

Optimization of therapeutic protein production in an aquatic plant expression system using DOE JMP Discovery Summit 2011 Vincent Wingate, Jeff Regan and Lynn Dickey, Biolex Therapeutics

Outline of talk

- Description of Lemna Expression (LEX) SystemSM Technology
- Description of LEX SystemSM Manufacturing
- An example of how we use Custom Design DOE in JMP 9.0 to optimize the yield of a vaccine antigen
- Conclusions

LEX SystemSM Technology

The LEX SystemSM uses the higher aquatic plant *Lemna* (duckweed)

One Lemna plant consists of:

- •Three frond cluster (three leaves)
- •A single root

The LEX SystemSM: Ideal for expression of therapeutic proteins

Mammalian cell culture-like features:

- Clonal
- Lemna easily transformed with DNA to give transgenic
 Lemna line making recombinant protein of choice
 (e.g. vaccine antigen, antibodies)
- Doubles every 36 hours
- High protein content
- Makes small and large recombinant proteins
- Complex post-translational processing
- Secretes recombinant protein

Added Lemna advantages

- Simple salts media, animal derived component free
- No animal viruses
- Manufacturing in a contained, aseptic, animal free disposable upstream bag and harvesting production system in controlled cGMP facilities
- Lower capital cost

5

LEX SystemSM Manufacturing

Large bag: Manufacturing bioproduction format

4' X 8' disposable bags stacked 8 high on illuminated racks. Totally enclosed disposable manufacturing system

Large bag: Manufacturing bioproduction format-easily scalable

Use of Design of Experiment (DOE) in optimization of a vaccine antigen production

Scaled down model: Growth chambers with small forced air disposable bags used for upstream DOE

Use of DOE in optimization of vaccine antigen production

From our experience, process knowledge and preliminary experiments we identified potential critical factors that may affect our vaccine product quality and quantity (responses)

DOE experiment to examine the impact of light, carbon dioxide and nitrogen on vaccine antigen production

I will now use JMP 9 to show how to set up a Custom Design DOE and then analyze the data from one experiment used for optimizing the yield of a vaccine antigen in a transgenic *Lemna* line

Effects of critical factors on the biomass yield

Effects of critical factors on the total soluble protein per gram of biomass

Effects of critical factors on the vaccine antigen in units per gram of biomass (specific productivity)

Prediction Profiler

10 units per gram Vaccine in ±2.550741 7.914279 6 73745 06175 ė ġ 200 \$ ġ 2 ĝ 000 8 8 450 200 550 000 2 72945 4.8 26 75 1200 450 19 Growth [KNO3] [CO2] Light intensity in mM in umols/m2/sec time in days in ppm Interaction Profiles units per grarr wth time in d 9 -Vaccine in 7 20 20 20 Growth 5 time in days 26 3. 1 units per gram KN03] in mM <u>9</u>· Vaccine in 7-75 [KN03] 25 5÷ 35 25 in mM 3-1 units per gram [CO2] in ppm 9-3 Vaccine in 7 1200 [CO2] 5÷ 1200 1288 in ppm 400 3. 1. insity in umols units per gram 9-3 Vaccine in 7-450 660 660 Light intensity 5in umols/m2/sec 600 3. 600 600 200 200 8488668 400-5 550 009 8 450 200 8 3

Summary of Fit

RSquare	0.7
RSquare Adj	0.60
Root Mean Square Error	1.17
Mean of Response	
Observations (or Sum Wgts)	

Prob>|t|

0.1345

0.1306

0.4881

0.4990

0.5428

0.0218*

0.0059*

Parameter Estimates

Term	
Intercept	
Growth time in days(20,26)	
[KNO3] in mM(25,75)	
[CO2] in ppm(400,1200)	
Light intensity in umols/m2/sec	
[KNO3] in mM*[CO2] in ppm	
Growth time in days*Light intensity	

Effects of critical factors on the vaccine antigen in units per growth bag

Prediction Profiler 700 Summary of Fit 600 HA in units ±202.8993 500 0.809536 per bag 460.5941 RSquare RSquare Adj 0.771443 400 Root Mean Square Error 90.83641 300-Mean of Response 370.9474 200 Observations (or Sum Wgts) 19 100 0 Parameter Estimates Prob>|t| 3 24 28 450 200 550. 009 2 2 Intercept 0.8123 0.3186 Growth time in days(20,26) 20 600 Light intensity in umols/m2/sec 0.4110 Growth Light intensity Growth time in days*Light intensity 0.0064* in umols/m2/sec time in davs Interaction Profiles with time in d HA in units 600 20 per bag 400 Growth 26 time in days 200 0 insity in umole HA in units 600 per bag 450 400 Light intensity 600 in umols/m2/sec 200 0 450 8 2 24 29 200 550 . 009

Term

17

Conclusions

We used the Custom DOE format in SAS JMP® 9.0 software in Upstream Process Development:

- To identify critical factors that influence the yield and quality of recombinant proteins (e.g. vaccine antigens, antibodies)
- Optimization of the upstream process for the **responses** of recombinant protein yield and quality
- Failure mode effects analysis (FMEA)