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Agenda
Chemistry, Manufacturing and Control (CMC) Journey

e Opportunities and challenges in developing a next generation
medications

 Why DoE, Predictive Modeling, and Characterization is
critical?

Characterizing Bio-processes With Augmented Full Quadratic
Models

Fractionally Weighted Bootstrapping + Autovalidation:
Case Study pDNA Case Study
 Putting it all together



CMC Pathway — General

Clinical Development Phases

Product and Process Development Stages

Process Process Process
Characterization Qualification Monitoring

Process Development

QbD Risk Assessments and Milestones

OO—O— OO O

1. Target Product Profile Identified 4 Initial Process Risk Assessment 7. Control Strategy Risk Assessment
2. Quality Target Product Profile Defined 5. Process Risk Assessment 2 8. Control Strategy Defined
3. Critical Quality Attribute Risk Assessment 6. Design Space Defined 9. Ongoing Improvement and Support
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Example Cell and Gene Therapies
Very Diverse!

Cell Therapies Gene Therapies
Cellular immunotherapies Plasmid DNA
Cancer vaccines Viral Vectors
Stem cells & stem cell-derived Bacterial vectors
Therapeutics for multiple Human
indications Regenerative Medicine

Regenerative Medicine
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PDNA and Applications in Human Health

» Potential applications for pDNA

Preventive vaccines for viral, bacterial or parasitic diseases;

Immunizing agents for the preparation of hyper immune
globulin products;

Therapeutic vaccines for infectious diseases;
Cancer vaccines;

Gene replacement application wherein the desired gene product
IS expressed from the plasmid after administration to the
patient.

* As gene therapy and DNA vaccines advance towards regulatory
approval, it is critical to produce pDNA in a compliant manner at
the appropriate quality and volume levels. Processes need to be
well characterized.



PDNA and what is next?

o Cell Therapies, Gene therapies and DNA vaccines are advancing
along the CMC pathway towards commercialization

 Critical to produce pDNA in a compliant manner at the appropriate
quality and volume levels.

» Processes need to be well characterized. &,

-

o Small Sample sizes.

e Patients health i1s often critical — last resort. ‘L % J

o Manufacturing facilities need to be available
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Path to Commercialization is Integrated
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Augmenting the Full Quadratic Model

Process Development (PD) involves three important activities
(especially true for Quality by Design or QBD):

= Creating (Developing) the Process
= Characterization of the entire operating region;
= Optimization of the process KPIs including quality attributes.

PD requires the development of valid models which accurately
predict future process performance.

Box and Wilson (1951) pioneered the full quadratic model (FQM)
as a basis for predictive process models.

FQM for 2 factors: Y = S, + 5 X, + 5, X, + b, X, X, "'1311)(12 ""1322)(22

FQM approximates the response surface well in the vicinity of an
optimum, it is often a poor approximation to a response surface
over the process region, so FQM is not suitable for characterization



Augmenting the Full Quadratic Model

Cornell and Montgomery (1996) discuss augmenting the FQM with
additional higher order interaction terms such that the model better
approximates the entire process region.

= An augmented FQM using their approach adds terms such as
Y =FQM "‘/Blllezxz +ﬂ122X1X22 +181122X12X22

= A drawback to the approach is that the number of additional terms
becomes very large for more than three factors; even CCDs
become supersaturated.

= For example with 5 experimental factors there are 20 Linear X
Quadratic interactions to be added to the full FQM.

= Such models however are far more likely to be generalizable in
complex biological systems; e.g., bioreactors and fermenters.

= The FWB+AV method combined with Model Averaging can
estimate these augmented FQM models..



Augmenting the Full Quadratic Model

The FQM for K factors has the following number of terms

(K+1)(K+2)
FOM — 2

N

The number of additional linear by quadratic interaction terms is
N = K(K-1)

The number of additional quadratic by quadratic interaction terms is

K(K-1
Ngrq = (2 )

The total number of terms in the complete augmented FQM is then

N, =2K*+1

Total

For K = 5 the total number of terms including the intercept = 51.



