Lure your Black Belts into Learning Statistical Tools by using Practical Examples

Don Lifke

[^0]
Overview

- Teaching statistical tools to reluctant Black Belt students can be a challenge
- One successful technique is to use examples that they can relate to, and to show that these tools can be applied outside their work lives as well
- Two such examples will be presented
- Use Fit Model to determine market value of a house
- Use Design of Experiments to optimize the golf drive

You want to sell your house. It has the following attributes:

- 2000 square feet
- 0.2 acre lot
- 2 years old
- 3 bedrooms
- 3 full bathrooms

What should your asking price be?

Exercise

- Students are given the Excel file below with data. They are given 5 minutes to explore the data in Excel.
- Students are asked to provide listing prices based on their analyses. They typically use average $\$ / \mathrm{ft}^{2}$.
- Listing Prices:
- \$
- \$
- \$

Students Provided Same Data in JMP

[E] JMP (SANDIA NATIONAL LABORATORIES) - [House Data for Summit Tutorial.JMP] - [House Data for Summit Tutorial] (mop Eile Edit Iables Rows Cols DOE Analyze Graph Tools yiew Window Help

- House Data for Sum		SF	Lot	Age	BR	Bath	Price	Price/sf
	1	1373	0.13	7	4	3	204962.96	149.281107
	2	1377	0.2	1	2	3	279461.24	202.949339
	3	2696	0.21	1	2	3.75	432115.58	160.28026
	4	2743	0.2	11	3	2.75	291085.68	106.11946
	5	1128	0.19	14	5	3.25	163331.78	144.797677
	6	3721	0.16	5	3	2	417458.93	112.189984
	7	3372	0.05	19	4	2.5	291889.4	86.5626928
	8	1342	0.1	20	4	4	91196.94	67.9559911
- Colurns (80)	9	1317	0.23	17	3	3	118951.58	90.3201063
$\triangle \mathrm{SF}$	10	2370	0.25	19	3	2.5	186523.51	78.701903
4 Lot	11	1645	0.18	9	5	4	277864.81	168.914778
\triangle Age	12	2306	0.08	0	4	2.75	339135.6	147.066609
4 BR	13	1356	0.23	1	2	3.25	254317.26	187.549602
\triangle Bath	14	2421	0.08	20	3	3.75	176160.96	72.7637175
\triangle Price	15	1801	0.17	11	4	3.75	245049.51	136.063026
Pricelsf	16	2195	0.19	17	2	3.5	195129.12	88.8970934
\triangle Bogus	17	2172	0.15	13	4	4	253373.93	116.654664
	18	2002	0.17	1	4	2.75	360202.51	179.921334
	19	1851	0.2	11	4	3.5	261394.12	141.217785
	20	2520	0.1	13	3	4	259948.18	103.15404
	21	2102	0.05	14	2	3.75	177637.02	84.5085728
	22	2533	0.08	11	3	3.25	285993.76	112.90713
	23	2983	0.11	0	4	2	442720.07	148.414371
- Rows	24	3249	0.23	2	5	3	468637.93	144.240668
All rows 30	25	1585	0.2	19	2	3.75	135501.42	85.4898549
Selected 0	26	1560	0.24	0	5	3	360846.46	231.311833
Excluded 0	27	3319	0.14	2	2	2.75	442828.35	133.422221
Hidden 0	28	3691	0.21	10	3	3.25	450724.35	122.114427
Labelled 0	29	1484	0.1	20	2	2	49746.35	33.5217992
	30	3619	0.11	17	5	2	338789.82	93.6142083

Sandia National Laboratories

Exercise: What Will Your Listing Price Be?

Based on Analysis of the distribution of Price/ft² :

Average $=\$ 124.36 / \mathrm{ft}^{2}$
Therefore, $\$ 124.36 / \mathrm{ft}^{2} \times 2,000 \mathrm{ft}^{2}=\$ 248,720$

Students Analyze JMP Data

- More observant students might say there's a fixed price as well as a cost per square foot
- Perform a Fit Y by X for Price vs. ft^{2}
- Add a Line Fit

$$
\text { Price }=\$ 45,962+\$ 101.34^{\star} f \mathrm{ft}^{2}=\$ 248,642
$$

Analysis of Variance				
Source	DF	Squares of	Mean Square	F Ratio
Model	1	$1.8791 e^{+}+11$	$1.879 \mathrm{e}+11$	28.1954
Error	28	$1.8661 \mathrm{e}+11$	$6.6647 \mathrm{e}+9$	Prob $>$ F
C. Total	29	$3.7452 \mathrm{e}+11$		$<.0001^{\star}$

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob $>\|\mathbf{t}\|$
Intercept	45962.927	45654	1.01	0.3227
SF	101.33845	19.0847	5.31	$<.0001^{*}$

Before Proceeding with the House Example, Teach Students Data Exploration using Cereal File

Sandia National Laboratories

A Few Setup Changes

- Rows \rightarrow Clear Row States
- File \rightarrow Preferences
- Click Reports
» Change Graph Marker Size to medium.
- Click Platforms
» Select Distribution. Under Options, select Stack.
- Click OK.

