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National Plant Protection Organization (NPPO) Invasive Pest Safeguarding Using JMP® to Profile Sample 
Design, Expert Opinion and Pest Movement    

Ned Jones, MS, Statistician         

Abstract: 

The mission of a National Plant Protection Organization (NPPO)  is “to safeguard agriculture and natural 
resources from the risks associated with the entry, establishment, or spread of animal and plant pests 
and noxious weeds to ensure an abundant, high-quality, and varied food supply.” Inspecting sample 
commodities for pests before they leave the port accomplishes part of this mission. PPQ uses the JMP 
Profiler to develop sample designs relying on binomial and hypergeometric distribution, including 
detection level, detection sensitivity, probability of infestation, confidence and sample size. The Profiler 
provides a unique view of the interaction of these factors for both single-stage and multiple-stage 
sampling.  Safeguarding also requires the development of exotic pest risk analysis. Often, sufficient data 
is not available, leaving a reliance on expert opinion to develop these analyses. The Pert distribution 
helps when quantifying these opinions. Pert is a special case of the beta distribution available in JMP. 
Using the Profiler, expert opinion inputs are converted to beta parameters while providing visualization 
of the Pert/beta distribution.  Planning programs to eradicate exotic pests that have entered the country 
requires the ability to predict pest movement. Developing boundaries around new interceptions is 
critical. JMP 9 provides map-based visualizations of these interceptions. JMP models annual movements 
by looking at the yearly differences in interception locations. Boundaries can be developed around new 
interceptions by extending the results to the Profiler and Simulator. 

Commodity Sampling for Exotic Pest 

The NPPO approves commodities for import on a country commodity basis as part of its mission to 
safeguard agriculture and natural resources from the risks associated with exotic pests. A commodity 
approval requires identification of exotic pest associated with the commodity in the country of origin, 
analysis of the pest and a sound mitigation plan to control the pests as the commodity moves along the 
path way to the consumer. These plans are referred to as Integrated Pest Management (IPM) plans. 
Figure 1 provides a conceptual model of the relationship between commodity pathways, events, and 
pest prevalence(NAPPO 2011).  As factors that affect pest entry are known and understood, risk 
managers may identify either single or multiple risk management options to reduce pest risks associated 
with the commodity pathway to acceptable levels. An IPM plan includes a range of mitigations such as 
grower cultural practices, spray programs, harvest culling, packing house culling, washes, brushing, 
waxing, cold treatment, heat treatment, controlled atmosphere, toxic gas, irradiation and inspection. 
The preclearance inspection and port of entry inspections include a sample plan. Until recently few of 
these sample plans had a sound probability basis.  
 
JMP has proven to be a sound tool in the development of these sample plans. Sample plan visualization 
through the JMP Profiler provides a useful tool to share these plans.  
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Figure 1: The pathway continuum model which relates change in pest prevalence in a pathway to 
events (and conditions) along the pathway.  This generic model for a pathway begins at the 
origin where a pest becomes associated with the pathways, proceeds to entry into a new 
region, establishment, and subsequent spread.  A pathway risk analysis can evaluate any set 
of events along this continuum. 

 

 
 

The sample plans used in IPM are based on the presence or absence of pests. The pest presence is 
usually determined by visual inspection of the commodity in question; however, some pests require 
PCR, LAMP or Elisa test to determine presence. Presence/absence sampling development usually 
depends on discrete distributions such as Poisson, binomial or hypergeometric. If the organism presence 
has been established, estimating the prevalence of rare organism using normal theory can require large 
sample sizes(Cochran 1977). 

Throughout this article we use upper case symbols to refer to variables in the target population and 
lower case symbols to refer to variables for the sample. In some of the graphs Big N and Big A are used 
because using N and n or A and a as variable names in the same JMP file causes problems in the JMP 
profiler. When Big N and Big A are used as variable Big N refers to N and Big A refers to A as used 
elsewhere in this review. The term sample size refers to the number of sample units. When referring to 
the size of the sample unit, size of the sample unit will be used. 

A consignment of a commodity is presented for import or export. Each consignment is composed of 
plant units such as fruit, plants, stems, cuttings or other propagules etc. An inspector selects a sample of 
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plant units following a given protocol based on a well-defined sample design. The sample designs 
assume clearly defined sample units such that sample units are mutually exclusive.  

The sampling design objective as before is to determine that less than P (100%) of the commodity is 
infested with exotic pests. The primary objective will render a decision whether an unacceptably large 
portion (fraction, 1-P) of a specified commodity (target population, N) is infested above a specified 
action level (AL) usually zero infested commodity units or is otherwise defective.  It is presumed that 
suitable actions have been identified to be implemented for either way the decision may go. The action 
level (AL) in most commodity sampling is 0. Appendix A provides a discussion of the statistical theory 
used to develop the sample design(Hahn and Meeker 1991).  
 
The binomial, hypergeometric and Poisson distributions are used to develop the sample design in this 
article.  The binomial distribution was used to develop a distribution-free sample design. Then that 
approach was generalized to the Hypergeometric and Poisson distribution. The binomial distribution 
represents sampling with replacement while the hypergeometric distribution represents sampling 
without replacement. The hypergeometric distribution is best used when the sample is >5% of the 
population. In this range it provides resource saving sample sizes. The binomial’s best use is when the 
sample size is <5% of the population. We can live with the binomial’s assumption of sampling with 
replacement when sample size is <5% of the population. The Poisson distribution is derived from the 
binomial distribution(Wilks 1966) and provides ease of calculation for small P  and very large 
populations.  

Sampling to detect the presence of a pest above a specified level P is based on the binomial. The 
specified level P can be represented in a binomial distribution. Cochran and others define the binomial 
distribution as follows(Cochran 1977; Couey and Chew 1986; Hahn and Meeker 1991; Venette, Moon et 
al. 2002): 

Pr(𝑎) =  𝑛!
𝑎!(𝑛−𝑎)!

𝑃𝑎𝑄𝑛−𝑎  (1) 

where �𝑁𝑛� = 𝑁!
𝑛!(𝑁−𝑛)!

 and 𝑎! = 𝑎 ∙ (𝑎 − 1) ∙ (𝑎 − 2) ∙ … … … ∙ 1and 0! = 1. 

Where ‘n’ is the number of commodity units sampled, ‘a’ is the number of specific occurrences observed 
in the sample (in our case ‘a’ is the number of infested commodity units), P is minimum the pest 
infestation we wish to detect in the commodity and Q=(1-P) is the proportion of the commodity we 
want to insure is free of pests. We are interested in defining Pr(a) for all a>0, which is Pr(a>0) the 
probability there is a pests in the commodity sample. The easy way to do this is to define Pr(a=0) and 
apply basic rules of probability to find Pr(a>0) = 1 – Pr(a=0). From the equation (1) above we know 
Pr(a=0) = Qn = (1-P)n; therefore we can define Pr(a>0) or Pr(of finding >P(100%) pest infestation in the 
sample size n) is: 

 

Pr(𝑎 > 0) =  1 − (1 − P)n    (2) 
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Figure 2 provides a graph of equation (2); however, because of the functional form the relationship of P  
to Pr(a>0) changes as n changes and  the relationship of n to Pr(a>0) changes as P  changes.  

Figure 2 

 

The graph shows that the Pr(a>0) increases as either P  and/or n increase. 

Equation (2) provides an estimate of the confidence the sample will find an infestation of the 
commodity units >P(100%).  

To find the sample size solve equation (2) for n. The result is: 

𝑛 = ln (1−Pr(𝑎>0))
ln (1−𝑃)

  for 0<P<1  (3) 

To find for n, we need to know P, the acceptable level of prevalence, and the acceptable level of risk, 
Pr(a>0) we are willing to take that a>0. The Pr(a>0) is usually set at 0.95 or 95% confidence.  Note that 
the population size, N is not part of the equation when the sample is based on the binomial. The 
population size is not relevant in the sample design based on the binomial. 

Figure 3 provides a graph of equation (3); however, as in equation (2) above because of the functional 
form the relationship of Pr(a>0) to n changes as P  changes and  the relationship of P  to n changes as 
Pr(a>0) changes. 
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Figure 3 

 

The graph shows that n increases as Pa(a>0) increases but n decreases as P  increases. 

If we need to know P we solve (2) for P. The result is: 

𝑃 = 1 − (1 − Pr(𝑎 > 0))1 𝑛�   (4) 

To solve for P the acceptable level of prevalence, we need to know n the number of units sampled, i.e. 
the sample size, n and the acceptable level of risk, Pr(a>0) we are willing to take that a>0. 

Figure 4 provides a graph of equation (4) ;however, as in equation (2) above because of the functional 
form the relationship of Pr(a>0) to P changes as n changes and  the relationship of n to P changes as 
Pr(a>0) changes. 

The hypergeometric distribution is defined for finite populations. The number of commodity units in the 
two classes C (infested plant unit) and C’(un-infested plant unit) in the population are A and A’, 
respectively. To calculate the probability corresponding to the numbers a and a’ where, 𝑎 + 𝑎′ = 𝑛 
𝑎𝑛𝑑  𝐴 + 𝐴′ = 𝑁 and where N is the number of units in the population and n is the number in sample. 
Hypergeometric probabilities are conditional probabilities. The probability that a and a’ given A and A’ is 
defined as follows(Cochran 1977; Hahn and Meeker 1991): 

𝑃𝑟(𝑎,𝑎′|𝐴,𝐴′) = �𝐴𝑎� �
𝐴′
𝑎′
� �𝑁𝑛��  (5)(Cochran 1977) 

where �𝑁𝑛� = 𝑁!
𝑛!(𝑁−𝑛)!

 and 𝑛! = 𝑛 ∙ (𝑛 − 1) ∙ (𝑛 − 2) ∙ … … … ∙ 1and 0! = 1. 
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Figure 4 

 

 

After setting a to zero and substituting 𝑁 − 𝐴 𝑓𝑜𝑟 𝐴′𝑎𝑛𝑑 𝑛 − 𝑎 𝑓𝑜𝑟 𝑎′ the equation can be rewritten as 
follows: 

Pr(𝑎) =

𝐴!
𝑎! (𝐴 − 𝑎)!