FWB + Autovalidation

Requirement: A training (to fit the model) and a validation (to test the
model) data set is important to build accurate predictive models

Challenge: DoE typically does not have enough trials to form a
validation set for predictive modeling

Solution: Gotwalt and Ramsey (2017) proposed a method of
validation referred to as autovalidation

= Training set can be used for both purposes.

= How?: The original data is the test set and a copy of the original
data is a validation set,

» Random gamma weights are applied to both datasets such
that the training and validation copy are anti-correlated.

» Autovalidation is then combined with FWB to generate
thousands of iterations of modeling.



FWB + Autovalidation

Fractionally weighted bootstrapping (FWB) randomly assigns new
gamma weights to the data over thousands of iterations; all of the
data is used on every iteration.

= This has the effect of generating thousands of bootstrap samples of
the original training and autovalidation sets.

A predictive model is fit to the data on each iteration and the
coefficient estimates and validation error tracked.

= The end result is a table with possibly thousands of coefficient
estimates for the model of interest; any term not entering a model
on a single iteration is assigned a 0 coefficient value.

A null factor is added to each model as a calibration check.

The FWB table of results provides the user with a set of coefficient
estimates and a table containing the proportion of times each
possible term entered a model over the FWB runs.



Ensemble Modeling for Prediction

Traditional statistical modeling focuses on a single best model, while
machine learning often employs ensembles of models to make
predictions or classifications; e.g., Bootstrap Forest or XGBoost.

One ensemble approach is Model Averaging where the coefficients in
the model are averages of coefficient estimates derived from fitting
large numbers of models; e.g., Best Subsets Regression.

The averaging is a form of coefficient regularization that also
mitigates any over fitting impacts on prediction.

FWB provides an excellent source of individual coefficient estimates
for model averaging, where the model averages can be based on
100s or even 1,000s of estimates from the FWB runs.

Model averaging allows the estimation of a supersaturated model for
a design, which is not possible with traditional statistical modeling;
the number of parameters p > N the number of runs.



Case Study: Fitting Models to Experimental Data
e Plasmid DNA Case Study:

* Demonstrates the technique of autovalidation, FWB, and Model
Averaging.

* lllustrates how to address the inherently nonlinear and interactive
behavior of bioprocessing

14



Optimize a pDNA Fermentation

* Develop a reliable Fermentation process for pDNA production
e Current Fermentation strategies do not produce enough product

* No current data exists that is useful for optimization and for characterization of
the fermentation process

* Need high quality data to produce predictive models for optimization

Challenges

* Conduct an efficient Definitive Screening Design experiment (15 runs)
* Use DoE data to build a predictive model for optimization and characterization.

e Predictive model includes interactions and polynomial terms and closely
approximates the fermenter performance.

© 2020 PJR_TDR 15



Case Study: Characterizing pDNA Manufacturing

Flow diagram of the pDNA production process. This study focuses on
the Fermentation step using E-Coli.
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Case Study: Characterizing pDNA Manufacturing

Using a novel method referred to as fractionally weighted
bootstrapping with autovalidation (FWB+AV), a predictive response
surface model was fit to the DoE data.

Experimental design and novel analysis was performed using the
JMP Pro version 15 statistical software.

Model was subsequently used to characterize and optimization.

JMP Pro Prediction Profiler tool performs the optimization based
upon the defined predictive model.

Profiler may also be used to run large simulation experiments over
the entire process region in order to fully characterize performance.

17



Case Study: Characterizing pDNA Manufacturing

= 5 factor, 15 run Definitive Screening Design (DSD) to characterize and
optimize a fermentation process to manufacture pDNA.

= 31 run Central Composite Design (CCD) was done separately for comparison
to the DSD results.

» The CCD acts as a true validation set for comparison to the auto-
validation method using the DSD as the training data.

