868	5280	16	
 Rows 			26	XXX	AAAA	BLUE	3008	5420	16	
All rows 2	8		27	XXX	AAAA	BLUE	3328	5740	16	
Selected	1	•	28	XXX	AAAA	BLUE	3509	5921	17	
Excluded	0		29	XXX	AAAA	BLUE	3687	6099	17	
Hidden Labelled	0 0		30	XXX	AAAA	BLUE	3845	6257	17	
200 01100	Ŭ			XXX	AAAA	BLUE	4020	6432	18	

^{© 2020} INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum

Engine oil oxidation – analysis


- What to do first?
 - (A trick question)
- Plot The Data!
- Graph →
- Graph Builder →

File Edit Tables R	ows s Co	ols Do	DE Ana	yz Gra	aph	Tools	View	Window	Help	
📇 🔁 🚰 😹		Grap	h Builder	>						
temp 👂	ير ج ل	Bubb	le Plot							
Source		Scatt	erplot Ma	atrix		blor	Oil	Test	Ох	
		Parall	el Plot			JE	0	0	0	
						JE	0.25	0	0	
		Cell P	lot			JE	285	285	4	
	 決定 	Scatt	erplot 3D	1		JE	621	621	6	
Columns (6/0)	- 2	Cont	our Plot			JE	960	960	8	
OEM Unit						JE	1290	1290	10	
Color		lerna	ry Plot			JE	1623	1623	54	
Oil	- 🚸	Surfa	ce Plot			JE	0	1623	0	
Test	-	Profil	or			JE	314	1937	6	
Ox						JE	637	2260	8	
		Conte	our Profil	er		JE	0	2412	0	
		Mixtu	ire Profile	r		JE	216	2628	4	
	1	Custo	om Profile	er		JE	500	2912	7	
		Excel Profiler				JE	786	3198	9	
		Encor				JE	1138	3550	10	
		Lega	у		•	UE	1334	3746	12	
-	•	17	XXX	AAAA	BL	UE	1498	3910	12	
		18	XXX	AAAA	BL	UE	1665	4077	13	
-		19	XXX	AAAA	BL	UE	1833	4245	13	
		20	XXX	AAAA	BL	UE	2057	4469	14	
-		21	XXX	AAAA	BL	UE	2173	4585	14	
		22	XXX	AAAA	BL	UE	2320	4732	13	
-		23	XXX	AAAA	BL	UE	2510	4922	15	
		24	XXX	AAAA	BL	UE	2677	5089	15	
		25	XXX	AAAA	BL	UE	2868	5280	16	
Rows		26	XXX	AAAA		UE	3008	5420	16	
ll rows 298		27	XXX	AAAA	BL		3328	5740	16	
elected 1		28	XXX	AAAA	BL		3509	5921	17	
cluded 0		29	XXX	AAAA	BL		3687	6099	17	
idden 0 abelled 0		30		AAAA	BL		3845	6257	17	
Jubelieu 0	-	31		AAAA		UE	4020	6432	18	

Engine oil oxidation – graphing

- Oil $\rightarrow X$
- $Ox \rightarrow Y$
- Obvious outlier
 - Deal with it for later
- Looks messy
- OEM \rightarrow Overlay
- For illustration, let's pick AAAA (Blue) in XXX for further examination

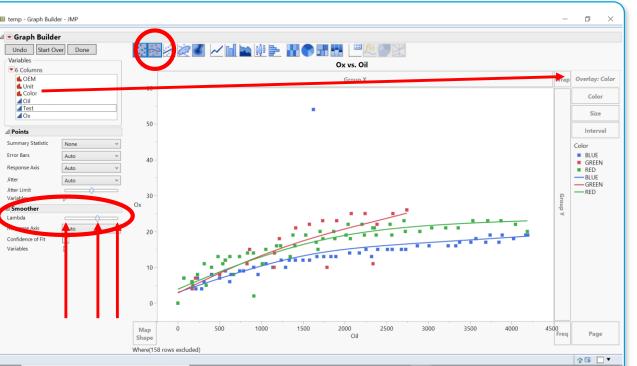
Engine oil oxidation – "Oil hours" vs. "Test hours"

Oxidation vs. Test hours reveals oil changes - In "Oil Hours" space, each oil change can be considered a replicate 40 1,000 2,000 3,000 0 **Oil Hours** 1,000 2,000 3,000 30 Oxidation, A/cm 1,000 2,000 3,000 20 10 0 4,000 2,000 6,000 8,000 10,000 0 **Test hours**

Engine oil oxidation – AAAA (Blue) in XXX only

- Back to the dataset
- Analyze 🗲 •
- Distribution -> ٠
- $OEM \rightarrow Y$, Columns •
- OK
- Click on YYY •
- Back to dataset ٠
- Rows ->
- Hide and Exclude → ٠
- Go to Graph Builder