(𝑁 − 𝐴)!
(𝑛 − 𝑎)! �𝑁 − 𝐴 − (𝑛 − 𝑎)�!

𝑁!
𝑛! (𝑁 − 𝑛)!

�  

When 𝑎 = 0 the result is as follows: 

 

Pr(𝑎 = 0) = (𝑁−𝐴)!(𝑁−𝑛)!
(𝑁−𝐴−𝑛)!𝑁!

= (𝑁−𝑃𝑁)!(𝑁−𝑛)!
(𝑁−𝑃𝑁−𝑛)!𝑁!

 (5a)   where 𝑃𝑁is adjusted to an integer. 

 

The hypergeometric distribution, equation (5) solves to no convenient form such as the binomial does 
when 𝑎 equals zero.  Figure 5 provides a graph of the functional relationship presented in equation (5a) 
when 𝑃𝑟(𝑎 > 0,𝑎′|𝐴.𝐴′) = 1 − Pr(𝑎 = 0) 𝑜𝑟 Pr (𝑎 > 0).  The JMP hypergeometric function and the 
JMP Profiler were used to develop the graph in Figure 5 which presents the functional relationship in 
equation (5a). The graph shows Pr(a>0) decreases as N increases; however, Pr(a<0) increases 
asymptotically to 1 as either A and/or n increase. As in equation (2) above because of the functional 
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form the relationship of N to Pr(a>0) changes as n changes this is also true as A changes and the 
relationship of n to Pr(a>0) changes as N changes this is also true as A changes. 

A note of caution, using the hypergeometric distribution with small N can result in lower than desired 
detection levels, because the relationship of the A (big A) integer input compared to N (big N) results in 
an implied P much larger than the desired, P, detection level.  

Figure 5 

 

JMP provides a hypergeometric function Hypergeometric Distribution(N, K, n, x, <r>). The function 
returns the probability of the cumulative distribution function at x for the hypergeometric distribution 
with population size N, K items in the category of interest, sample size n, count of interest x, and 
optional odds ratio r(SAS_Institute_Inc. 2011). Using the notation from above the functions is coded as 
follows: 𝑁 = 𝑏𝑖𝑔_𝑁,𝐾 = 𝐴 = 𝑃 ∙ 𝑏𝑖𝑔_𝑁,𝑛 = 𝑛,𝑎𝑛𝑑 𝑥 = 0. The coded function appears as  

𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑁, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔[𝑃 ∙ 𝑁],𝑛, 0) 

 This function returns the cumulative probability for the function as specified. Note that 𝑃 ∙ 𝑏𝑖𝑔_𝑁 is the 
desired detection 𝑃 multiplied by the population 𝑏𝑖𝑔𝑁 . since this is a discrete distribution JMP 
automatically rounds down any fraction in the parameters such as 𝑃 ∙ 𝑏𝑖𝑔𝑁 .  So if 𝑃 ∙ 𝑏𝑖𝑔𝑁 = 7.9 JMP 
rounds it down to 7. This is the most conservative approach (JMP_Technical_Support and Archer 2011).  
This feature can be overridden by using the ceiling function inside the hypergeometric function. 
Appendix C contains more information on this feature for discrete functions that expect integer inputs. 

The ceiling function was used inside the hypergeometric function. This action was chosen because any 
fraction of a commodity unit infested constitutes an entire unit infested, so any fraction of a unit was 
rounded up to a commodity unit. 

The following estimator for has been used for estimating hypergeometric sample size at the U.S. Nuclear 
Regulatory Commission(Bennett, Bowen et al. 1988). 
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𝑛 ≈
�1−𝛼

1
𝑉� �(2𝑁−𝑉+1)

2
  (6) 

Where 𝑉 = max (1,𝑃 ∙ 𝑁) 

This n and the associated N and A (A=NP) was compared with the hypergeometric distribution function 
in JMP(SAS_Institute_Inc. 2011).  Using the JMP Profiles the graph in figure 6 was produced. The 
equation (6) n estimate was used in the JMP hypergeometric distribution to estimate Pr(a>0). The graph 
show that for large population sizes the n estimator provide an n with a close to the desired level for 
Pr(a>0). As N increases above 4250 the differences from the desired Pr(a>0) decrease, but as N falls 
below 4250 the actual probability Pr(a>0) varies from the intended Pr(a>0) and the differences in the 
actual probability Pr(a>0)  from the intended probability increase at an increasing rate. Also the actual 
probabilities for Pr(a>0) tend to be much higher than the intended probability in equation(6).  When the 
intended probability in equation (6) was lowered just a small amount the results improved. 

The graph in figure 6 show that as the P the sample detection increases equation (6) provides an n with 
a more favorable Pr(a>0). The values when P is greater than 0.05 provide a probability Pr(a>0) tend to 
be lower and be more conservative than the actual Pr(a>0) and those below 0.05 tend to provide less 
conservative sample size n. 

   

Figure 6 
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The most reliable method to estimate n for a hypergeometric distribution is by using an iterative 
approach with a hypergeometric distribution function as in JMP.  An iterative function used in a JMP 
variable function provided results quickly and accurately. A JMP script using an iterative approach in the 
variable function is provided in Appendix B. 

The Poisson distribution can also be used in sample design. The distribution is as follows(Hahn and 
Meeker 1991; Vose 2008): 

Pr(𝑎 = 𝑎0) =  𝑒
−𝑛𝑝(𝑛𝑝)𝑎0

𝑎0!
  (7) 

The Poisson distribution is a very good approximation of the binomial distribution when P  is small <0.1 
and when n is large. As a result it properties are very similar to the binomial. Since the Poisson is closely 
related to the binomial the functional relationship matches the binomial. The graphs of the Poisson 
functional relationship presented in figures 7,8 and 9 are very similar to those of the binomial; however, 
they are offered here for completeness. 

As with the binomial distribution Pr(𝑎 = 0) is easily estimated by the following: 

Pr(𝑎 = 0) = 𝑒−𝑛𝑝.  (8) 

The confidence for a Poisson distribution sample plan when a>0 is as follows: 

Pr(𝑎 > 0) = 1 − 𝑒−𝑛𝑝.  (9) 

Figure 7 provides a graph of equation (9); however, as in the binomial equation (2) above because of the 
functional form the relationship of P to Pr(a>0) changes as n changes and  the relationship of n to 
Pr(a>0) changes as P changes.  

The graph shows that the Pr(a>0) increases as either P  and/or n increase. 

Equation (9) based on the Poisson distribution provides an estimate of the confidence we have that our 
sample will find an infested unit. 
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Figure 7 

 

To find the sample size we need for Pr(a>0), given P and Pr(a>0), solve equation (9) for n. The result is a 
sample n based on the Poisson distribution as follows: 

𝑛 = ln (1−Pr(𝑎>0))
−𝑃

  for 0<P<1  (10) 

To solve for n, we need to know P, the acceptable level of prevalence, and the acceptable level of risk, 
Pr(a>0) we are willing to take that a>0. The Pr(a>0) is usually set at 0.95 or 95%.  Note that the 
population size does not come into play when the sample is based on the Poisson.  

Figure 8 provides a graph of equation 3); however, as in the binomial equation (2) because of the 
functional form the relationship of Pr(a>0) to n changes as P  changes and  the relationship of P  to n 
changes as Pr(a>0) changes. 
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Figure 8 

 

The graph shows that n increases as Pr(a>0) increases but n decreases as P  increases. 

If we need to know P we solve equation (9) for P. The result is: 

𝑃 = ln (1−Pr(𝑎>0))
−𝑛

 (11) 

To solve for P the acceptable level of prevalence, we need to know n the number of units sampled, i.e. 
the sample size, and the acceptable level of risk, Pr(a>0) we are willing to take that a>0. 

Figure 9 provides a graph of equation (11); however, as in equation (2) above because of the functional 
form the relationship of Pr(a>0) to P  changes as n changes and  the relationship of n to P  changes as 
Pr(a>0) changes. 

The hypergeometric, binomial or Poisson each play a vital role in developing sample plans in IPM to 
safeguard against exotic invasive pests. Figure 10 presents the relationship the population size N, the 
sample size n for the binomial equations (3), the Poisson equations (10) and the results of 
Hypergeometric sample size result when P  the sample detection is set at 0.01, 0.05 and 0.10 each with 
a 95% confidence. The first relationship we should note is that the at each P  detection level the 
binomial and Poisson sample sizes are unaffected by N while the hypergeometric sample size increases 
rapidly at first as the population increases but quickly tappers off as the hypergeometric sample size 
approached the binomial and Poisson sample size level. The 5% of the population line provides a good 
reference when it intersects the binomial and Poisson, at this point the difference between the 
hypergeometric and the constant sample sizes binomial and Poisson become negligible.   
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Figure 9 

 

The 2% line represents the current safeguarding guideline sampling policy for port inspection samples. 
Its relationship to the probability sample design lines show it is too high when the population is large, 
too low when the population is small, and rarely just right. The 2% is not consistently applied. 
Sometimes it is 2% of the commodity, sometimes it’s 2% of the boxes in which the commodity is 
shipped.  
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Figure 10 

 

The inspection process usually involves the selection and inspection of the commodity. When the 
hypergeometric or binomial samples are called for in the sampling protocol the inspector selects 
number of sample units (fruit, plants, etc.) required based on the potential risk of the pests associated 
with the commodity. These samples are called random but no random selection procedure is followed 
to direct the selection of the sample. The application of a random sampling process would be difficult 
logistically and practically. However the commodity population is defined, the fundamental observation 
is on the commodity unit, which can be infested or clean, and units should be drawn with a probability-
based sampling design, because such designs have the desirable property that estimated proportions or 
means and associated variances are unbiased(Cochran 1977). Unfortunately, the logistically easier and 
more convenient haphazard method of selecting the sample can yield markedly biased estimates, and if 
individuals are selected with a systematic procedure, care must be taken that the period of selection 
does not coincide with an underlying pattern in the population.  