= Experimental Response - pDNA titer in mg/L.

d 180Cos™ Induction Induction Feed rate, pDNA,
— pH %DO Temperature C 0D600 mL/hr ma/L

1 7.0 40 425 20 1.9 156.20

2 7.0 20 395 40 35 487.15

3 7 30 395 20 35 398.00

4 6.8 30 425 40 1.9 285.60

5 T2 20 41.0 40 1.9 229.00

6 6.8 40 41.0 20 35 377.00

7 7.2 20 425 30 35 290.00

8 6.8 40 395 30 1.9  123.00

9 7.2 40 425 40 27 299.00

10 6.8 20 395 20 27 428.00

11 7.0 30 41.0 30 27 327.80

12 7.0 30 41.0 30 27 33974

13 7.0 30 41.0 30 27| 387.35

14 7.0 30 41.0 30 27| 393.97

© 2020 PIR_TDR 15 7.0 30 41.0 30 27 348.08 18
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Case Study: Characterizing pDNA Manufacturing

Interaction plots created in Graph Builder suggests the need for
augmented FQM terms.

Notice the curvilinear effect of DO differs across Feed rate (plot

on left) similarly the curvilinear effect of %DO differs over
Induction OD600 (plot to the right).

Mean(pDNA Titer mg/L) & pDNA Titer mg/L vs. %DO
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Analyzing the pDNA Case Study with JMP

. Add all 20 linear*quadratic interaction terms to the FQM - 40
candidate predictors total; there would be 51 terms if we included
quadratic by quadratic interaction terms.

Use the Best Subset for model selection — Generalized
Regression; Advanced option set largest model size to 5 (depends
upon host computer resources).

Use the FWB+AV procedure for N = 2500 repetitions (JMP Pro
Simulate function);

. Track the coefficient estimates on each trial and set the value to

0 if that predictor is not selected in a model;
. Track the RASE (\Validation) on each trial and create weights;

. Use model averaging to create a prediction equation where a
weighted average is used with Weights = 1\RASE?. The weights
are normalized (0, 1) and worse 5% of models excluded.
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Case Study: Characterizing pDNA Manufacturing

« Screenshot of the full 41 term model fit using
FWB+AV and model averaging.

 Remember, the original DSD had N =15
trials.

e Model was fit using a JMP Pro Addin that
performs FWB+AV, Model Averaging.

ooooooooooooooooooooooooooo

* Uses RASE validation weights, and saves
the formula to the data table.

e Contact Predictum: Wayne@predictum.com if
you are interested in the Addin.

ooooooooooooooooooooooooooooooooooooooooooooooooo
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Case Study: Characterizing pDNA Manufacturing

Model Averaging used with FWB to fit the full 41 term model on
the DSD data.

The average model was then applied to the 31 run CCD completed
separately (New lots of Raw Materials including E.coli strain)

Actual by Predicted plots on the DSD training & CCD validation data
are shown below

Bivariate Fit of pDNA Titer mg/L By Pred pDNA MA Bstsbst Addin Experiment=CCD
Pred pDNA MA Bstsbst Addin Experiment=DSD 600

RASE =25.0

400

soo-|  RASE = 65.0

L
0
2

300

Lid
0
2

pOMA Titer mg/L
pOMA Triter mg/L

200

100
100
100 200 300 400

100 150 200 250 300 350 400 4530 50
Pred pDMA MA Bstsbst Addin

Pred pDMNA MA Bstsbst Addin



Case Study: Characterizing pDNA Manufacturing

For comparison purposes, the model averaging/FWB process was
repeated using the traditional 21 term full quadratic model.

Screenshot of the Model Comparison report shows on both the
Training DSD data and Validation CCD data the augmented 41
term model had a lower RASE than the traditional full quadratic
model.

Model Comparison
Measures of Fit for pDNA Titer mg/L

Experiment Predictor Creator .2.4.6.8 RSquare RASE AAE Freg
cCcD Pred pDNA MA_ FOM 0.5892 £9.958 59.508 31
CCp Pred pDMNA MA Bstebst Addin 0.6420 65,315 50.795 31
DsD Pred pDNA MA_ FOM 0.7353 45.665 30.814 15

05D Pred pDNA MA Bstsbst Addin 09129 25.049 19.586 15

24
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Case Study: Characterizing pDNA Manufacturing

Actual by Predicted plots on the validation CCD data for the FQM
and augmented FQM models are shown.

The augmented FQM with p = 40 predictors has lower prediction

error (RASE) on the CCD validation data than the p = 21 term
FQM.

