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1. Introduction

Developing glass formulations for high-level nuclear waste conditioning has been one of the
most challenging issues for more than 40 years in the nuclear industry. Long-term storage of
radioactive waste requires the stabilization of the waste into a form which will neither react
nor degrade for extended periods of time. One way to do this is through vitrification which is
a particularly attractive immobilization way. Indeed, some borosilicate glasses have the
capability to incorporate a significant amount of nuclear waste while keeping a high chemical
durability.

Glass formulations for the vitrification of high-level nuclear waste have been under
investigation at the French Atomic Energy Commission (CEA) for many years. Beside the
complexity of its formulation, nuclear glass also needs to meet requirements which are
specific to the industrial vitrification process. For example, viscosity, density, electrical and
thermal conductivities, and of course, long term durability of the glass, are properties that
have to be perfectly understood and controlled.

As a consequence, we continuously have to deal with huge amounts of data, including
formulation data (glass compositions), physical and chemical property data, and data related
to the vitrification process. JMP software has been recently selected to be implemented in our
R&D teams who develop nuclear glass formulations. As it is described in this paper, JMP
provides very useful and easy-to-use tools, which enable, among others, the comparison of
glass composition domains having high degree of complexity, or the development of
property-to-composition predictive models.

2. Glass formulation

As traditional glassy materials, nuclear glasses exhibit an amorphous structure, where the
radioactive elements coming from the waste are part of the glass network, and linked to the
glass-forming elements with true chemical bonds (Figure 1 and Figure 2). The high degree of
complexity of nuclear glasses is especially related to the number of chemical elements that
have to be incorporated into the glass structure. Typically, the final glass formulation has to
contain all the fission products coming from the reactions occurring in the nuclear reactor
(Figure 4). At the end, more than thirty elements are present into the glass (Figure 5). As a
result, the comparison of glass compositions is very complex and requires specific statistical
and geometrical tools. The JMP graphical platform provides very useful and easy-to-use tools,
such as the Scatterplot Matrix, Ternary Plot or Mixture Profiler platforms, which enable the
visualization and the analysis of large amounts of formulation data. For example, the
Scatterplot Matrix platform is very convenient to help us analyzing the final quality of the
glass, by showing which chemical elements play a key role in the crystallization mechanisms
(Figure 6). For this purpose, the Partition tool in the JIMP Modeling platform can also be used
very efficiently.



But according to us, one of the main interests of using JMP relies on its powerful statistical
analysis platform, which enables the comparison of glass composition domains having high
degree of complexity. For this purpose, PCA (Principal Component Analysis), Cluster and
Dendrogram platforms are very relevant. When you need to compare composition domains
for materials that contain three components only, it is possible to use classical Ternary Plots
(Figure 7 and Figure 8). But in our case where glasses have p components with p higher than
10, and where all these components have individual and relational constraints, the domains
you would need to compare have the shape of convex polyhedra in a p-dimensional space.
Therefore the data visualization becomes more complicated.

PCA is a mathematical method used to reduce the number of variables, by creating a smaller
set of independent (uncorrelated) variables, which will account for most of the variance in the
observed variables. For our purpose where we need to compare glass composition domains,
we use the PCA platform of JMP as a data projection tool in a 2-dimensional space. Then it
becomes possible to visualize whether a composition domain is close, or far, from another
domain, or whether two domains are secant, for instance (Figure 9).

The hierarchical clustering platform is also an efficient tool enabling a relevant analysis of a
high number of glass compositions. Generally speaking, cluster analysis includes a broad
suite of techniques designed to find groups of similar items within a data set. Partitioning
methods divide the data set into a number of groups predesignated by the user. Hierarchical
cluster methods produce a hierarchy of clusters from small clusters of very similar items to
large clusters that include more dissimilar items. Hierarchical methods usually produce a
graphical output known as a dendrogram or tree that shows this hierarchical clustering
structure. The dendrogram lists all of the samples and indicates at what level of similarity any
two clusters were joined. The x-axis is some measure of the similarity or distance at which
clusters join. For our application, the distance between the glass compositions is calculated
with traditional mathematical methods, like the Euclidian distance for example.