The sample selection is frequently a tailgate sample, meaning the commodity or boxes at the tailgate of 
the truck or shipping container are sampled and inspected. The current sampling is a result of limited 
resources and limitations on the logistics of performing the sample. Frequently the protocol calls for a 
random sample but the methodology to perform a random sample is not in place. The application of 
random sampling results in individual inspectors making an earnest effort using their own judgment to 
decide what should be inspected. The result is a haphazard sampling approach. However, frequently the 
inspectors target the inspections toward commodity that show sign of infestation.  

A practical alternative to random sampling would be systematic random sampling. Systematic random 
sampling if applied properly, insures that all of a commodity consignment has a chance to be included in 
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the sample. The process involves developing a skip interval based on the size of the population N divided 
by the size of the sample n. Then a random start is selected by multiplying the skip interval by a random 
number between zero and one.  The product of this multiplication should be rounded up to the next 
whole number if it is not already a whole number. The random number should be provided from a 
random number table or a computer based random number generator.  Then the inspector follows 
these steps: 

1. The inspector counts the commodity units until he reaches the random start. This is the first unit 
to inspect.  

2. Inspect the unit. 

3. Then applying the skip interval the inspector counts commodity units until he reaches the skip 
interval number. This is the next unit to inspect.  

4. Inspect the unit. 

5. The inspector repeats steps 3 and 4 until n (the sample size) of the commodity units have been 
inspected. 

Following this process the inspector goes through the entire shipment and if he notices a commodity 
units that should targeted he can inspect that unit also or substitute it for a skip interval unit. 

The inspection itself is usually a visual inspection of the commodity. This introduces potential for human 
error and the possibility of a false negative or false positive identification.  Table 1 illustrates the 
possible outcomes of sampling for rare individuals(Cnnon and Roe 1982; Venette, Moon et al. 2002).  
Symptoms, in the broad context used here, may also include the results of diagnostic tests. True 
positives (A) occur when the inspector observes the presence of a pest. False positives (B) occur when 
pest are present and action is taken, but the pest is not of concern. False negatives result when pests 
are not apparent, but a pest of concern is present (C). True negatives occur when a pest is neither 
observed nor is present (D). If perfect correspondence exists between organism and detection, only A 
and D will result. However, the association between organism symptoms and presence is not perfect. 
Few if any tests are thought to be perfectly sensitive and specific. Sensitivity (Se) is the probability that a 
commodity unit with the trait will be judged to be infested. From Table 1, 𝑆𝑒 = 𝐴/(𝐴 + 𝐶) specificity 
(Sp) is the probability that an commodity unit without the trait will be judged to be infested 𝑆𝑝 =
𝐷/(𝐵 + 𝐷). Where Se<1, true positives will be incorrectly classified as clean, and apparent commodity 
unit-level infestation prevalence will be an underestimate of the truth. If Sp < 1, true negatives will be 
incorrectly identified as positive, causing an overestimate of the true prevalence. Errors may be in either 
direction if both Se and Sp < 1. Where Se and Sp can be characterized with point estimates or empirical 
distributions, apparent commodity unit-level frequencies can be corrected. 
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TABLE 1 Relationship between presence of an individual and evidence of its 
presence (i.e., symptoms) that might be used to guide the search for rare 
Individuals 

   
 

         Actual condition____                    
Results from sampling (symptoms)  Present  

 
Absent 

    
Present  (A) Correct  

 
(B) Incorrect 

 
(false positives) 

 
Absent  (C) Incorrect  

 
(D) Correct 

   
(false negatives) 

 

Sensitivity of commodity inspection can have a significant impact on sample design to detect pest 
presence and on estimating pest risk associated with a commodity. Quarantine inspectors search for 
fruit fly infestations in incoming shipments by visual inspection and by dissecting or cutting a sample of 
fruit in each shipment. The reliability of the latter procedure for detecting fruit fly larvae is questionable 
and, therefore, a test was conducted to determine its effectiveness(GOULD 1995). Infested grapefruit, 
mangoes, guavas, and carambolas were cut open to determine the efficacy of cutting fruit in detecting 
larval infestations of Caribbean fruit flies, Anastrepha suspense (Loew). From 1 to 36% of the larvae 
were detected by dissection, but 17.9 to 83.5% of the infested fruit were detected. There was 
considerable variation in the number of larvae found by different inspectors. This is the single study we 
have on commodity inspection. More work is needed to better the sensitivity of commodity inspection.  

 Specificity is it not as big an issue in commodity inspection because positives receive so much attention 
that they are ultimately resolved. When designing a sample to detect pest presence specificity does not 
play as large role as sensitivity. 

The effect of sensitivity on pest detection survey design is as follows: 

The probability of an observed inspection positive is  Pr(𝐴) = 𝐴
𝐴+𝐵+𝐶+𝐷

.  

The true probability of a positive is  Pr(𝐴 + 𝐶) = 𝐴+𝐶
𝐴+𝐵+𝐶+𝐷

. 

The sensitivity of a positive is  𝑆𝑒 = 𝐴
𝐴+𝐶

. 

The goal of the sample design is for the sample/inspection detection to equal the true probability. When 
an inspection/sample is implemented we observe A the inspection positives. This represents the 
observed sample/inspection detection. The sample design must be adjusted by the inspection sensitivity 
so that our sample/inspection detection measures the true positives. The probability of an observed 
inspection positives equals the sensitivity, Se multiplied by the desired sample/inspection detection. We 
present this mathematically as follows: 
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𝑆𝑒 ∙ Pr(𝐴 + 𝐶) =
𝐴

𝐴 + 𝐶
𝐴 + 𝐶

𝐴 + 𝐵 + 𝐶 + 𝐷
=  

𝐴
𝐴 + 𝐵 + 𝐶 + 𝐷

= Pr(𝐴) 

When the Se adjustment is made our sample size change is inverse proportional to the sensitivity. The 
binomial sample size formula adjusted for sensitivity is equation (3) with 𝑃 the sample detection 
replaced by 𝑆𝑒 ∙ 𝑃 as follows: 

𝑛 = ln (1−Pr(𝑎>0))
ln(1−(𝑆𝑒∙𝑃))

  for 0<P<1  (12) 

Figure 11 provides a graph of equation (12); however, as in equation (2) above because of the functional 
form the relationship of Pr(a>0) to n changes as P or Se change and  the relationship of P or Se to n 
changes as Pr(a>0) changes. 

Figure 11 

 

The Poisson formula for n adjusted for sensitivity is as follows: 

𝑛 = ln (1−Pr(𝑎>0))
−𝑆𝑒∙𝑃

  for 0<P<1  (13) 

The hypergeometric formula for the n approximation adjusted for sensitivity is as follows: 

𝑛 ≈
�1−𝛼

1
𝑉� �(2𝑁−𝑉+1)

2
  (14) 

Where 𝑉 = max (1, 𝑆𝑒 ∙ 𝑃 ∙ 𝑁) 
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Using the notation from above, the functions is coded as follows: 𝑁 = 𝑏𝑖𝑔𝑁 ,𝐾 = 𝐴 = 𝑆𝑒 ∙ 𝑃 ∙ 𝑏𝑖𝑔𝑁 ,𝑛 =
𝑛,𝑎𝑛𝑑 𝑥 = 0. The coded function appears as  

𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑁, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔[𝑆𝑒 ∙ 𝑃 ∙ 𝑁],𝑛, 0) 

which returns the cumulative probability for the function as specified. Note that 𝑃 ∙ 𝑏𝑖𝑔_𝑁 is the desired 
probability of detection 𝑃 multiplied by the population 𝑏𝑖𝑔𝑁 . Since this is a discrete distribution function 
JMP automatically rounds down any fraction in the parameters such as 𝑆𝑒 ∙ 𝑃 ∙ 𝑏𝑖𝑔𝑁 .  So if 𝑆𝑒 ∙ 𝑃 ∙
𝑏𝑖𝑔𝑁 = 7.9 JMP rounds it down to 7. This is be the most conservative approach(JMP_Technical_Support 
and Archer 2011).  This feature can be overridden by using the ceiling function inside the 
hypergeometric function. Appendix C contains more information on this feature for discrete functions 
that expect integer inputs. 

Table 2 shows the sample sizes for detection level of 1% 5% and 10% with 95% confidence for these 
distributions binomial, Poisson, and hypergeometric for populations of 100, 300 600 and 1000.  When 
the detection is higher the hypergeometric converges to the binomial and Poisson more quickly than it 
does when detection is lower. This effect is slightly reduced as sensitivity decreases. 

Table 2 Shows Samples based on detection of 1%, 5%, and 10% with 95% of confidence 
 For the Binomial, Poisson, and Hypergeometric for Population sizes 100, 300, 600 and 1,000 

  
                                                           Sample Size___________________                                        

    
Pop 100 Pop 300 Pop 600 Pop 1,000 

Detection Sensitivity Binomial Poisson Hypergeo Hypergeo Hypergeo Hypergeo 
            0.01                 1.00  299 300 95 189 236 258 
            0.05                 1.00  59 60 45 54 56 57 
            0.10                 1.00  29 30 25 28 29 29 
            0.01                 0.67  448 450 95 189 270 348 
            0.05                 0.67  89 90 52 71 79 83 
            0.10                 0.67  44 45 34 39 41 43 
            0.01                 0.50  598 600 95 233 379 450 
            0.05                 0.50  119 120 63 93 108 112 
            0.10                 0.50  59 60 45 54 56 57 

The sample sizes in Table 2 are for direct sampling of the commodity units such as plants, cuttings, 
stems, fruit, etc. Most commodities are shipped in some sort of packaging with a specified average 
number of commodity units in each package.  