<u>_</u>		<u>R</u> ows <u>i</u> o	_			aph T <u>o</u> ols >= // _	s <u>V</u> iew	<u>W</u> indow	<u>H</u> elp
	Hide and Exclud	le		Ctrl+Shi	ift+E	۽ 🛛 🛤			
	Exclude/ onexclu	ide		Ctrl+E					
	Hide/Unhide				t	Color	Oil	Test	Ox
	Label/Unlabel				1	BLUE	0	0	0
	Colors				•	BLUE	0.25	0	0
						BLUE	285	285	4
ti	Markers					BLUE	621	621	6
	Next Selected			F7	,	BLUE	960	960	8
	Previous Selecte	d		F6	<u>`</u>	BLUE	1290	1290	10 54
		iu .		10	· · ·	BLUE	1623 0	1623 1623	0
	Row Selection				•	BLUE	314	1937	6
	Clear Row States	5				BLUE	637	2260	8
	Clear Selected R	ow States				BLUE	037	2412	0
	Color or Mark b				,	BLUE	216	2628	4
		y Column.			,	BLUE	500	2912	7
	Row Editor				BLUE	786	3198	. 9	
	Delete Rows				BLUE	1138	3550	10	
				BLUE	1334	3746	12		
	Add Rows					BLUE	1498	3910	12
	Move Rows			BLUE	1665	4077	13		
	Data Filter				BLUE	1833	4245	13	
1111	Data Filter						2057	4469	14
			21	XXX	AAAA,	BLUE	2173	4585	14
▼ Ro	ws	•		XXX	AAAA,	BLUE	2320	4732	13
All ro		•	23	XXX	AAAA,	BLUE	2510	4922	15
Select	ed 158			XXX	AAAA,	BLUE	2677	5089	15
Exclud		•		XXX	AAAA,	BLUE	2868	5280	16
Hidde Labell		•		XXX	AAAA,	BLUE	3008	5420	16
	Ŭ	•	27	XXX	AAA,	BLUE	3328	5740	16



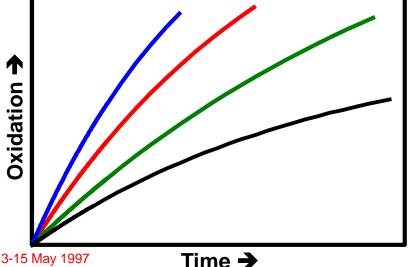
Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020

Engine oil oxidation – exploring shape

- Because the rows are color-coded with the "Color" variable, it looks like there are three separate responses
- But JMP doesn't know that yet
- Color \rightarrow Overlay
- Smoother ->
- Lambda 🗲
 - Slide until you like the look of the curves
 - Left tries to fit more closely
 - Right is smoother
 - Find the one you like
 - This is one way to decide what shape curve to fit

Quirk: JMP assigns Blue (points) is Blue (oil) Red (points) is Green (oil) Green (points) is Red (oil) Can be fixed, but it doesn't bother me

Engine oil oxidation - choosing a model


- Graphical analysis can inform the appropriate curve shape
 - Or, from fundamental physical principles
- Engine oil oxidation, under these conditions, generally follows*:

$$Oxidation = A + B \left[1 - e^{(-t/C)} \right]$$

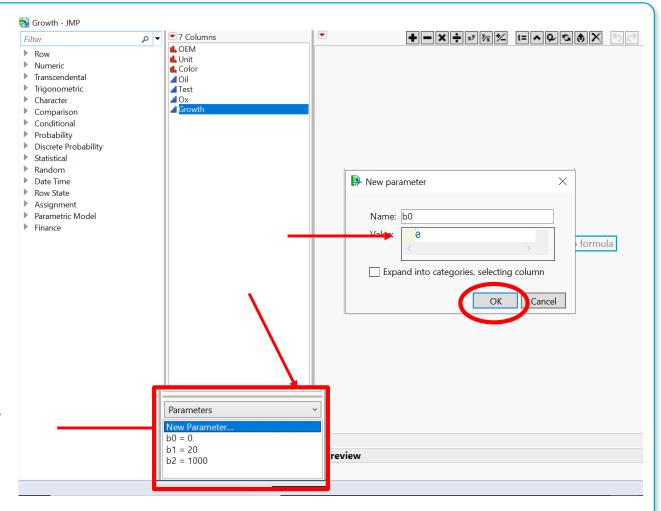
• JMP has a built-in library of non-linear functions, including "Mechanistic Growth Model (3P)"

Oxidation = theta1 * [1-theta2 * Exp(-theta3 * t)]

- Equivalent, with
 - A =theta1 -theta1 *theta2
 - B = theta1 * theta2
 - C = 1/theta3
- But, I prefer my parameterization
 - A,B,C have physical meanings

*M. J. Cannon, et. al., CEC97-EL09, Fifth CEC Symposium, Göteborg, Sweden, 13-15 May 1997

Engine oil oxidation – fitting a model


- Simple first
 - One engine-oil at a time
- Create a new column →
 - I always call it "Growth"
- Right click on column name →
- Formula →