What Affects Calories?

Analyze \rightarrow Fit Y by X

Select Calories for \mathbf{Y}, those below for \mathbf{X}

Look Closer at Protein Right-click title bar - Fit Line

Summary of Fit	
RSquare	0.495772
RSquare Adj	0.488958
Root Mean Square Error	35.46409
Mean of Response	140.5263
Observations (or Sum Wgts)	76

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	91509.03	91509.0	72.7589
Error	74	93069.92	1257.7	Prob $>$ F
C. Total	75	184578.95		$<.0001^{*}$

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>\|t| |
| :--- | ---: | ---: | ---: | :--- |
| Intercept | 74.874142 | 8.705646 | 8.60 | $<.0001^{*}$ |
| Protein | 20.200669 | 2.368223 | 8.53 | $<.0001^{*}$ |

Look Closer at Fat Right-click title bar - Fit Line

Bivariate Fit of Calories By Fat

Linear Fit
Calories $=110.77451+20.555796$ Fat

Summary of Fit	
RSquare	0.4173
RSquare Adj	0.409425
Root Mean Square Error	38.12395
Mean of Response	140.5263
Observations (or Sum Wgts)	76

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	77024.73	77024.7	52.9949
Error	74	107554.22	1453.4	Prob $>$ F
C. Total	75	184578.95		$<.0001^{*}$

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$
Intercept	110.77451	5.985571	18.51	$<.0001^{*}$
Fat	20.555796	2.82369	7.28	$<.0001^{*}$

Analyze \rightarrow Fit Model Calories in Y , all below that in X

Select Personality \rightarrow Stepwise, Run Model Change Direction to Mixed

A Few Changes First

- You already changed direction to Mixed.
- Change "Prob to Enter" and "Prob to Leave" to 0.100

Click Step and Watch Factors Get Added to the Model

Click Make Model

Click Run Model

What is the Effect of Protein Now?

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
Intercept	-4.230658	3.478264	-1.22	0.2281
Protein	1.3019557	0.721158	1.81	0.0754
Fat	7.414865	0.582652	12.73	$<.0001^{\star}$
Fiber	-3.874463	0.308004	-12.58	$<.0001^{*}$
Tot Carbo	0.8724868	0.291431	2.99	0.0038^{\star}
Wt/serving	2.755463	0.260157	10.59	$<.0001^{*}$
cups/serv	10.097625	3.527139	2.86	0.0056^{\star}

Recall that it was 20.2 calories per g when we just looked at calories vs. protein. Nutritionists tell us that the real number is 4 calories per g of protein.

What is the Effect of Fat Now?

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
Intercept	-4.230658	3.478264	-1.22	0.2281
Protein	1.3019557	0.721158	1.81	0.0754
Fat	7.414865	0.582652	12.73	$<.0001^{\star}$
Fiber	-3.874463	0.308004	-12.58	$<.0001^{\star}$
Tot Carbo	0.8724868	0.291431	2.99	0.0038^{\star}
Wt/serving	2.755463	0.260157	10.59	$<.0001^{*}$
cups/serv	10.097625	3.527139	2.86	0.0056^{\star}

Recall that it was 20.6 calories per g when we just looked at calories vs. fat. Nutritionists tell us that the real number is $\mathbf{9}$ calories per \mathbf{g} of fat.

The Model is Revealing

Calories per gram	Individual Fit Y by X	Fit Model	Nutritionists ${ }^{1}$
Protein	20.2	1.3	4
Fat	20.6	7.4	9

${ }^{1}$ http://www.nutristrategy.com/nutrition/calories.htm

Right-click Response Calories title bar Select Factor Profiling \rightarrow Profiler

Scroll Down to Prediction Profiler

Try moving the vertical lines.

Which factors could you change in order to reduce calories?