NPPO, Plant Inspection Stations see plant parts presented for inspection on a continuous basis. The 
plant parts units are usually packed in boxes, bags or bags in boxes, bundles, wrapped in newspaper, 
etc. The objective of the inspection is to insure the consignment is free of exotic pest per plant unit 
below a specific P(100%). The country plant genera combinations are assigned pest risk of levels (high, 
medium and low). The risks levels (high, medium and low) are assigned detection level P values ( 1%, 
5%, and 10% respectively). For simplicity of discussion we will use a box as the packaging unit and 
propagules as the plant unit within the box. When a box is selected for sampling the inspector first 
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empties the entire box contents on to a white paper to see if pests appear on the paper. Next they 
inspect the empty box to see if any pests were left behind. Then the propagules are inspected for pests. 
This presents a classic cluster sampling situation. The population is composed of N boxes and M 
propagules in each box. The total number of propagules in the consignment is N boxes multiplied by M 
propagules per box. Inspecting the propagules one by one or selecting a sample of propagules is just not 
operationally practical or feasible. How many boxes of the N with M propagules per box should be 
selected to insure with 95% confidence ≤ 𝑃(100%) of the propagules are pest free. Based on historic 
inspection results we assume that the pests would be evenly distributed over the propagules. If the 
pests are clustered, the sampling plan would need to be modified to take this clustering into 
consideration. Based on expert opinion we expect inspectors to detect an infested box at least 50% of 
the time(Schuler 2010). 

A consignment invoice at the Plant Inspection Station usually provides the number of boxes and the 
total number of propagules for each plant genus species and country of origin. From this information we 
can assign risk (low, medium or high) and P, detection values (10%, 5% or 1%, respectively). The number 
of propagules per box, M, can be calculated. Given the assigned P we can calculate the probability of 
one or more pests in the box, Pr (𝑎𝑀 > 0), using equation (2) substituting M for n. The result is as 
follows: 

𝑃𝑟 (𝑎𝑀 > 0) = 1 − (1 − 𝑃)𝑀 (15) 

This gives the probability of an infested box 𝑃𝑟 (𝑎𝑀 > 0) base on P and M the number of propagules in 
the box. The binomial distribution was used because it provides and exact result. The hypergeometric 
was not used because as noted above when N (big N) is small the relationship of A (big A) integer input 
compared to N (big N) implies a P much larger than the desired, P, detection level. 

To calculate the number of boxes to sample the sample sizes assuming a binomial, Poisson or 
hypergeometric distributions of pests over the boxes will be evaluated.  

The binomial sample size can be found by using equation (12) above with the results in equation (15) 
1 − (1 − 𝑃)𝑀substituted for 𝑃 as follows: 

𝑛 = ln (1−Pr(𝑎>0))
ln�1−(𝑆𝑒∙ (1−(1−𝑝)𝑀)�

  for 0<P<1  (16) 

Figure 12 shows a graph of the functional relationship for sample size presented in equation (16). The 
Total Boxes (N) only has a relationship with Total Propagules (NxM). The Propagules per Box (M) has a 
positive relationship with Pr(infested box), Total Propagules and Propagules sampled; however, the 
Propagules sampled not smooth because of the discrete binomial relationship. The Propagules per Box 
(M) has a positive asymptotic to 1 relationship with Pr(infested box). Also P the desired detection has a 
positive asymptotic to 1 relationship with Pr(infested box). As P increases Sampled Boxes (n) and 
Samples Propagules (nxM) decrease to some minimum number of boxes sampled which is dependent on 
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confidence Pr(a>0) and sensitivity. As confidence increases the sample Boxes (n) and sample Propagules 
(nxM) increase. As sensitivity increases the sample Boxes (n) and sample Propagules (nxM) decrease. 

The number of Propagules per box (M) has an interactive relationship with all the other variables. The 
desired detection P interacts with every variable except Total Propagules (NxM). Both confidence 
Pr(a>0) and sensitivity, Se interact with Propagules per box and the desired detection, P. 

Figure 12 

 

If the Poisson distribution to the pest spread over the boxes the sample size can be found by using 
equation (13) above with the results in equation (15) 1 − (1 − 𝑃)𝑀substituted for 𝑃 as follows: 

𝑛 = ln (1−Pr(𝑎>0))
−𝑆𝑒∙(1−(1−𝑃)𝑀

  for 0<P<1  (17) 

Since the Poisson is directly related to the binomial the relationships observed are similar to the 
binomial. They are presented here for completeness. Figure 14 shows a graph of the functional 
relationship for sample size presented in equation (17). The Total Boxes (N) only has a relationship with 
Total Propagules (NxM). The Propagules per Box (M) has a positive relationship with Pr(infested box), 
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Total Propagules and Propagules sampled; however, the Propagules sampled are not smooth because of 
the discrete binomial relationship. The Propagules per Box (M) has a positive asymptotic to 1 
relationship with Pr(infested box). Also P the desired detection has a positive asymptotic to 1 
relationship with Pr(infested box). As P increases Sampled Boxes (n) and Samples Propagules (nxM) 
decrease to some minimum number of boxes sampled which is dependent on confidence Pr(a>0) and 
sensitivity. As confidence increases the sample Boxes (n) and sample Propagules (nxM) increase. As 
sensitivity increases the sample Boxes (n) and sample Propagules (nxM) decrease. 

The number of Propagules per box (M) has an interactive relationship with all the other variables. The 
desired detection P interacts with every variable except Total Propagules (NxM). Both confidence 
Pr(a>0) and sensitivity, Se interact with Propagules per box and the desired detection, P. 

Figure 14 
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Using this combination the Poisson for the distribution of pest over the boxes may not be the best 
choice unless there are many boxes and the detection level P is very low. 

The hypergeometric approximation of sample size can be found by using equation (14) above with the 
results in equation (15) 1 − (1 − 𝑃)𝑀substituted for 𝑃 as follows: 

𝑛 ≈
�1−𝛼

1
𝑉� �(2𝑁−𝑉+1)

2
  (18) 

where 𝑉 = max (1, 𝑆𝑒 ∙ (1 − (1 − 𝑃)𝑀 ∙ 𝑁). 

Caution must be used when applying equation (18) as demonstrated above. Frequently the assumed 
∝= Pr (𝑎 = 0) is smaller than the actual sample Pr (𝑎 = 0). 

Or when hypergeometric iterative approach is used the JMP hypergeometric function is coded as 
follows: 

𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑁, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔[𝑆𝑒 ∙ 1 − (1 − 𝑃)𝑀 ∙ 𝑁],𝑛, 0) 

As in the examples of this function above the ceiling function was used inside the hypergeometric 
function. This action was chosen because any fraction of a box infested constitutes an entire box 
infested, so any fraction of a box was rounded up to a whole box.  

The Pr (𝑎 > 0) can be presented in the JMP Profiler using hypergeometric distribution function to 
represent the spread of pests over the boxes. Figure 15 displays the graph of this relationship. The graph 
presents a similar relationship among the variables sampled Propagules, Pr(infested box) and Total 
Propagules as seen for the binomial and Poisson distributions. The last variable Pr(a > 0)  is presented 
as a function of the other variables because of the difficulty of solving equation (5a) for sample size n. 
Figure 16 provides a comparison of the Pr(a > 0) for both the hypergeometric and the binomial 
distribution. The general shape of the relationships is the same; however the smaller sample size 
produced by the hypergeometric is a result of the population of boxes, N being included in the 
functional relationship. The effect of N in the hypergeometric Pr(a > 0) relationship in the first two 
graphs where produces a small decrease in the hypergeometric as N increases while the binomial 
Pr(a > 0) relationship is flat. This difference is reflected in each of the other inputs p, the detection 
level, Propagules per Box (M), sensitivity, Se and Samples Boxes (n).  Also the steps in the 
hypergeometric Pr(a > 0) functions with Propagules per Box (M), sensitivity, Se are much more 
pronounced than with the binomial Pr(a > 0). And as expected the Hypergeometric produces a smaller 
sample size than the binomial. 
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Figure 15 
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Figure 16 

 

After considering the alternatives the NPPO Plant Inspection Station management wanted to use the 
hypergeometric distribution when selecting boxes to inspect, because it produces the smallest sample 
size which provides the most efficient use of their scarce personnel resources.  The Plant Inspection 
Stations sample design uses the binomial distribution to estimate the probability of an infested box and 
then uses this probability to inform the hypergeometric distribution of boxes to estimate A the number 
of infested boxes in the population of boxes. This sample uses a cluster sample approach with boxes 
selected as clusters and the entire cluster (box) inspected. No subsampling of the propagules in the box, 
so no two stage sampling was used. The sampling assumes that the pests are evenly distributed over the 
boxes and there is little or no clustering of pests. 

Two stage sampling provides the next logical step in safeguarding Agriculture and Natural Resources 
from invasive exotic pests. Most commodities shipped in boxes, bags etc. qualify for two stage sampling. 
Two stage sampling requires identifying and defining the population primary sampling units, boxes, 
bags, pallets etc. and population of secondary sampling units, fruit, flowers stems, tile etc. Remember 
the primary units must be defined so that they are mutually exclusive from each other and the 
secondary units must be defined so that they are mutually exclusive. Most commodity consignments 
presented for inspection can be defined to meets these requirements. In addition to being mutually 
exclusive the primary units should be the same size, or nearly so(Cochran 1977). And the secondary 
sample units should be uniform of size or at least as uniform as possible. Sampling proceeds as follows; 
first select a sample from the primary units, boxes; next select a subsample from the secondary units 
contained within the selected primary sample units. In detection sampling deciding how to characterize 
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the sampling distribution of primary and secondary sample units provides a matter of some concern. 
The primary sample can be base on either a binomial or a hypergeometric distribution and the same 
consideration need to be made for the secondary sample. The sample design can consider the primary 
sample distribution and the secondary sample distribution to be binomial and binomial respectively, or 
binomial and hypergeometric, hypergeometric and hypergeometric or hypergeometric and binomial.  