File Edit Ta		Rows Co				iph Tools 🍋 📝 📮	s View	Window	Help	
• temp	Þ					· · · ·				
Source				OEM	Unit	Color	Oil	Test	Ox	Growth
			1	xxx	AAAA	BLUE	0	0	0	
			2	xxx	AAAA	BLUE	0.25	0	0	•
				Column	Info		5	285	4	•
							1	621	6	•
Columns (7	/0)			Standar	dize Attri	butes	þ	960	8	•
OEM				Column	Properti	es	► D	1290	10	•
🖺 Unit 🖺 Color				Formula			В	1623	54	•
a Oil				Pacode			þ	1623	0	•
🚄 Test					•		4	1937	6	•
A Ox				New For	r <mark>mula</mark> Co	lumn	▶ 7	2260	8	•
🚄 Growth				Insert Co	olumns		þ	2412	0	•
				Delete C	olumne		5	2628	4	•
				Delete C	Joiumns		p	2912	7	•
				Label/U	nlabel		5	3198	9	•
		•	-				8	3550	10	•
				Link ID			4	3746	12	•
				Sort			▶ 8	3910	12	•
				~~~	AAAA	BLUE	1005	4077	13	•
		•	19	XXX	AAAA	BLUE	1833	4245	13	•
			20	XXX	AAAA	BLUE	2057	4469	14	•
			21	XXX	AAAA	BLUE	2173	4585	14	•
		•	22	XXX	AAAA	BLUE	2320	4732	13	•
			23	XXX	AAAA	BLUE	2510	4922	15	•
		•	24	XXX	AAAA	BLUE	2677	5089	15	•
			25	XXX	AAAA	BLUE	2868	5280	16	•
💌 Rows		•	26	XXX	AAAA	BLUE	3008	5420	16	•
All rows	298		27	XXX	AAAA	BLUE	3328	5740	16	•
Selected Excluded	0 158	•	28	XXX	AAAA	BLUE	3509	5921	17	•
Hidden	158		29	XXX	AAAA	BLUE	3687	6099	17	•
Labelled	0		30	XXX	AAAA	BLUE	3845	6257	17	•
			31	XXX	AAAA	BLUE	4020	6432	18	•

#### Engine oil oxidation – creating parameters



- Define parameters
  - Constants ->
  - Parameters →
- New parameter →
- Value →
- OK **→**
- Repeat for other parameters
- A, B, C = b0, b1, b2
  - Use values suggested from the graphs
  - Makes it easier later
- b0 = 0
- b1 = 20
- b2 = 1000



#### Engine oil oxidation – creating a formula



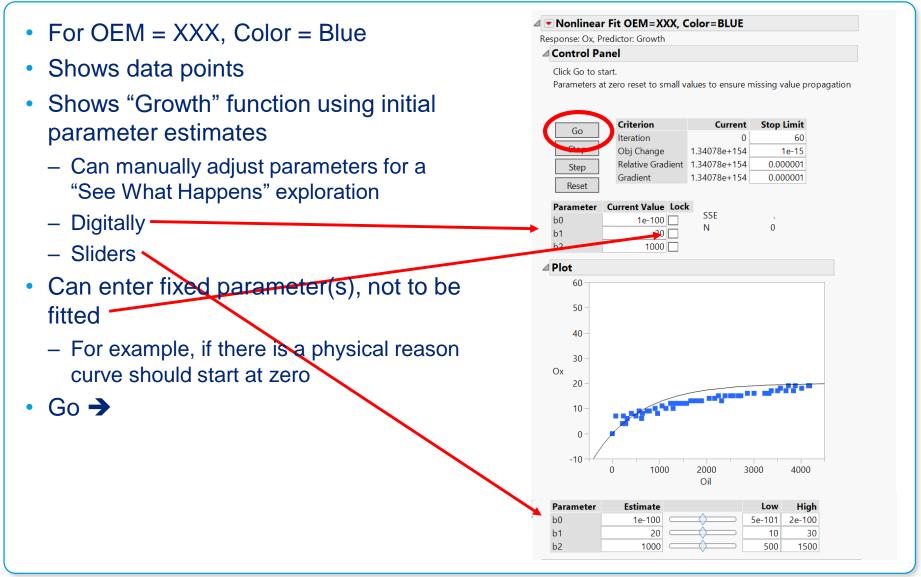
Filter	
Row Numeric Transcendental Trigonometric Character Comparison Conditional Probability Discrete Probability Statistical Random Date Time Row State Assignment Parametric Model Finance Parameters New Paramete b0 = 0 b1 = 20 b2 = 1000	• $b0 \rightarrow \uparrow $