JMP has the capability to propose several methods for hierarchical clustering, like the
Average Linkage (Figure 10), who tends to produce clusters with the same variance, the
Centroid Method (based on the Euclidian distance calculation), who has the advantage of
being more robust to outliers than most other hierarchical methods, or the Ward’s method,
who tends to produce clusters with roughly the same number of observations. Therefore by
using the JMP clustering platforms, we are able to make a relevant use of the thousands of
nuclear glasses we have been elaborating for many years.

3. Glass properties and database

The methodology we use for optimizing high-level waste (HLW) glass formulation involves
collecting and generating a property-composition database, and relating these properties to
glass composition. This methodology has to be very robust for increasing the efficiency and
decreasing the cost of the final vitrification industrial process. Therefore our studies are
focused on building property-to-composition predictive models. The general method is to use
the experimental data points we have generated from a set of glass formulations inside a wide
composition domain, in order to predict the behaviour of the glass at any point of the
composition domain. This can be efficiently carried out by using Fit Model and Stepwise
platforms. For this application, the JMP Mixture Response Surface platform is convenient and
Stepwise method is easy-to-use. The Predictive Model report (Figure 11) gives every useful
piece of information: actual by predicted plot, fit summary, parameter estimates with standard
errors, residual plots, prediction profiler and PRESS (Predicted Error Sum of Square) value.
PRESS values are very important data because they are the criteria we use to quantify the
quality of the prediction given by our models. Unfortunately, JMP 9 cannot use the PRESS



value as a criterion for Stepwise regression. It would be for us a significant improvement for
the next versions of JMP.

The predictive model report also enables to save many statistical data into columns in the
tables, such as the Hats, which are important values for identifying the observations which
have a large effect on the outcome of the fitting model (Figure 12). Therefore, even if we do
not use JMP to build our Mixture Design of Experiments, we use it for the whole statistical
analysis of the DOEs. For this purpose, the JMP capability of importing external data tables
makes a real difference against using most of the traditional DOE softwares with which you
need to build up the full DOE before starting the statistical analysis.

The PCA platform as described before can be used with glass composition variables and with
property variables as well. Then it becomes possible to make a 2-dimensional projection of all
the composition and property variables for identifying the main correlations (Figure 13). This
is of major importance in order to understand the physical and chemical mechanisms
occurring into the glass structure.

Finally, a property-composition database is being generated by our glass formulation teams.
The database will contain data related to the vitrification process conditions at the laboratory
scale, glass compositions and all the physical and chemical properties. Because JMP has the
capability to connect to external database, we will use it for the statistical analysis of data
gathered in previous research programs over the past decades, in order to build more robust
predictive models.

4. Conclusion

JMP software has been recently selected to be implemented in our R&D teams who develop
nuclear glass formulations. JMP provides relevant tools, which enable, among others, the
comparison of glass composition domains having high degree of complexity, or the
development of property-to-composition predictive models. At a laboratory scale, JMP helps
us to understand the physical and chemical mechanisms occurring into the glass structure. At
an industrial scale, the methodology we use for optimizing HLW glass formulation involves
collecting and generating a property-composition database, and relating these properties to
glass composition. JMP is a precious tool to make this methodology very robust, increasing
the efficiency and decreasing at the end the cost of the final vitrification industrial process.



Figure 1: Nuclear glass sample (inactive sample) Figure 2: Amorphous structure of nuclear glass
network. Fission product elements (PF) are part of
the network.
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Figure 3: Vitrification process for High-Level Waste (HLW) conditioning

Reference: S. Naline et al., “Vitrification 2010-A Challenging French Vitrification Project to Retrofit a Cold
Crucible Inductive Melter at the La Hague Plant” — 10382 — presented at the Waste Management conference in
Phoenix, Arizona, 7-11 March 2010
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Figure 4: Fission products obtained from thermal neutron fission of U235

Reference: http://en.wikipedia.org/wiki/Fission_product_yield



Description of the three composition domains: variation ranges (wt%) and relational constraints