Back to the House Exercise

You want to sell your house. It has the following features:

- 2000 square feet
- 0.2 acre lot
- 2 years old
- 3 bedrooms
- 3 full bathrooms

You Want to Sell Your House

- Your real estate agent pulls up the set of data for recent home sales in your zip code, and tells you the average selling price was $\$ 124.36$ per square foot.
- Your real estate agent breaks out the calculator and tells you your home is worth $\$ 124.36 / \mathrm{ft}^{2} \times 2,000 \mathrm{ft}^{2}=\$ 248,720$.
- Your real estate agent tells you to list your house for \$260,000. "That leaves a little room for negotiating," they explain.
- You're just about to sign the listing paperwork, but you remember the modeling you just learned using cereal data

Should You Listen to Your real estate agent? Exercise

- Create a model for home price, including only significant factors.
- Determine the value of your home based on the model.
- Capture the students' listing prices on the board.
- Are these much different than what your real estate agent recommended?

Solutions

Create a model for home price, including only significant factors.

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$
Intercept	3242.1849	28037.38	0.12	0.9089
SF	100.26837	4.377378	22.91	$<.0001^{*}$
Lot	228519.2	55577.05	4.11	0.0004^{*}
Age	-9954.605	456.565	-21.80	$<.0001^{*}$
BR	14362.019	2925.965	4.91	$<.0001^{*}$
Bath	19803.935	5364.676	3.69	0.0011^{*}

Prediction Expression

What Does the Model Tell You?

- Which factors are statistically significant?
- What are the coefficients for these factors?
- In particular, what is the coefficient for \$/square foot?

Solutions

Determine the value of your home based on the model.

$3242.18-100.27 *(2000)+228519.20 *(0.2)-9954.60 *(2)+14362.02 *(3)+19803.93 *(3)=$ \$332,075

Should you listen to your real estate
agent and list your house for $\$ 260,000$?

A Different Approach

- Three types of variables
- Continuous
» Time
» Distance
- Ordinal
» Character data with an order (poor, fair, good, better, best)
» Numerical data with unequal spacing (4 = strongly agree, 3 = agree, 2 = disagree, 1 = strongly disagree)
- Nominal
» Character data with no specific order (green, blue, yellow)
» Numerical data with no specific order (NASCAR car \#)
- Should BR and Bath be treated as continuous variables?
- What if we had treated them as Ordinal Variables?

Treating BR and Bath as Ordinal

- If Time Permits, change BR and Bath to Ordinal and redo the analysis

OHouse Data for Sum		SF	Lot	Age	BR	
	1	1373	0.13	7	4	
	2	1377	0.2	1	2	
	3	2696	0.21	1	2	
	4	2743	0.2	11	3	
	5	1128	0.19	14	5	-
	6	3721	0.16	5	3	- Columns (7.0)
	7	3372	0.05	19	4	$\triangle \mathrm{SF}$
	8	1342	0.1	20	4	4 Lot
- Columns (7M)	9	1317	0.23	17	3	4 Age
4 SF	10	2370	0.25	19	3	ER
\triangle Lot	11	1645	0.18	9	5	\triangle Price
	12	2306	0.08	0	4	\triangle Pricelst ${ }^{\text {¢ }}$
	13	1356	0.23	1	2	
\checkmark Continuous	14	2421	0.08	20	3	
Ordinal	15	1801	0.17	11	4	
Nominal	16	2195	0.19	17	2	
		2470			4	

Sandia
National
Laboratories

Use Prediction Profiler

What is the predicted price now?

Sandia
National

One More Tip: Visually Display your Data!

How many dimensions are shown in this single graph?

Practical Application of Design of Experiments: Optimize the Golf Drive

- Simple Golf Example
- We want to increase the distance of our golf drive
- We suspect changing distance from the ball and right hand position may be factors
- How would you approach increasing drive distance by varying these factors?

Design of Experiments vs. Traditional Approach

- Traditional Approach
- Vary one factor at a time
- Look for changes
- Experimenters call this an OFAT experiment (One Factor At a Time)
- Problems with Traditional Approach
- Does not catch interactions
- Requires multiple experiments (one for each factor)

Suppose our Distance vs. Two Factors Looks Like This

The Traditional Approach

- Vary "distance from ball" in one experiment (blue line)
- Vary "right hand position" in another experiment (red line)
- Our conclusion would incorrectly be, "Neither factor affects distance."

Is There a Better Way?