The sampling design objective as before is to determine that less than 𝑃 (100%) of the commodity is 
infested with exotic pests. We will assume that the processing of the commodity resulted in sufficient 
shuffling of the commodity so that the pests are evenly distributed through the commodity, i.e. pests 
clusterings are not an issue in the sample design. The sample design considers the following: 

1. The desired detection, P, specifies the initial condition per secondary sampling unit. 

2. The secondary stage probability of detection is developed using the assumed sample 
distribution. The result is Pr( 𝑖𝑛𝑓𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛  𝑠𝑒𝑐.  𝑠𝑎𝑚𝑝𝑙𝑒) the probability of infestation in the 
secondary sample. 

3.  The Pr( 𝑖𝑛𝑓𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛  𝑠𝑒𝑐.  𝑠𝑎𝑚𝑝𝑙𝑒) provide the initial condition per primary sampling unit. 

4. The two-stage probability of detection is developed using the assumed primary sample 
distribution. The result is Pr( 𝑎 > 0) the probability of infestation for the commodity. 

5. Then a specific sample size, n, can be developed given the following information: 

1. 𝑃 =  𝑡ℎ𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑙𝑖𝑚𝑖𝑡 𝑓𝑜𝑟 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑖𝑛𝑓𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑃 (100%) 

2. 𝑁 =  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡𝑠, 𝑏𝑜𝑥𝑒𝑠,  

3. 𝑀 =  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑢𝑛𝑖𝑡, 𝑓𝑟𝑢𝑖𝑡, 

4. 𝑃𝑟(𝑎 > 0) = 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑃𝑟(𝑎 > 0) ∙ 100% , and  

5. 𝑆𝑒 =  𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, ranging from 17 to 83%(GOULD 1995) . 

For the remainder of the two-stage sampling discussion boxes will be used as the primary sample unit 
and fruit will be the secondary sample unit.  

If we assume a binomial distribution for the boxes and a binomial distribution for the fruit, equation (2) 
and equation (12) solved for 𝑃𝑟(𝑎 > 0) are combined to provide the following result: 

𝑃𝑟(𝑎 > 0) =  1 − �1 − ( 1 − (1 − (Se ∙ P)m)�n    (19) 

At the first observation we notice the relationship’s functional form of the magnifying effect of the 
probability of and infested sample of fruit nested within the sample of boxes. Also we note there is 
neither a population of boxes, N, nor population of fruit, M in the relationship. Unless the populations 
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are large this could lead to an overestimate of sample size. On the other it provides a general form for a 
set P desired detection and Se sensitivity. 

Figure 17 provides a graph showing a snapshot of the functional relationship 𝑃𝑟(𝑎 > 0)binomial in 
equation (18). It also shows the relationship for Pr(infested box) the probability of an infested box, 
sampled fruit (mxn) the number of sampled fruit, Pr(infested subsample) the probability of an infested 
subsample of m fruit, and the JMP Desirability function. The functional relationship of 𝑃𝑟(𝑎 >
0) binomial increases asymptotically to 1 as P  the desired detection, m fruit sampled in the box, n boxes 
sampled, or Se sensitivity as anyone or combination factors increase. The JMP desirability function are 
smooth piecewise functions crafted to fit the control points(SAS_Institute_Inc. 2011). The minimize and 
maximize functions are three-part piecewise smooth functions that have exponential tails and a cubic 
middle. The target function is a piecewise function that is a scale multiple of a normal density on either 
side of the target (with different curves on each side), which is also piecewise smooth and fit to the 
control points. When the desirability graph to the right has a positive slope the desirability function 
objective is maximize when the slope is negative the objective is minimize and when the  

Figure 17 Two-stage with binomial distribution for boxes and binomial for the fruit. 
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function forms an arrow point to the right the objective target is the point of the arrow. The 
relationships across the bottom of the graph show where the desirability is maximized for each input. 
This is very helpful for meeting objectives in two-stage sampling. With the detection P and sensitivity 
levels Se set we can explore combinations of n boxes to sample and m fruit to sample within the 
selected boxes. The maximum number of fruit to sample within the selected boxes can be found. Also 
find the maximum number of boxes to sample if only one fruit per box were sampled. Plus any m, n 
combinations of interest between these two extremes can be evaluated. For the 𝑃 = 0.05 𝑎𝑛𝑑 𝑆𝑒 = 0.5 
the minimum number of fruit to inspect stays around 120. 

The next two-stage distribution combination to consider will be hypergeometric for the boxes and 
binomial for the fruit within the box. The equation (2) with sensitivity adjustment and hypergeometric 
function are combined to provide the following result: 

Pr(𝑎 > 0) = 1 − (𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑁, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔[𝑏𝑖𝑔 𝐴 𝑏𝑜𝑥𝑒𝑠],𝑛, 0))    (20) 

Where 𝑏𝑖𝑔 𝐴 𝑏𝑜𝑥𝑒𝑠 = (1 − (1 − (𝑆𝑒 ∙ P)m) ∙ 𝑁  

Figure 18 provides a graph showing a snapshot of the functional relationship 𝑃𝑟(𝑎 > 0)hypergeometric 
in equation (20). It also shows the relationship for Pr(infested box) the probability of an infested box, 
sampled fruit (mxn) the number of sampled fruit, Pr(infested subsample) the probability of an infested 
subsample of m fruit, big A boxes and the JMP Desirability function. The functional relationship of 
𝑃𝑟(𝑎 > 0) binomial increases asymptotically to 1 as P the desired detection, m fruit sampled in the box, 
n boxes sampled, or Se sensitivity as anyone or combination factors increase. The relationship of 
𝑃𝑟(𝑎 > 0) with Total Boxes (N) approached 0.95 from above as the number of boxes increases. With 
the detection P and sensitivity levels Se set we can use the desirability function to explore combinations 
of n boxes to sample and m fruit to sample within the selected boxes. The maximum number of fruit to 
sample within the selected boxes can be found. Also find the maximum number of boxes to sample if 
only one fruit per box were sampled. Plus any m, n combinations of interest between these two 
extremes can be evaluated. For the 𝑃 = 0.05 𝑎𝑛𝑑 𝑆𝑒 = 0.5 the minimum number of fruit to inspect 
stays around 120. 

The third two-stage distribution combination to consider will be binomial for the boxes and 
hypergeometric for the fruit within the box. The equation (2) and hypergeometric function with 
sensitivity adjustment are combined to provide the following result: 

Pr(𝑎 > 0) =  1 − (1 − (𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑀, 𝑟𝑜𝑢𝑛𝑑[𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡, 0],𝑚, 0)))n   (20) 

Where 𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡 = 𝑆𝑒 ∙ P ∙ 𝑀  
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Figure 18 Two-stage with hypergeometric distribution for boxes and binomial for the fruit. 

 

 

Figure 19 provides a graph showing a snapshot of the functional relationship 𝑃𝑟(𝑎 > 0)binomial in 
equation (20). It also shows the relationship for Pr(infested box) the probability of an infested box, 
sampled fruit (mxn) the number of sampled fruit, Pr(infested subsample) the probability of an infested 
subsample of m fruit, big A fruit and the JMP Desirability function. The functional relationship of 
𝑃𝑟(𝑎 > 0) binomial increases asymptotically to 1 as P the desired detection, m fruit sampled in the box, 
n boxes sampled, or Se sensitivity as anyone or combination factors increase; however, the P and the Se 
are step functions with the Se being the more pronounced step. With the detection P and sensitivity 
levels Se set we can use the desirability function to explore combinations of n boxes to sample and m 
fruit to sample within the selected boxes. The maximum number of fruit to sample within the selected 
boxes can be found. Also find the maximum number of boxes to sample if only one fruit per box were 
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sampled. Plus any m, n combinations of interest between these two extremes can be evaluated. For the 
𝑃 = 0.05 𝑎𝑛𝑑 𝑆𝑒 = 0.5 the minimum number of fruit to inspect stays around 90. 

Figure 19 Two-stage with binomial distribution for boxes and hypergeometric for the fruit. 

 

The last two-stage distribution combination to consider will be hypergeometric for the boxes and 
hypergeometric for the fruit within the box. The hypergeometric function for boxes with big A for boxes 
estimated Pr(infested subsample and hypergeometric function with sensitivity adjustment are combined 
to provide the following result: 

Pr(𝑎 > 0) =  1 − (𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑁, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔[𝑏𝑖𝑔 𝐴 𝑏𝑜𝑥𝑒𝑠] ,𝑛, 0)   (20) 

where  𝑏𝑖𝑔 𝐴 𝑏𝑜𝑥𝑒𝑠 = �1 − 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑀, 𝑟𝑜𝑢𝑛𝑑[𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡, 0],𝑚, 0)� ∙ 𝑁,  

and,  𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡 = 𝑆𝑒 ∙ P ∙ 𝑀.  
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Figure 20 provides a graph showing a snapshot of the functional relationship 𝑃𝑟(𝑎 > 0)binomial in 
equation (21). It also shows the relationship for Pr(infested box) the probability of an infested box, 
sampled fruit (mxn) the number of sampled fruit, Pr(infested subsample) the probability of an infested 
subsample of m fruit, big A fruit and the JMP Desirability function. The functional relationship of 
𝑃𝑟(𝑎 > 0) binomial increases asymptotically to 1 as P the desired detection, m fruit sampled in the box, 
n boxes sampled, or Se sensitivity as anyone or combination factors increase; however, the P and the Se 
are step functions with the Se being the more pronounced step. The relationship of 𝑃𝑟(𝑎 > 0) with 
Total Boxes (N) and Fruit per box (M) approached 0.95 from above as the number of boxes or fruit per 
box increases.  With the detection P and sensitivity levels Se set we can use the desirability function to 
explore combinations of n boxes to sample and m fruit to sample within the selected boxes. The 
maximum number of fruit to sample within the selected boxes can be found. Also find the maximum 
number of boxes to sample if only one fruit per box were sampled. Plus any m, n combinations of 
interest between these two extremes can be evaluated. For the 𝑃 = 0.05 𝑎𝑛𝑑 𝑆𝑒 = 0.5 the minimum 
number of fruit to inspect stays around 90. 

