

JMP Applications in Photovoltaic Reliability

JMP Discovery Summit 2011 Denver, CO

Dirk Jordan, NREL Chris Gottwalt, JMP

September-15-2011

Outline

- ➤ Photovoltaics history and application
- ➤ Importance of degradation (power decline over time)
- ➤ Literature degradation rates, analysis and trends.
- Impact on warranty risk.
- ➤ Time series modeling can help reduce time & uncertainty
- ➤ Impact of climate on PV performance
- ➤ Bubble plot as diagnostics tool
- ➤ Non-linear Modeling

Modern Photovoltaics History

Bell Labs - 1954

A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power

> D. M. CHAPIN, C. S. FULLER, AND G. L. PEARSON Bell Telephone Laboratories, Inc., Murray Hill, New Jersey (Received January 11, 1954)

1st major application: Satellites

Vanguard I 1958

- Solar efficiency not as high as today
- > Satellites required modest amount of power
- ➤ Lightweight → important for launch
- Not affected by cold space temperatures

1st terrestrial application – stand-alone

Ogami Lighthouse, Japan – 1st solar powered lighthouse 1963

Photo credit: Sharp

John Perlin, From space to Earth, 1999.

1st major solar applications

Modern Photovoltaics History

Stand-alone application in remote locations

Cathodic Well Protection

Nolan D., The Oil and Gas Journal, 1978.

Signal & foghorn on oil platform

Railroad Signals

Telecommunications

Terrestrial application after 1970s oil crisis

Today

Space

Stand-alone

Water pump

Transportation

Lighting

Building Integrated PV

Utility

Residential

Consumer Products

Cost reduction in PV

Upfront costs: 1. Semiconductor material

- 2. Area-related costs (glass, installation, real estate, wiring)
- 3. Power-related costs (inverter)

Cost reduction approaches leads to different technologies

Growth of PV Industry

Sources:International: PV News, April 2009

USA: http://www.eia.doe.gov/emeu/international/contents.html

Reliability required to sustain exponential growth of industry

Reliability & Durability

- ➤ Reliability: Ability to perform designed task without failure → discrete, disruptive events
- ▶ Durability: Ability to perform task without significant deterioration → continuous, gradual decline

Both important for cost of electricity

Photovoltaic Financial Considerations

Levelized Cost of Energy (LCOE)

Efficiency & Degradation important to cost

Motivation

Uncertainty is very important too.

2 examples from NREL:

Different observation lengths, seasonality etc. → Leads to different uncertainties

$$R_d$$
 (Module 1) = (0.8 \pm 0.2) %/year R_d (Module 2) = (0.8 \pm 1.0) %/year

Same R_d but very different uncertainty

R_d Uncertainty Impact on Warranty

Manufacturer Warranty often twofold: 90% after 10 years, 80% after 25 years

$$Energy(Year_N) = \sum_{n=1}^{N} \frac{Energy(Year_1) \cdot (1 - R_d)^n}{(1 + r)^n}$$

Probability to default warranty:

1.0 %/year uncertainty = 46%

0.2 %/year uncertainty = 4%

Probability to default warranty:

1.0 %/year uncertainty = 57%

0.2 %/year uncertainty = 24%

Higher R_d uncertainty significantly increases warranty risk

Degradation Rates – Literature Survey

Number of Degradation rates (R_d) from literature: 1920

Technology, age, packaging, geographic location

ca. 80% below 1%/year

ca. 100 publications

Circle size = number of data points from a given location.

Most modules degrade by ca. 0.5 %/year

Literature Degradation Rates

Variability chart of literature results

Partitioned by date of installation: Pre- & Post-2000 Red diamonds: mean & 95% confidence interval

Crystalline Si technologies appear to be the same

Thin-film technologies appear to decrease in R_d in last 10 years

Warranty Risk

Manufacturer Warranty

Source: Photon International, Feb 2010.

Most common: 80% after 25 years

Monte Carlo Simulation

Procedure: Take random degradation rate from literature distribution Calculate power output after 25 years

Default risk: below dashed green line
Decreased from 26% to 6% in last decade

Warranty default risk substantially decreased in last decade

PV for Utility Scale Application (PVUSA)

The plant was originally constructed by the Atlantic Richfield oil company (ARCO) in 1983.

Provided electricity, data & experience in the 1980s and 1990s. Plant was dismantled in the late 1990s.