#### Engine oil oxidation – entering nonlinear platform



<ul> <li>"Growth" function is populated</li> </ul>	itemp - JMI <u>File E</u> dit <u>I</u> 	ables		Cols IDE An	-	raph	T <u>o</u> ols	View	<u>W</u> indow	<u>H</u> elp	
<ul> <li>Analyze →</li> <li>Specialized Modeling →</li> </ul>	<ul><li>▼temp</li><li>▶ Source</li></ul>	y _x	Distribu Fit Y by	tion		t C	olor	Oil	Test	Ox	Growth
			Tabulate	9			.UE .UE	0 0.25	0	0	0.00
<ul> <li>Nonlinear -&gt;</li> </ul>		-	Text Exp	lorer		A BL	UE	285	285	4	4.96
		_	ICAL EAL			A BL	UE	621	621	6	9.25
	Columns (7	/' 🏓	Fit Mod	el		A BL	UE	960	960	8	12.34
	🔥 OEM		Product	ve Modeling		A BL	UE	1290	1290	10	14.49
r 1	Color	-		zed Modeling			Fit Cur	ve			16.05
<i>Growth</i> = 0 + 20 * $\left[1 + e^{\left(\frac{-1623}{1000}\right)}\right] = 16.05$	🧹 Oil				-		Nonlin				0.00
$Growth = 0 + 20 * [1 + e^{1000}] = 16.05$	🚄 Test 🚄 Ox		Screem			~	Normin	lear			5.39
	Growth 🕂			riate Methods	•	>	Gaussi	ian Proce	ess		9.42
	-		Clustering •			w	Time Series				0.00 3.89
			Quality	and Process	•	1.1	inne 5	Jenes			7.87
			Reliability and Survival		•		Specia	lized DC	E Models	; 🕨	10.89
			Concur	ner Research	•	Z	Matche	ed Pairs			13.59
			Consun	16 XXX	AAA	-	UE	1334	3746	12	14.73
				17 XXX	AAA	A BL	UE	1498	3910	12	15.53
				18 XXX	AAA	A BL	UE	1665	4077	13	16.22
				19 XXX	AAA	A BL	UE	1833	4245	13	16.80
				20 XXX	AAA	A BL	UE	2057	4469	14	17.44
				21 XXX	AAA	A BL	UE	2173	4585	14	17.72
				22 XXX	AAA		UE	2320	4732	13	18.03
			•	23 XXX	AAA		UE	2510	4922	15	18.37
				24 XXX	AAA		UE	2677	5089	15	18.62
				25 XXX	AAA		UE	2868	5280	16	18.86
	Rows	298	8	26 XXX 27 XXX			.UE .UE	3008	5420 5740	16	19.01 19.28
	Selected	290		27 XXX 28 XXX	AAA		UE UE	3328 3509	5921	16 17	19.28
	Excluded	158	3	28 XXX 29 XXX	AAA		.UE	3687	6099	17	19.40
	Hidden Labelled	158 0	3	30 XXX	AAA		UE	3845	6257	17	19.50
	Labelleu	U	′ <b> </b> -	31 XXX	AAA		UE	4020	6432	18	19.64
	evaluations d	one		211100			-				

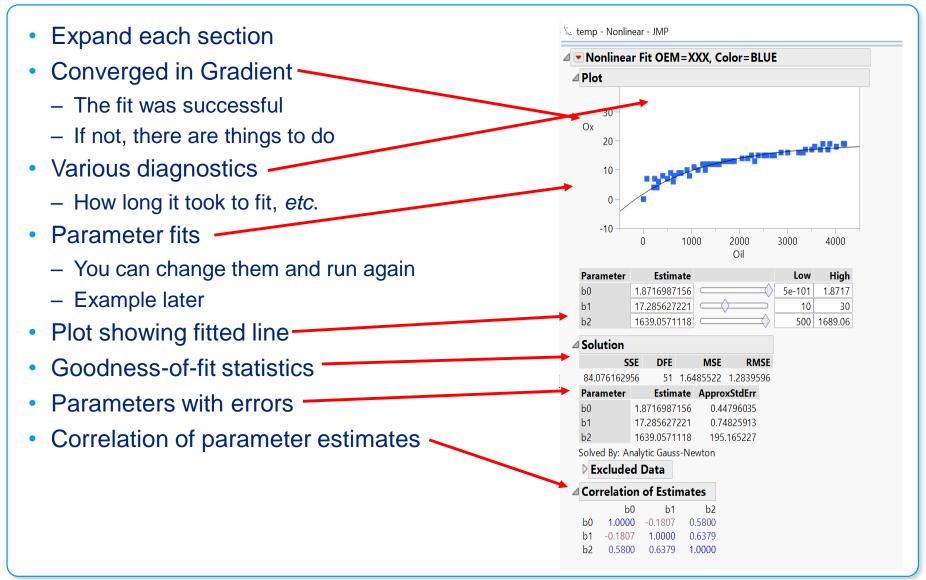
#### Engine oil oxidation – nonlinear analysis




$Ox \rightarrow Y$ , response Growth $\rightarrow X$ , Predictor Formula OEM $\rightarrow$ By	Window List Nonlinear - JMP Fitting models that are nonlinear in th	•	X
Color → By OK →	Select Columns	Cast Selected Columns into Roles          Y, Response       optional numeric         X, Predictor Formula       optional numeric         Group       optional         Weight       optional numeric         Freq       optional numeric         Loss       optional numeric         By       optional         The X Predictor column either has a formula with parameters, or is an independent variable to use with a builtin model.         Options for fitting custom formulas         Predictor         Reset         Loss         Reset         Numeric Derivatives Only         Expand Intermediate Formulas	Action OK Cancer Recall Help