Figure 20 Two-stage with hypergeometric distribution for boxes and hypergeometric for the fruit. 
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The difference in these four plans is quite dramatic. The two-stage which uses a hypergeometric 
distribution for the boxes and hypergeometric for the fruit and binomial/hypergeometric combination 
produced sample sizes which were 25% smaller than the plans based on using a hypergeometric 
distribution for the boxes and binomial for the fruit and hypergeometric/binomial combination. The 
plans using a hypergeometric distribution on the fruit within the boxes produced smaller samples than 
the plans using the binomial. For the populations there were 1800 boxes and 66 fruit per box, with a 
sample designed to detection a 5% ( 𝑃 = 0.05 ) infestation with 95% confidence. We should expect 
there to be very little difference between the binomial and hypergeometric on the 1800 box population 
because with a population that large there is very little difference in sample needed; however, 
hypergeometric based sample plan diverges from the binomial as the population decreases and 
becomes even more sensitive to population changes as the population becomes smaller and smaller.  

Figure 21 

Figure 21 details 5% detection lines for the binomial and hypergeometric distributions presented in 
figure 10, where the relationship between the population size N, the sample size n for distributions were 
presented. The figure 21 sample size relationships have been adjusted for sensitivity. The graph shows 
why there was so little a difference between the binomial and hypergeometric based sample plans for 
the populations of 1800 boxes. There is very little difference between sample size needed for the 
hypergeometric based sample plan and the binomial based plan. This can be seen by following the red 
dashed line for a population of 1800 up to where it intersects the Hypergeometric and binomial sample 
size lines. This is why when there were a large number of boxes, either the binomial or the 
hypergeometric sample plan work well; however, the binomial would be preferred because of ease of 
working with functional relationship. When the population size decreases the hypergeometric based 
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sample size diverges from binomial sample size. This is because the hypergeometric detection efficiency 
relative to sample size increases as the population size decreases. Figures 20 and 18 show the 
Pr(infested subsample), the probability of an infested subsample for the hypergeometric is 0.41 when 
sampling 15 of the 66 fruit per box and the binomial is 0.22 with a sample size of 10 fruit per box. The 
difference is binomial calculates probability of infestation based on the sample size regardless of 
population size.  The population size could be 10, 66, 100 or 1,000 or whatever the binomial estimate 
would be .22 for a sample of 6. While the hypergeometric probability of infestation is based on the 
sample size taken from a population of 66 in which 2 fruit were identified as infested. Since the 
hypergeometric probability includes a consideration of population size and the sample size is large 
relative to the population we feel intuitively that the hypergeometric based sample design should 
provide a better estimate of the probability of infestation than the binomial.  In this case selecting 
subsamples from boxes of 66 fruit the binomial distribution seems to be an underestimate. When 
selected from the small population the hypergeometric provides a better estimate of the probability of 
infestation; however, the hypergeometric provides at best erratic estimates of infestation for small 
populations which can be over estimates, under estimates and exact estimates when used with the P 
detection parameter. There will be more discussion of the sample design problems caused when P is 
used with the use hypergeometric distribution. 

The decreased sample sizes observed when the sample design applies the hypergeometric distribution 
to the fruit is very sensitive to the estimate of A (big A Fruit) for fruit. In equation (20) the round 
function is applied to A (big A Fruit) for fruit in the hypergeometric function. This overrides the JMP 
default to round down all non-integers inputs in the hypergeometric function. Using the round function 
is less conservative than the JMP approach but this decision was made to try to minimize the errors 
when P is used with the hypergeometric distribution in the sample design. The logic was that if the 
estimate of A infested fruit in the box is a non-integer then follow the rounding rules  would result in the 
A used being closest to the estimate 𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡 = 𝑆𝑒 ∙ 𝑃 ∙ 𝑀. We should also note that  𝑆𝑒 = 0.5 is a 
very conservative approach to inspection sensitivity. This assumes that the inspectors detect infested 
fruit 50% of the time they are faces with infested fruit. The small change of using round in the 
hypergeometric makes a large difference in sample size. The two-stage sample design for without the 
rounding the function on 𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡 = 𝑃 ∙ 𝑆𝑒 ∙ 𝑁 is presented in Figure (22).  Without using the round 
function the sample size increases to 156 fruit inspected with 6 boxes selected and 26 fruit selected 
within each box. The same result is observed when the sample design is hypergeometric for the boxes 
and hypergeometric for the fruit within the boxes. This change puts the sample plans with 
hypergeometric applied to the fruit within the boxes more costly as far as number of samples than the 
plans that use the binomial applied to the fruit within the boxes. This brings us to the questions. What 
are the differences in detection between the alternative plans? What approach is best?  
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Figure 22 Two-stage with binomial distribution for boxes and hypergeometric for the fruit without 
rounding A for fruit in the hypergeometric function. 

 

P is the desired detection of the sample plans. Sample plan designs which apply the binomial to a small 
population (number of fruit in the boxes) provide a very straight forward application of P in the plan; 
however, when P is applied to the hypergeometric sample plan design the 𝐴 (number of infested fruit 
per box) is the product of the sensitivity, the desired detection and the population 𝐴 = 𝑆𝑒 ∙ 𝑃 ∙ 𝑀. This 
product can produce an integer or a non-integer. If the product is a non-integer it must be adjusted to 
an integer, 𝐴’, for use in the hypergeometric distribution sample plan. The true detection of the sample 
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plan changes from the original desired detection, P, when this adjustment to an integer occurs.  The new 
sample-𝑝’ after the adjustment is as follows: 

𝑝′ = 𝐴′/(𝑀 ∙ 𝑆𝑒). (21) 

In our examples above Figures 19 and 22 P=0.05,Se=0.5 and M=66. The product is 1.65. In the Figure 19 
example 1.65 rounds to 2 and true detection of the sample plan is 0.061 which means the 
sample/inspection would detect an infestation larger than 6.1% with 95% confidence rather than the 
planned 5%. The absolute change is 1.1% fewer pests would be detected. The relative increase is 21% 
more pests getting through the sample/inspection undetected.  The two-stage sample is 6 boxes with a 
15 fruit subsampling per sample box. Total fruit sampled is 90. The Pr (infested subsample), the 
probability of an infested subsample equals 0.406. 

In the Figure 22 example 1.65 rounds down to 1 and true detection of the sample plan is 0.03 which 
means the sample/inspection would detect an infestation larger than 3% rather than the planned 5%. 
The absolute change is 2% more pests would be detected. The relative decrease is 39% fewer pests 
getting through the sample/inspection undetected. The two-stage sample is 6 boxes with a 26 fruit 
subsampling per sample box. The probability of an infested subsample, Pr (infested subsample), equals 
0.394. 

The average of these two plans is 20.5 which would round to a 21 fruit subsample per box. With 6 boxes 
sampled the total fruit sampled would be 126.  

If a straight line interpolation method is applied using the 0.65 from the 1.65 above the result would be 
6 boxes sampled with a subsample of 19 fruit per sampled box. Total fruit sampled is 114.  

These compare to the sample design applying binomial to the boxes and binomial to the fruit with in the 
box with a detection, P of 0.05 (5%) which when 6 boxes are sampled require a subsample of 20 fruit per 
sampled box. Total fruit sampled is 120.  The probability of an infested subsample, Pr (infested 
subsample) equals 0.397. 

Equation (5a) is hypergeometric Pr(𝑎 = 0)  𝑎𝑛𝑑 Pr(𝑎 > 0) = 1 − Pr (𝑎 = 0) to maintain the 
hypergeometric relationship the inputs must be integers. If 𝐴 is set to (𝑆𝑒 ∙ 𝑃 ∙ 𝑀) substituting M for N 
and m for n and not adjusting the 𝐴 an integer creates the following result: 

Pr(𝑖𝑛𝑓𝑒𝑠𝑡𝑒𝑑 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒) ≈ 1 − (𝑀−𝑆𝑒𝑃𝑀)!(𝑀−𝑚)!
(𝑀−𝑆𝑒𝑃𝑀−𝑚)!𝑀!

   (22)    

where 𝑆𝑒𝑃𝑀 not adjusted to an integer. 

The true hypergeometric probability relationship no longer exists when  𝐴 = (𝑆𝑒 ∙ 𝑃 ∙ 𝑀) is not an 
integer, which occurs frequently. However, equation (22) works well when 𝐴  is an integer as in the true 
hypergeometric relationship in equation (20).  If the equation (22) result is substituted into the equation 
for the probability of an infested subsample the result is as follows:  
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Pr(𝑎 > 0) =  1 − (1− (𝑀−𝑆𝑒𝑃𝑀)!(𝑀−𝑚)!
(𝑀−𝑆𝑒𝑃𝑀−𝑚)!𝑀! )n,   (23) 

where 𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡 = 𝑆𝑒 ∙ P ∙ 𝑀 . 

Note equation (23) has limited application, because most computers cannot compute >170!. 

When Pr(𝑎 > 0) =  0.95 𝑤𝑖𝑡ℎ 𝑆𝑒 = 0.5,𝑃 = 0.05,𝑛 = 6  the relationship has an  𝑚 = 18  and the 
total samples are 108. It is interesting that fruit per box sample is closest to the interpolated results 
above. 