Fit Group Experiment=CCD

Bivariate Fit of pDNA Titer mg/L Bivariate Fit of pDNA Titer mg/L By
By Pred pDNA MA_ FQM Experiment=CCD Pred pDNA MA Bstsbst Addin Experiment=CCD
600 600
FQM . Augmented FQM

RASE =70.0

RASE =65.0

300 300

pDOMA Titer mg/L
pOMA Titer mg/L

200 200

100 . 100

100 130 200 250 300 330 400 450 500 100 150 200 250 300 330 400 450 500
Pred pDMNA MA_ FOM Pred pDMNA MA Bstsbst Addin
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Case Study: Characterizing pDNA Manufacturing

Below is the Profiler display on the CCD (\alidation) data with the
optimized setting for titer and Variable Importance Report.

Profiler
Prediction Profiler
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3.2743776 Induction Inducticn 0.92035336 20
Feed rate Temperature C QDe00 pH FAR ] Desirability
Remembered Settings
Induction Induction Pred pDNA
Setting %D0 Feed rate 0D600 Temperature C pH PWE Bst Subst |Desirability
() _Optimal_ 20 3.2743776 20 39.5 6.9203336 429.9971 0.926528

Variable Importance: Independent Resampled Inputs

Summary Report

Column Main Effect TotalEffect 2 4 &6 8
= Feed rate 0.772 0.845

Induction Temperature C 0.017 0.149 :|

Induction ODE00 0.017 0.124 1 ¢ '

pH 0.032 0.06[]

%DO 0.001 0.002
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Case Study: Characterizing pDNA Manufacturing

» 3D view of the Titer response surface as a function of Induction
Temperature and %DO is shown.
 Illlustrates Highly nonlinear relationship between Titer and the

experimental factors.

Surface Plot

%00 Induction Temperature C
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=
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ol Ty
300 .
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* 400
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Assessing: Manufacturing Risk due to Variation in
Process Factors

= This can be accomplished using the fitted model and the Simulator

In the JMP Prediction Profiler.
= Assuming variation in «-eone
the factors, one can

perform a study of
process variation.
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Case Study: Characterizing pDNA Manufacturing

The simulation experiment provides a mean and standard deviation of
the response at each location in the space filling design.

These two responses can be modeled with Gaussian Process models
and then an optimization performed to maximize yield and
minimize variation in yield. Below are the optimization results.

Profiler
Prediction Profiler
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L2 ac : Pl
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i =t =t = (=] L=]

39 4.175
7.013386 40 Induction Inducti 3.5
pH %D0 Temperature C ODe0n Feed rate Desirability
Remembered Settings
Induction Induction Pred pDNA MA_BST Mean Pred pDNA MA_BST 5D
Setting pH %D0O Temperature C 0OD600 Feed rate Prediction Formula Prediction Formula |Desirability
() _Optimal_ [7.0478721 40 385 25.640012 3.5 374.64338 12.881967 0.849351
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Executive Summary
Journey from Discovery to Commercial Pharma/Biotech product is complex

e System thinking approach is critical
« Out of the box and holistic approaches are needed to effectively deliver
Process Design and Development work is inherently about Prediction.

Fractionally Weighted Bootstrapping combined with autovalidation allows
one to build predictive models from designed experiments.

Biologic systems are highly interactive and nonlinear, the full quadratic
model is not sufficient to fully characterize such systems.

* The interaction models of Cornell and Montgomery are more capable of
characterizing biological systems.

e The linear by quadratic interaction terms are especially important.

Model averaging combined with FWB provides a way to fit these often large
Interaction models.

PDNA case study demonstrates the ability of FWB combined with model
averaging, and the interaction model to characterize the entire design space
as Quality by Design requires.
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JMP Pro Add-in for FWB+AV

Michael D. Anderson of JMP has developed an excellent Add-In to
facilitate fractionally weighted bootstrapping with autovalidation.

Highly recommend you download and install the Add-In if you wish to
perform the analysis in JMP Pro. See the link below.

https://community.jmp.com/t5/JMP-Add-Ins/Add-in-To-Support-
Auto-Validation-Workflow/ta-p/189991

© 2020 PJR_TDR 32
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