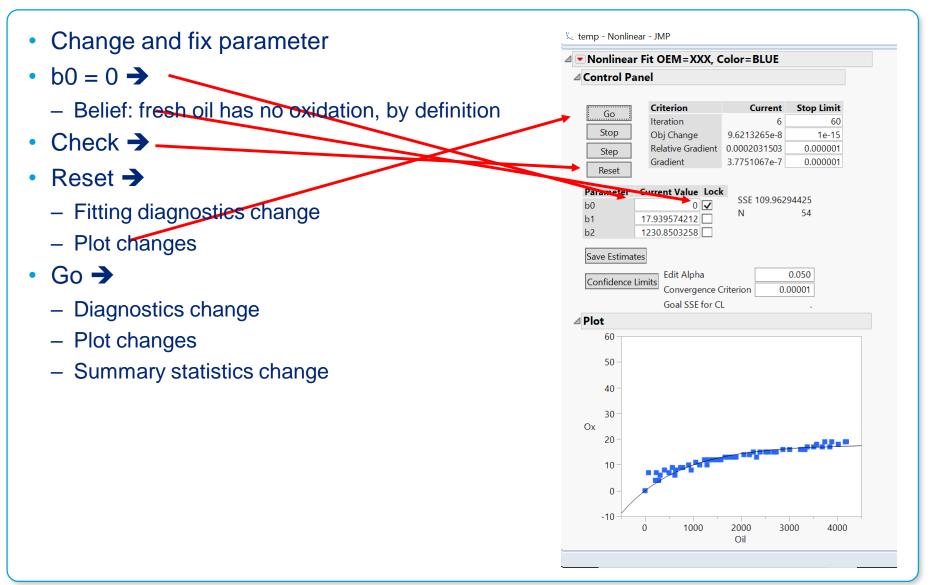
Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020 28 © 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.

#### Engine oil oxidation – initial view





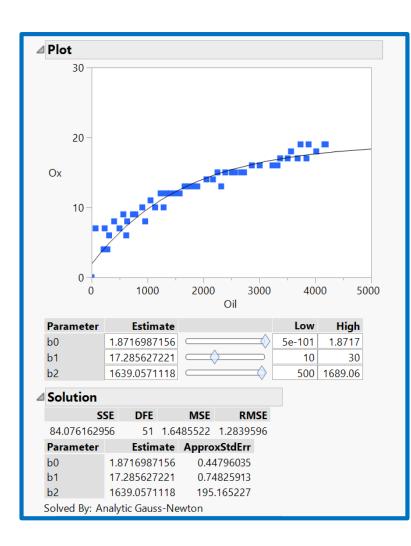


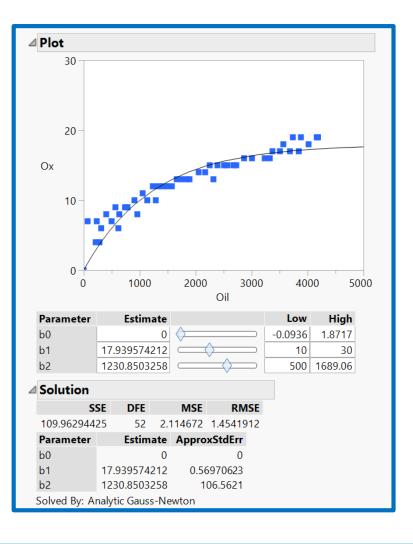


#### Engine oil oxidation - results





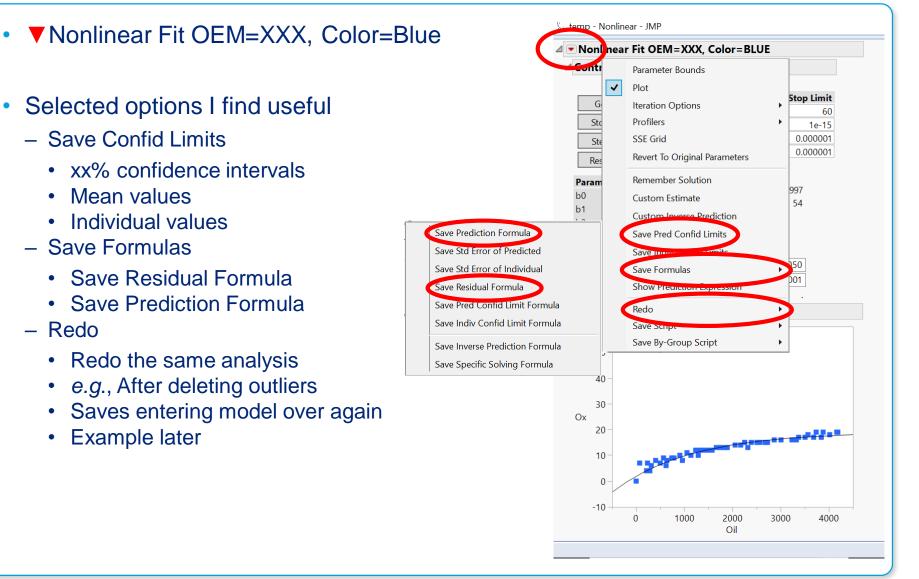
#### Engine oil oxidation – change a parameter