Foe the calculations in this document the hypergeometric distribution function has based on the JMP 
function 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑀, 𝑟𝑜𝑢𝑛𝑑[𝑆𝑒 ∙ 𝑃 ∙ 𝑀, 0],𝑚, 0) which is the Pr(𝑎 = 0); 
however, the 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑀, 𝑟𝑜𝑢𝑛𝑑[𝑆𝑒 ∙ 𝑃 ∙ 𝑀, 0],𝑚, 0) can serve the same 
purpose because both provide equal results for Pr(𝑎 = 0) for identical inputs. Additionally the 
𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑀, [𝑆𝑒 ∙ 𝑃 ∙ 𝑁],𝑚, 0) function accepts non-integers and yield results 
which match equation (23), and the hypergeometric probability function is not limited by the population 
size. The JMP 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 function appears to be using the Gamma function to 
calculate probability.  Sample designs developed using the JMP hypergeometric probability function 
provide solutions when 𝐴 is not an integer. It appears to find solutions between the hypergeometric 
integer solutions. Using the JMP hypergeometric probability function issues involving sample-p’ and A’ 
because the actual 𝐴 (𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡) = 𝑆𝑒 ∙ 𝑃 ∙ 𝑀 can be applied in the JMP hypergeometric probability 
function.  JMP Support was contacted concerning the use of the JMP hypergeometric probability 
function the contacted the complete response is in Appendix D. A summary of the response is as 
follows(JMP_Technical_Support and Archer 2011);  

• The Gamma function used to compute factorials (and combinations) in the Hypergeometric 
probability functions,  

• k! = Gamma(k+1)  where Gamma is as defined here 
http://en.wikipedia.org/wiki/Gamma_function, 

• JMP expects the hypergeometric probability function to only take integer values, 
• use of non-integer values little concerning and should be careful how the results are used, 
• When non-integer values are used can’t really be interpreted as probabilities, 

Using the equation 23 non-integer application may make sense because the non-integer represents a set 
of boxes where the average infestation per box is not exactly an integer. An example of this would be 
165 infested fruit in 100 boxes of 66 fruit per box. Assuming the sample plan is binomial for boxes and 
the rounded hypergeometric is applied to the fruit in the box, the rounded representation is 200 
infested fruit in 100 boxes of 66 fruit per box. If the JMP hypergeometric probability function is used on 
the fruit in the boxes the representation is 165 infested fruit. Taking advantage of the hypergeometric 
probability function’s use of non-integers seems reasonable. But caution must be used. Further study 
using simulation seems to be warranted and a better understanding of how it performs on small 
populations is necessary. 

http://en.wikipedia.org/wiki/Gamma_function
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Figure 23 displays graphs of the functional relationships for Pr(𝑎 > 0) the probability of a two-stage 
detection sample with 95% confidence. The inputs are P, the desired detection, Se, the inspection 
sensitivity, m, the number of boxes sampled and n, the number of fruit subsampled. In the sample plans 
the binomial distribution was applied to boxes for all Pr(𝑎 > 0) with the following different distribution 
strategies applied to the fruit.  

• hypergeometric with A rounded down,  
• hypergeometric with A rounded, 
• binomial applied to the fruit, and 
• equation 23 approximation applied to the fruit (JMP 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 function). 

Figure 23 

 

Figure 23 compares four strategies to develop a two-stage detection sample design. The functional 
relationships show points (𝐴 = 0) where the 𝑃𝑟(𝑎 > 0) for the hypergeometric sample design on fruit 
within the box would not respond to increases, n boxes or m fruit per box. This is because A for fruit is 
rounding to zero.  If there is no 𝐴 𝑖𝑛 𝑀 then the sample probability of 𝑎 𝑖𝑛 𝑚 𝑒𝑞𝑢𝑎𝑙𝑠 𝑧𝑒𝑟𝑜. If any part of 
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an integer in the hypergeometric function is rounded down then 𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡 = 𝑆𝑒 ∙ 𝑃 ∙ 𝑀 could be less 
than one and result in 𝑃𝑟(𝑎 > 0) = 0. This could happen frequently when 𝑀 is small. It depends on 
𝑏𝑖𝑔 𝐴 𝑓𝑟𝑢𝑖𝑡 = 𝑆𝑒 ∙ 𝑃 ∙ 𝑀. 

Sample plan development evaluation accommodate the example with 1800 boxes and 66 fruit per box 
as an example; however, it must also be applicable to shipments with 35 boxes with 20 fruit per box or 
any other combination.  Sample design needs to be flexible to apply to all inspection/sample situations. 
The issues the plan must address are the actual sample-p’ for fruit within the box and small values of A 
for fruit with in the box. When consignments contain few boxes, a situation frequent encountered at the 
plant inspection stations; applying the hypergeometric distribution to the boxes provides an advantage, 
as long as the number of boxes is not too small. Also, when the sample within the box is small the actual 
sample-p’ for the boxes and small values of A for boxes could easily become issues the sample plan must 
address. 

Figure 24 

 

A development structure is needed to account for the issues mentioned above when analyzing various 
sample plans. The JMP Profiler provides an excellent platform for this analysis (see Figure 24). Using this 
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approach the performance of sample plans can be compared across a wide range of alternatives. The 
number of boxes in the consignment, number of fruit per box, and the desired detection level can be 
observed to see now they interact. The effect of adjusting, Se the sensitivity could be evaluated in cases 
when inspectors vary in their performance (Gould 1995)or the detection of specific pests varies from 
commodity to commodity. The samples per box and the boxes sampled can be observed at various 
levels to determine and understand their effect on other variables. Sample-p’s functional relationship is 
set by A’ the adjusted big A for fruit. A’ is a function of P, the desired detection, Se, the sensitivity and 
M, the number of fruit within the box. Observing the interactions of variables plays a critical role in 
understanding the pros and cons of the sample plans.  

A combination of plans should provide a good solution. The binomial distribution and the 
hypergeometric rounded seem to provide several workable sample design applications. The binomial 
applied to boxes works well when the population of boxes is large for example 1800 boxes with 66 fruit 
per box. But this result does not work well as the number of boxes decreases. When the number of 
boxes decreases applying the hypergeometric distribution to the boxes becomes a resource saver; 
however, defining a point where this transition occurs is dependent on the variables that define the 
probability of an infested subsample. By studying various combinations of distributions area’s can be 
defined where the combinations work the best and areas where small population sizes cause 
relationships to break down.  
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Modeling Expert Opinion 

Sometimes it is necessary to rely on expert opinion when building a model. When experts have defined 
the minimum, maximum and most likely observation, the triangular distribution is logical to use as the 
basis for the model. The Pert distribution may offer a better alternative. The pert distribution is a special 
case of the beta distribution; however, the input parameters are much more easily understood than the 
beta parameters. It was developed in conjunction with project plan management. The Pert Project plan 
was where the Pert distribution was developed. For each task in the project plan the minimum, 
maximum, and the most likely time to complete the task were used to model the task completion.   

The Pert Distribution should be compared with the Triangle distribution where the mean is equally 
sensitive to each parameter. The PERT distribution therefore does not suffer to the same extent the 
potential systematic bias problems of the Triangle distribution, that is in producing too great a value for 
the mean of the risk analysis results where the maximum for the distribution is very large(Vose 2008). 

The standard deviation of a PERT distribution is also less sensitive to the estimate of the extremes. 
Although the equation for the PERT standard deviation is rather complex, the point can be illustrated 
very well graphically. Figure 26 compares the standard deviations of the Triangle and PERT distributions 
with minimum a=0, maximum b= 1, and varying most likely value c(Vose 2008). 

Figure 26 

 

The observed pattern extends to any set of values. The PERT distribution produces a systematically 
lower standard deviation than the Triangle distribution, particularly where the distribution is highly 
skewed (i.e. b is close to the minimum or maximum). As a general rule of thumb, cost and duration 
distributions for project tasks often have a ratio of about 2:1 between the (maximum - most likely) and 
(most likely - minimum), equivalent to c = 0.3333 on the figure above. The standard deviation of the 
PERT distribution at this point is about 88% of that for the Triangle distribution. This implies that using 
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PERT distributions throughout a cost or schedule model, or any other additive model with similar ratios, 
will display about 10% less uncertainty than the equivalent model using Triangle distributions. 

Although the Pert distribution is not available in JMP as such, it can be modeled in JMP since it is a 
special case of the beta distribution. JMP defines the Beta distribution as follows(SAS_Institute_Inc. 
2011):  

Beta Distribution 

The beta distribution has two shape parameters: α > 0 and β > 0. A threshold parameter 
(θ) and a scale parameter (σ) are additional arguments, where θ ≤ x ≤ θ + σ. The default 
value for θ is 0. The default value for σ is 1. 

Developing the functional relationships needed to translate the Pert parameters a, minimum, b, 
maximum, and c, most likely into the bets distribution parameters is as follows(Vose 2008): 

𝑃𝐸𝑅𝑇 (𝑎, 𝑏, 𝑐)  =  𝐵𝑒𝑡𝑎𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑥,𝛼,𝛽,𝜃(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑),𝜎(𝑠𝑐𝑎𝑙𝑒)) 

 

where: 

𝜃 = 𝑎, 

𝜎 = 𝑎 − 𝑏, 

𝛼 = (𝜇−𝑎)(2𝑐−𝑎−𝑏)
(𝑐−𝜇)(𝑏−𝑎) , 

𝛽 = 𝛼(𝑏−𝜇)
(𝜇−𝑎)

, and 

𝜇 = 𝑎+4 𝑐+𝑏
6

. 

The last equation for the mean is a restriction that is assumed in order to be able to determine values 
for 𝛼 and 𝛽. It also shows how the mean for the PERT distribution is four times more sensitive to the 
most likely value than to the minimum and maximum values. 

With these relationships a JMP table can be setup as follows: 
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The formulas can be entered into the profiler to get the following result: 

 

The Profiler displays functional relationships and interactions. The notch in the mode-beta density panel 
represents the point where the functions are undefined. The mode equals the mean at that point the 
denominator of the alpha function is zero. The Profiler also shows that some nonsense relationships can 
be defined for alpha and beta where the mode can be larger than the maximum or less than the 
minimum.  Caution must be used when using this tool. 

The use the Pert distribution can be demonstrated with a simulation. A team of experts indicates that 
implementing a certain set of cultural practices in the growing of fruit will curtail; pest survival. The 
team indicates that the probability of survival with the cultural practices ranges from 0.5 to 0.8 and is 
most likely to be 0.7.  The beta parameters are as follows: 

𝛼 = (𝜇−𝑎)(2𝑐−𝑎−𝑏)
(𝑐−𝜇)(𝑏−𝑎) = 3.66667, and  𝛽 = 𝛼(𝑏−𝜇)

(𝜇−𝑎)
= 2.33333.  