PVUSA Rating Methodology

Improved PVUSA models include Sandia & BEW model**

1. Step: Translation to reference conditions (use a multiple regression approach)

$$P = H \cdot (a_1 + a_2 \cdot H + a_3 \cdot T_{ambient} + a_4 \cdot ws)$$

H= Plane-of-array irradiance $T_{ambient}$ =ambient temperature ws= wind speed a_1 , a_2 , a_3 , a_4 = regression coefficients

Reference conditions:
PVUSA Test Conditions (PTC): E=1000
W/m², T_{ambient}=20°C, wind speed=1 m/s

2. Step: Time series to determine degradation rate

Need basic weather station to collect $T_{ambient}$ and wind speed on top of irradiance Seasonality leads to required observation times of 3-5 years* \rightarrow long time in today's market

Long time required for accurate R_d

*Osterwald CR et al., Proc. of the 4th IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 2006.

**Kimber A. et al., Improved Test Method to Verify the Power Rating of a PV Project. Proceedings of the 34th PVSC, Philadelphia, 2009.

Signal = Trend + Seasonality + Irregular

Original Data

Signal = Trend + Seasonality + Irregular

Original Data

Trend
12-month
centeredMoving
Average

Signal = Trend + Seasonality + Irregular

Original Data

Trend
12-month
centeredMoving
Average

Seasonality

Average of each month for all years of observation

Signal = Trend + Seasonality + Irregular

Original Data

1100 1050 1000 950 900 850 800 0 40 80 120 Time (Months)

Trend
12-month
centeredMoving
Average

Seasonality

Average of each month for all years of observation

Determine R_d from Trend graph for higher accuracy

40

30

20

10

-10

-20

-30

-40

DC Power (W)

S.G. Makridakis et al., "Forecasting", New York, John Wiley & Sons 1997.

Time (Months)

120

ARIMA

AutoRegressive Integrated Moving Average (ARIMA)

Model trend & seasonality component w/ linear combination of weighted differences & averages

$$P_{t} - P_{t-12} - \phi \cdot P_{t-1} + \phi \cdot P_{t-13} = \delta + \varepsilon_{t} - \theta \cdot \varepsilon_{t-12}$$

$$P = Power$$

$$c, \delta, \phi, \theta = constant$$

$$\varepsilon = noise$$

- Built several Models → minimize noise component
- 2. Chose parsimonious model w/ aid of several selection criteria

Many statistical software packages include time series analysis (JMP, Minitab, R etc) Developed script to make model selection less sensitive to outliers.

Use ARIMA to model data, then decompose

Box, GPP and Jenkins, G: Time series analysis: Forecasting and Control, San Francisco: Holden-Day, 1970.

Outliers

Compare sensitivity of 3 methods to outliers

Procedure:

- 1. Dataset from NREL
- 2. Introduce outliers sequentially
- 3. Calculate R_d & study effect on all 3 methodologies

ARIMA most robust against outliers

Data Shifts

Compare sensitivity of 3 methods to data shifts

Example: inverter change

Procedure:

- 1. Dataset from NREL
- 2. Introduce a data shift deliberately
- 3. Multiply shifted section with a scaling factor

4. Calculate R_d & study effect on all 3 methodologies

Correct data shifts by minimizing residual sum of squares

Data Shift Results

Results from induced shift

Real Shift – Blind test

Data shift correction procedure is successful for all 3 approaches.

Data shift cause: Erratic ambient Temp sensor.

Misleading degradation rate if R_d calculated after shift.

Residual minimization technique works on real shifts

PVUSA – Weekly Intervals

Multi-crystalline module

Monthly Intervals

Weekly Intervals

PVUSA – Weekly Intervals

Weekly intervals → converges in less time

Performance Ratio

Multi-crystalline Si system

$$Y_f = \frac{E}{P_0} \quad \begin{array}{ll} Y_f = \text{Final Yield} \\ \text{E=Net Energy output} \\ P_0 = \text{Nameplate DC rating} \end{array} \quad \begin{array}{ll} Y_r = \frac{H}{G} \\ \text{H=In-plane Irradiance} \\ \text{G=Reference Irradiation} \end{array} \quad PR = \frac{Y_f^*}{Y_r}$$

Can apply same modeling approaches to minimize seasonality

Impact of Climate – JMP Maps

No reported degradation rates in many climate zones

Impact of Climate – JMP Maps

No reported degradation rates in many climate zones

Degradation Rates around the USA

Similar picture as from around the world → some climate zones have not been investigated

No reported degradation rates in some climate zones

Rainflow Calculations

Steppe, Hot & humid show significantly higher damage than Desert & Continental climate.