#### Engine oil oxidation – compare fits







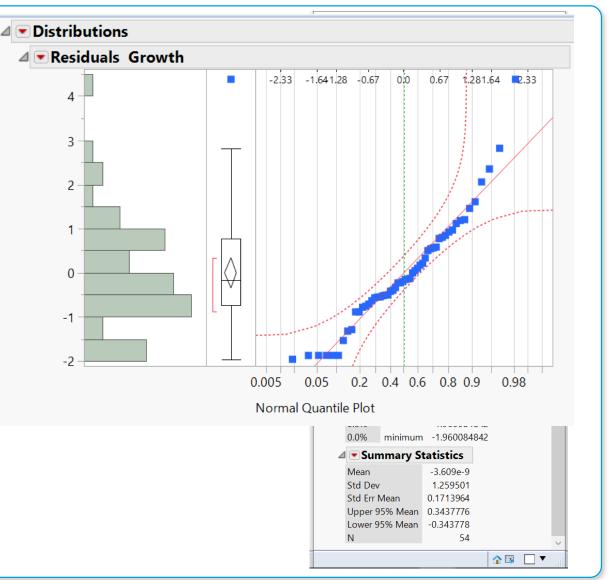

#### Engine oil oxidation – diagnostics





#### Engine oil oxidation – residuals




- **V**Nonlinear Fit
- Save Formulas
- Save Residual Formula
  - New column appears
- Analyze →
- Distribution →
- Residuals Growth  $\rightarrow$  Y, Columns
- Go 🗲
- Similar process to save predicted values

temp Distribution											_		
Source		y _x	V	hu Y				Color	Oil	Test	Ох	Growt	Residuals Growth
		<u> </u>						BLUE	1237	8091	12	14.1	0.9695221952
		<b></b>	Tabu	lato				BLUF	1407	8261	12	15.1	0.1688596547
	🖿 D	istribu	ition -	JMP						-	- C	_ <mark> </mark>	< -0.552921074
Columns	The distribution of values in each column											-0.203591481	
	OEM 4								olumns in	ha Dalaa		A	-0.707666235
Unit Color										to Roles -		Action	0.2150414017
Oil							Y, Columns required						-0.142918994
Test									ottonat			Cone	-0.547241972
Ox	. d.	Colo	r										-0.88698671
Growth 🚽		Oil					We	ight 0	otional nu	meric			-0.758547963
Residuals Test									ptional nu	morio		Remo	e 0.0491017781
	Growth						Fr	eq o		mentc		Reca	0.8016149239
	Residuals Growth							By 0	otional			Help	1.6086187536
													1.4591045044
	🗆 F	listog	rams	Only									1.1838242382
											1		-1.871698716
	۹	- T-	-							-			-1.874333034
						XXX	BBBB	RED	339	339	5	5.7	-0.101329018
						XXX	BBBB	RED	668	668	8	9.7	0.3424088411
			_			XXX	BBBB	RED	1012	1012	11	12.7	1.1653267376
				) 🗟		XXX	BBBB	RED	1345	1345	13	14.7	1.4512926022
Rows						XXX	BBBB	RED	1678	1678	15	16.2	2.0523954906
ll rows	29	98				XXX	BBBB	RED	2014	2014	19	17.3	4.9014276629
elected	-	0	_			XXX	BBBB	RED	2335	2335	21	18.0	6.0016789026
kcluded idden						XXX	BBBB	RED	0	2463	0	0.0	-1.871698716
abelled	24	0	-			XXX	BBBB	RED	179	2642	5	3.2	1.3399804988
			• 6	) 6	67	XXX	BBBB	RED	538	3001	11	8.3	4.2916437707
valuations	1												

#### Engine oil oxidation - residual inspection



- Residuals distribution
- Histogram
  - Doesn't look Normal
  - Don't expect it to
- Various quantiles
- Summary statistics
- ▼Residuals Growth →
- Normal Quantile Plot ->
  - Looks OK to me



#### Engine oil oxidation - residual inspection




Residuals vs. Predicted: usually more unclear than linear analysis ٠ Normal quantile plot probably more useful 🖽 temp - Graph Builder - JMP Ð X 🖉 💌 Graph Builder 20 📈 🖬 🔛 🔮 👪 Undo Start Over Done Variables Residuals Growth By OEM By Color vs. Fitted Growth By OEM By Color 10 Columns 📕 Unit Group X Wrap Overlay L Color 5 / Oil Color Test **O**X Size Growth Grouped A Residuals Growth By OEM By Color Interval Fitted Growth By OEM By Color • Residuals Growth By OEM By Color 3 Points Growth By OEM By Color Summary Statistic None Error Bars Auto 2 Response Axis Auto Group Jitter Auto Jitter Limit 1 ~ Variables Residuals 0 -1 -2 5 10 15 20 Map Freq Page Fitted Growth By OEM By Color Shape Where(86 rows excluded) 🏫 🖽 👘 ▼

Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020

Performance you can rely on

© 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.