When the Pert distribution is defined with the beta distribution the sum of alpha and beta will equal 6. 
This can be used as a check that the parameters have been correctly estimated. If the population of fruit 
ranges from 750,000 to 1,250,000 the pest survival in the fruit can be simulated by applying the Pert 
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distribution to the probability of survival and the normal distribution to the population of fruit. Then the 
random binomial function can be used to simulate the number of infested fruit.  

The JMP table to accomplish this would appear as follows: 

 

 

To start bring the survivors into the Profiler and choose the simulator option. Next change the 
population from fixed to random and select normal distribution. For the p, probability of survival change 
fixed to random and select beta for the distribution then enter alpha=3.6667 and beta=2.333 and set 
the scale to 0.3. Then after some axis adjustment click the simulate button to get the result below: 
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The simulator result does not match what we expect when there are suppose to be 50% to80% survivors 
in 1,000,000 with a most likely value of 70%. When the Pert to beta conversion was done there was a 
position parameter theta; however, that option was not available in the simulator. The simulator 
assumes the starting position of zero. There is a way to adjust the simulation to the correct starting 
position. The formula for survivors in the data table needs to be adjusted by adding 0.5 the p in the 
binomial function. The updated table and formula are as follows: 
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The new simulation has results in the expected range as follows: 

 



45 

 

Pest Movement Mapping and Modeling 

The NPPO tracks exotic pest movement within the United States in conjunction with eradication efforts. 
Putting a point on a map provides a visual image of pest locations. This has proven to be a very effective 
method of putting the pest in context relative to population centers, commercial agriculture and natural 
resources. In some pest programs the date and location of each new interception is recorded and the 
data is mapped using map based software. The introduction of JMP 9 has allowed pest mapping in JMP 
plus the maps the animated of pest movement. 

The data set for Emerald Ash Borer (EAB) is provided below. 

 

It includes county, state, latitude, longitude and date. The added variables are the distances between 
interceptions in miles. These distances were calculated using great circle navigation. The formula is 
displayed. The most obvious use of this data is to make a map of the interceptions.  Maps can be made 
in several of the graph options. Using the bubble plot allow the inclusion of motion or animation in the 
maps. To create the bubble plot click on the graph button and select bubble plot. In the bubble plot 
build window move ‘Lat_’ to ‘Y’, ‘Long’ to ‘X’ and ‘Date_CON’ to ‘Time’ and optionally to ‘Color’ then 
clock ‘OK’. 
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The result is as follows: 
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Right click on the graph and choose ‘Background Map’. The set background map window opens. Select 
either or both an image option (Detailed Earth) and Boundaries (US Counties), and click ‘OK’. The result 
is as follows: 

 

One question to be answered was how far from the previous year’s interceptions should surveyors 
search for EAB. A model was built to predict the movement of EAB from year to year. The original data 
set was manipulated so that each interception observation could be compared with every observation in 
successive years. A variable was set-up that calculated the distances from the current year’s 
interceptions to the previous year’s interceptions. Then a generalized linear model was run on the 
distances based on year and state. Since the distances were all positive the exponential distribution and 
a reciprocal link function were used based on recommendations in  JMP® 9 Modeling and Multivariate 
Methods  (SAS_Institute_Inc. 2010). The model was set up in Fit Model and model results were as 
follows: 
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The model was significant with good fit. The effects tests were significant for both year and state. The 
parameter estimates were significant with the exception of NY, PA and WV. The profiler with simulator 
was created and the simulator was set up with the states random probability proportional to the 
number of observations for each state and the year was moved out to the end of the regression lines 
(June-July 2008) and the distribution was visually adjusted to cover a little more than a year. The results 
are shown below.  

Next the data were simulated to a JMP table. Remember the question to answer was how far out from 
last year’s interceptions should we be looking for EAB. The year to year distances distribution was 
analyzed and the results are provided below. The upper 95% tolerance limit was estimated to include 
95% of the distances and 99%, the distances were 431 miles and 487 miles respectively. The fix 
distribution all was run on the data. The best fit was a Normal 3 mix with means and sigmas of 268 (23), 
342 (51) and 576(167). The probabilities of the mix were 0.82, 0.13 and 0.05. After a presentation of the 
analysis and the results it was decided to increase the distance around last year’s interceptions to 450 
miles. 
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Appendix A 
 
A one-sided distribution-free tolerance bound Is equivalent to a one-sided distribution-free 
confidence bound for a percentile of that population. That is, a one-sided distribution-free lower 
(upper) 100(1-α)% tolerance bound that will be exceeded by (that will exceed) at lease 100p% 
of the population is the same as a distribution-free lower (upper) 100(1-α)% confidence bound 
for the 100pth percentile of the population(Hahn and Meeker 1991; Wilson 2011). 
 
The commodity population parameter of interest is the true Pth percentile of the commodity 
population of infested units, where 0 < P < 100. The true Pth percentile is the value above which 
(100 - P)% of the population lies and below which P% of the population lies.  The objective is to 
reject the null hypothesis if the true Pth percentile exceeds the specified action level (AL).  But, 
the true Pth percentile will never be known with 100% confidence because all possible 
measurements from the population cannot be obtained.  Hence the decision whether to reject 
the null hypothesis is made using the computed upper tolerance limit (UTL) for the Pth 
percentile, that is, by computing the upper 100(1-α)% confidence limit on the Pth percentile (see 
Decision Rule below).  A design with an α of 0.05 and a Pth percentile of 0.01 would mean that 
the decision will be made using the computed UTL for the 95% confidence limit on the 99th 
percentile. 
 
Hypothesis Being Tested is as follows:  

The null hypothesis (baseline assumption) is as follows: 
 
 Ho:  The true Pth percentile ≤ AL 
or equivalently, 
 Ho:  Less than P% of the population < AL 
 
The Ho is rejected if UTL <  AL, in which case the alternative hypothesis (Ha) is accepted 
as being true, where: 
 
 Ha:  More than P% of the population < AL 
 

The action level (AL) in most commodity sampling is 0. 
 
The sample designs require that samples are selected either using simple random sampling 
(SRS), or systematic sampling with a random start location to determine the commodity plant 
units for inspection or samples are collected and subsequently measured.   
 
Decision Rule and Number of Samples, n are determined as follows:  
 

The null hypothesis is rejected and the alternative hypothesis is accepted if the 
nonparametric (distribution-free) UTL for the Pth percentile is less than the specified 
action level (AL).  The nonparametric UTL is simply the maximum of the n 
measurements obtained from the population of interest, where n is computed using the 
assumed probability distribution. 
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Appendix B 
 
Hypergeometric sample size without sensitivity adjustment 
 
The following JMP script requires a population variable N and a sample detection variable P.   
 
t1 = :N; While(Hypergeometric Distribution(:N, :N * :P, t1, 0) < 0.05, t1 -= 1); If(Ceiling(t1 += 1) >= :N, :N, 

Ceiling(t1)) 
 
Hypergeometric sample size with sensitivity adjustment 
 
The following JMP script requires a population variable N, a sample detection variable P and inspection 

sensitivity.   
 
t1 = :N; While(Hypergeometric Distribution(:N, :N * :P, t1, 0) < 0.05, t1 -= 1); If(Ceiling((t1 += 1) / :SE) >= 

:N, :N, Ceiling(t1 / :SE)) 
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Appendix C 
Email from JMP Technical Support 
 
Hi Ned, 

It seems that JMP consistently takes the floor of non-integer vales EXCEPT in the negative binomial.  
Please see below for the full breakdown: 

Gamma Poisson - for non integer x JMP takes the floor of x, so Gamma Poisson Probability( 6, 2, 2 ) = 
Gamma Poisson Probability( 6.01, 2, 2 ) = Gamma Poisson Probability( 6.9, 2, 2 ) 

Binomial - for non integer k JMP takes the floor of k.  This is also true for sample size N - JMP will take 
the floor of a non-integer N 

neg binomial - for non-integer k JMP takes the floor of k.  However for sample size n seems to change 
with all values so  

neg binomial distribution(.4, 20, 15); 

neg binomial distribution(.4, 20, 15.2); neg binomial distribution(.4, 20, 15.8); all produce the same 
value, but: 

neg binomial distribution(.4, 20, 15); 

neg binomial distribution(.4, 20.7, 15); neg binomial distribution(.4, 20.2, 15); all produce different 
values.  This actually seems like a bug - I am reporting it to development 

Beta Binomial - for non-integer x JMP takes the floor of x.  This is also true for sample size n - JMP takes 
the floor for non-integer n. 

Hypergeometric - JMP takes the floor for any non-integer value (N, K, n, x) 

Poisson - for non-integer x JMP takes the floor of x 

I hope this information is helpful. Let me know if you have follow-up questions, or need clarification. 

I will be happy to continue working with you should you have any follow-up questions regarding this 
matter simply reply to this email within 5 business days.  If this response has fully answered your 
question, there is no need to reply although I encourage you to respond to let me know if I have 
resolved this issue to your satisfaction. 

Best regards, Laura Archer 

JMP Technical Support 

SAS® … THE POWER TO KNOW 
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Appendix D 
 
Hi Ned, 
 
I heard back from the developer and he said the following 
 
"This is happening because we are using the Gamma function to compute factorials 
(and combinations) in the Hypergeometric probability functions. When k is an 
integer 
 
k! = Gamma(k+1)              where Gamma is as defined here 
http://en.wikipedia.org/wiki/Gamma_function 
 
I would expect the hypergeometric probability function to only take integer 
values. If the user is using these values, that’s a little concerning and they 
should be careful how they use the results. The values that they are getting 
can’t really be interpreted as probabilities." 
 
So basically it does look like they are aware that the values can be noninteger 
and the profile plot appears smooth, but they do not intend for non-integer 
values to be used.  Does this answer your question?  Give you the information you 
need?  Please let me know. 
 
Best regards, 
 
Laura Archer 
JMP Technical Support 
SAS® … THE POWER TO KNOW® 
 
 
 
 

http://en.wikipedia.org/wiki/Gamma_function