RTT7 AVM VRZL
S0y 42405168 38.5-46 40.8-55.6
B.0y 12.40-16.50 16-19.5 1.0
Ma, 0 8. 10-11.00 5188
AlO; 3.60-6.60 9-12.5 9-13.7
Ca0 4.0 0.2 19.7-24.6
Ndi04 0.5-26 0.1-0.9 1-6.5
i)y 2.0-49 0.1-1.0 2-12
Ti( 6.2-155
MgO 2575
Fes0; + NiD + Cra0y 0.4-56 2.8
F 0-1.8
P05 0.5 0-1.7
FP + Act + MoO; + Gd05 + Ag.0 3.53-17.95 0-10.2
Fines 0.01-6.85
Ind 25
LiO 20 0.4
S04 0.1
Cl 0.1
CdO 0.5
Relational constraints 3.01 < Si0y/B.0; < 347 Frit constant T Zr(; < §
7.0 < FP + Act + Fines < 18.0 Mg‘(') + ALy < 18.5 Zr0.-Ti, < 1
FP + Act = Fines ALD; < 3 [(NayO +
Liz0)-0.2785i0;]
510 + B20; + ALLD ;= 60.0 FP + Act + MoO; +

Gidy 05+ Agi0 = 0.5MgO
Fe04/NiQ = 7.09
Fe,0,/Cr0, = 5.73

Oxide breakdown (wrti) compared with reference glass

Wit RTT7 AVM
FP + Act Fines FP + Act+---
Sr0 0.34 0.21
Zrly 1.70 0.47 0.96
MnO, 0.30 0.08 0.31
Cs50 110 0.71
BaCr 0.61 0.34
Y0, 020 012
La,05 092 0.56
Ceally 095 0.60
Nd.0, 1.63 0.93
I'r:(".l; 043 0.28
SnOy, 0.02 0.02
Shy0 0.00 0.01
Tel, 023 014
Th, 0.31 0.11
U0, 0.05 001 0.70
MoO; 1.36 0.39 0.75
Az 0.03 0.10
Ru, 0.63 0.36
Rh 0.12 0.05
Pd 0.33 0.10
CdO 0.03
Gdy04 0.60

‘Fines' include platinum-group metals and metallic particles, FP refers to fission products.

Figure 5: Examples of nuclear glass composition domains
Reference: P. Frugier et al., Journal of Nuclear Materials, 346 (2005) 194-207



Scatterplot Matrix
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Figure 6: The Scatterplot Matrix platform enables a relevant visualization of glass formulation data.

The influence of the composition on the final quality of the glass can be analyzed in order the get a better
understanding of the physical and chemical mechanisms occurring into the glass structure. The Partition platform
can be used as well.
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Figure 7: Individual and relational constraints in a
three-component formulation, using ternary plot.
Constraints give the formulation domain boundaries.
Three-component formulation domains have the shape
of two-dimensional convex polyhedra.

Figure 8: Comparison of composition domains in
a two-dimensional space.

Ternary plots cannot be used anymore in the case of
p-component formulation domains, with p higher
than 3.
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Figure 9: Principal Component Analysis (PCA) using glass formulation data coming from 6 composition
domains.

The analysis is done with composition data as variables, no property data are included. The score plot shows a
projection of the composition data using the 3 first principal components.
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Figure 10: Hierarchical Clustering gives a dendrogram showing distance between glass compositions.
5 domains of glass compositions are analyzed. The distance on the horizontal x-axis gives an idea about the Euclidian
distance between the compositions.



Actual by Predicted Plot
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Figure 11: Statistical report from the Fit Model platform.
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Figure 12: Hat values h; are important data for identifying the observations which have a large effect on
the outcome of the fitting model.

average(h;;) = p/n (p=number of model parameters ; n = number of experiments) = 0.7 for this model

A run with h;; greater than 2 times the average is generally regarded as having high leverage, i.e., compared to
the other runs, it is an outlier in the independent variable space.

Composition of glass sample #25 is at the center of the domain, explaining why the leverage of this point is
much lower than other samples of the DOE.
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Figure 13: Principal Component Analysis (PCA) using both composition and property data as variables.