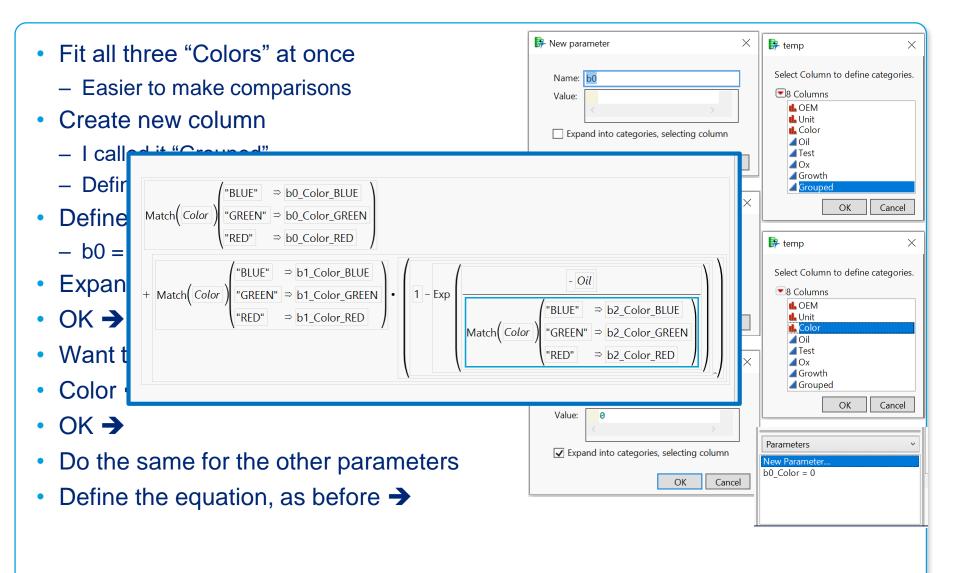


#### A more complicated model



- Non-linear regression
  - One case at a time

$$Y = A + B * \left[1 - e^{\left(\frac{-t}{C}\right)}\right]$$

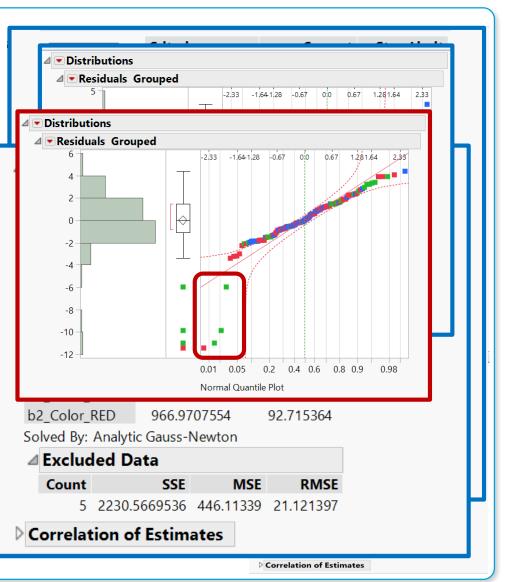

- Non-linear ANOVA
  - Multiple simultaneous comparisons

$$Y_i = A_i + B_i * \left[ 1 - e^{\left(\frac{-t}{C_i}\right)} \right]$$



	Rew parameter X	F temp X
<ul> <li>Fit all three "Colors" at once</li> </ul>		
<ul> <li>Easier to make comparisons</li> </ul>	Name: b0	Select Column to define categories.
·	Value:	L OEM
<ul> <li>Create new column</li> </ul>	Expand into categories, selecting column	
<ul> <li>I called it "Grouped"</li> </ul>	OK Cancel	Test Ox
<ul> <li>Define a Formula</li> </ul>		Growth
<ul> <li>Define Parameters -&gt;</li> </ul>	Rew parameter X	OK Cancel
	Name: b0	temp X
$-b0 = 0 \rightarrow$	Value:	
<ul> <li>Expand into categories, selecting column →</li> </ul>		Select Column to define categories.
	Expand into categories, selecting column	<b>L</b> OEM
• OK <b>→</b>	OK Cancel	∎. Unit ■. Color ✓ Oil
<ul> <li>Want to select "Color" as category</li> </ul>	Rew parameter X	Test Ox
		Growth Grouped
• Color →	Name: b0	OK Cancel
• OK ->	Value: 0	
• Do the came for the other parameters	✓ Expand into categories, selecting column	Parameters v
<ul> <li>Do the same for the other parameters</li> </ul>	OK Cancel	b0_Color = 0
<ul> <li>Define the equation, as before -&gt;</li> </ul>		
	1	