Steppe Climate has high damage due to thermal cycling

*Quantifying the Thermal Fatigue of CPV Modules_Bosco__NREL_International Conference on Concentrating Photovoltaics_2010

Iongitude

Analysis of all R_d by climate

Steppe Climate shows significantly higher R_d before 2000

Analysis of R_d by climate – c-Si

Similar but not as distinct trend for c-Si

Use of automated equipment, low stress ribbon effect visible...?

Steppe Climate shows significantly higher R_d before 2000

Animated Bubble Plot

Scatter plot: static version

Graph is smeared out at Low Light:

- 1. Clear, sun is close to horizon
- 2. Cloudy, midday

Power output normalized by Irradiance

measdatetime Speed

Circle Size

Bubble size: Angle of incidence

of sunlight onto system

Bubble color: Temperature

Light level the same but not the spectrum

Photovoltaics depend on light level and spectrum → different performance

Movie Slide

Scatter plot: static version

Power output normalized by Irradiance

Graph is smeared out at Low Light:

- 1. Clear, sun is close to horizon
- 2. Cloudy, midday

Bubble size: Angle of incidence of sunlight onto system

Bubble color: Temperature

Light level the same but not the spectrum

Photovoltaics depend on light level and spectrum → different performance

Animated bubble plot can reveal details difficult to find in static plots

Non-Linear Modeling

Thin-film technologies:

- 1. Initial light-induced degradation linked to hydrogen content in film
- 2. Long-term degradation

- 1. Wait until stabilization → model linearly
- 2. Model as non-linear

Data appear to have a general nonlinear degradation over time Seasonality is also obviously present Seasonal component has an apparent 'knee'

PV Power Data Model

Degradation component is exponential decay with asymptote – and a power parameter

Seasonal component is a two term Fourier approximation

$$P(t) = D(t) + S(t)$$

$$D(t) = \beta_0 + \beta_1 e^{-\beta_2 t^{\lambda}}$$

$$S(t) = a_1 \sin\left(\frac{\pi}{6}(t - \phi)\right) + a_2 \sin\left(\frac{\pi}{3}(t - \phi)\right)$$

Model Assessment

The lambda estimate is .42, and the data are consistent with lambda=.5, *but not* lambda=1!

A single sine term also degrades the fit.

Hypothesized	Alternative	Denominator	SS	NDF	DDF	F Ratio	Prob > F
Lambda=1	Lambda Optimal	Lambda Optimal	68.073823	1	66	87.790	<.0001*
Lambda=.5	Lambda Optimal	Lambda Optimal	2.2268144	1	66	2.872	0.0949
Single Seasonal Term	Lambda Optimal	Lambda Optimal	67.500688	1	66	87.051	<.0001*

$$P(t) = D(t) + S(t)$$

$$D(t) = 80.2 + 22.2e^{-.35\sqrt{t}}$$

$$S(t) = 2.7 \sin\left(\frac{\pi}{6}(t - 1.3)\right) + 1.3 \sin\left(\frac{\pi}{3}(t - 1.3)\right)$$

Model Fit to 72 Months of Data

Model Fit to 12 Months of Data

Conclusions

- Two component degradation + seasonal model fits data well
- Fitting only the first 12 months of data leads to good predictions on the remaining 60 months
- Promising start, but this is only one dataset, and the sqrt power would need to be justified

Conclusions

- Showed importance of degradation (power decline over time) and impact on warranty risk
- Time series modeling can help reduce time & uncertainty
- Non-linear Modeling Two component degradation + seasonal model fits data well. Promising start, but this is only one dataset, and the sqrt power would need to be justified
- Impact of climate on PV performance
- Bubble plot as diagnostics tool

Acknowledgments

Thank you for your attention!

National Renewable Energy Laboratory 1617 Cole Blvd., MS 3411 Golden, CO 80401, USA dirk.jordan@nrel.gov

Christopher Gottwalt, JMP, SAS Campus Drive Building S, Cary, NC 27513

ChristopherM.Gotwalt@jmp.com

Thank you to:
Sarah Kurtz
John Wohlgemuth
Dara Hammond
Ryan Smith
NREL reliability team