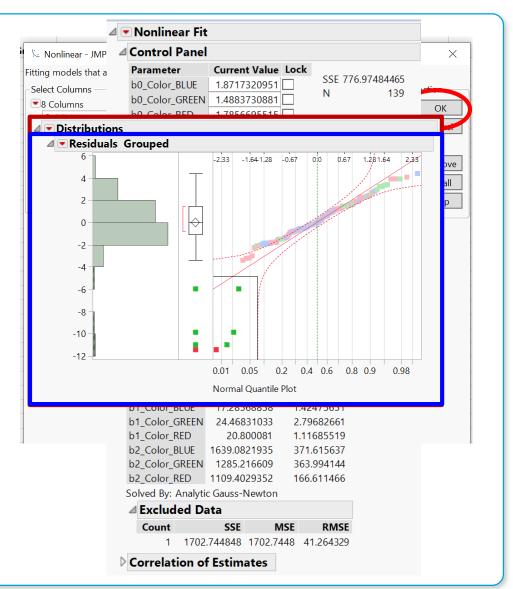



Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020

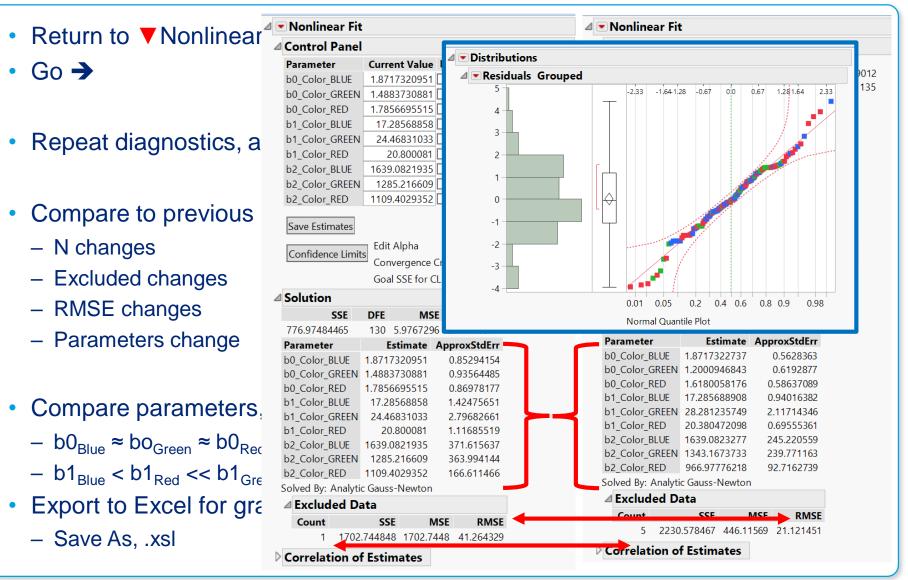
© INFINEUM INTERNATIONAL LIMITED 20134 All rights reserved. Proprietary to Infineum.



- Analyze ->
- Specialized Modeling ->
- Nonlinear ->
- $Ox \rightarrow Y$ , Response
- Grouped  $\rightarrow$  X, Predictor Formula
  - "Grouped" is the new equation
- OK **→**
- Go 🗲
- Output similar to before, but all nine parameters fit at once
- Check diagnostics, as before
- Compare parameters, etc.
  - $-b0_{Blue} \approx b0_{Green} \approx b0_{Red} > 0$
  - b1_{Blue} < b1_{Red} << b1_{Green}



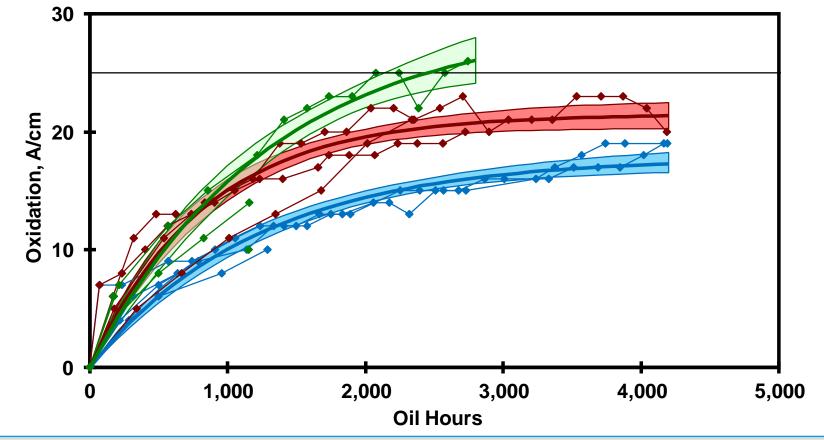

41


[©] INFINEUM INTERNATIONAL LIMITED 20134 All rights reserved. Proprietary to Infineum.



- Analyze →
- Specialized Modeling ->
- Nonlinear 🗲
- $Ox \rightarrow Y$ , Response
- Grouped  $\rightarrow$  X, Predictor Formula
  - "Grouped" is the new equation
- OK **→**
- Go 🗲
- Output similar to before, but all nine parameters fit at once
- Check diagnostics, as before
  - Four outliers
- Using cursor, select the four points
- Go to Dataset
  - Rows, Hide and Exclude








#### Engine oil oxidation – PowerPoint version



- BLUE is better than RED is better than GREEN
  - **GREEN** crosses the engine manufacturer's limit around 2500 hours
  - BLUE and RED last over 4000 hours



^{© 2020} INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.

**Conclusions** and Future ł

200

#### **Conclusions and future directions**



- Conclusions
  - JMP non-linear platform is a powerful tool for lubricants research
  - Lubricant experimental results are often inherently non-linear
  - There are differences among engine oils
- Future directions
  - Get better at JMP!
  - "Non-linear ANOVA"
    - Combining categorical and non-linear numerical variables
  - Nested Non-Linear models
  - Multivariate regression
  - Functional regression



Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited. The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy

© 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved

"INFINEUM, PARATAC, SYNACTO, VISTONE and the interlocking ripple device are Trade Marks of Infineum International Limited

Infineum Confidential Information - Given in Confidence to Discovery Summit Americas 2020

Performance you can rely on

© 2020 INFINEUM INTERNATIONAL LIMITED. All rights reserved. Proprietary to Infineum.