- A Designed Experiment would Change Both Factors Simultaneously
- Example: 2-factor, 2-level Full Factorial
- There are 2 factors at two levels, or $\mathbf{2}^{\mathbf{2}}$ combinations

	Distance from ball	Right hand
1	Close	Weak
2	Close	Strong
3	Far	Weak
4	Far	Strong

Using DOE on the Golf Swing

- I've taken various golf lessons throughout the past 10 years
- Once I learned DOE, I quickly realized I was a victim of the OFAT approach to experimental design during these lessons
- Some of the factors instructors typically vary:
- Right Hand Position (Weak to Strong)
- Stance Width
- Distance to Ball (Reach)
- Ball Forward / Backward in Stance

A Better Way

- As instructors identified the "optimum" for a particular factor, they found that I had to readjust the other factors as well, to compensate for the change in the one factor.
- This told me that I had interactions present.
- This was a great opportunity to apply DOE.
- Disclaimer: I am not very good at golf. Sample video:

Designing The Experiment

- Used Custom Design Response Surface Methodology (RSM)
- Three Replicates and Four Center Points
- Results in 80 runs (80 balls)

My Design

Four Factors at Three Levels Each

- Right Hand
» Weak
» Neutral
» Strong
- Stance Width
» Narrow
» Normal
» Wide
- Distance to Ball
" Close
» Middle
» Far
- Ball in Stance
» Back
" Middle
» Forward

Right Hand Settings

The Other Factors

Used a mat as a template

Sandia
National
Laboratories

The Other Factors

Stance Width

Sandia
National
Laboratories

The Other Factors

Distance to Ball

The Other Factors

Ball in Stance

Experiment Details

Settings for the First 20 Balls

Ball	Right Hand	Stance Width	Distance to Ball	Ball in Stance
1	Neutral	Normal	Middle	Middle
2	Neutral	Normal	Middle	Middle
3	Neutral	Normal	Middle	Middle
4	Neutral	Wide	Far	Forward
5	Neutral	Normal	Middle	Middle
6	Weak	Narrow	Middle	Back
7	Weak	Wide	Far	Back
8	Strong	Wide	Far	Middle
9	Weak	Wide	Close	Middle
10	Strong	Narrow	Far	Forward
11	Weak	Normal	Close	Back
12	Strong	Narrow	Far	Forward
13	Weak	Narrow	Far	Middle
14	Strong	Wide	Far	Middle
15	Neutral	Normal	Middle	Middle
16	Weak	Wide	Middle	Forward
17	Strong	Narrow	Close	Middle
18	Weak	Wide	Far	Back
19	Weak	Normal	Far	Forward
20	Weak	Wide	Middle	Forward

The Design Space

Sample of Some of the "Extreme" Set-ups

Experiment Location

Albuquerque International Balloon Fiesta Park Very heavy rough (little or no roll)

The Methodology

- Number 80 balls
- Hit balls in randomized order
- Track ball location using GPS
- GPS receiver on laptop
- Accurate to within 5 feet
- Convert GPS coordinates to distance and angle

What about Outliers?

- Complete shanks were rerun at the end (still random)
- These were expected ... DOEs should start by pushing variables to the extremes
- For example, hitting a ball with a narrow stance, far reach, and the ball back in your stance is tough to do for an amateur like me

What about Outliers?

- Even after Re-hitting Shanks, there were Still Some Outliers
- I Excluded These because they were "Semishanks"

Results (Excluding Seven Outliers)

Taking a Closer Look

Prediction Profiler

Optimum Settings for Me

Right Hand $=0.18$
» Weak = -1
» Neutral = 0
»Strong = 1
Stance Width = 1
» Narrow = -1
» Normal = 0
» Wide = 1

Distance to Ball = 1
» Close = -1
» Middle $=0$
» Far = 1
Ball in Stance $=-1$
» Back = -1
» Middle = 0
» Forward = 1

What about Angle?

- In addition to learning what settings are optimum, I also learned what angle I can expect the ball to fly
- My GPS data allowed me to calculate angle data (in addition to distance data)

What about Angle?

- An "Aha!" moment for me: I need to align my feet 6 degrees left of my target

Prediction Profiler

What about Angle?

- I need to align my feet 6 degrees left of my target

Significance of Factors

Sorted Parameter Estimates

Term

(Stance Width C-0.06849)*(Ball Forward in Stance C-0.0274)
Right Hand C
(Distance to Ball C-0.06849)*(Ball Forward in Stance C-0.0274)
(Right Hand C+0.09589)* (Right Hand C+0.09589)
Distance to Ball C
Ball Forward in Stance C
(Right Hand C+0.09589)*(Ball Forward in Stance C-0.0274)
(Right Hand C+0.09589)*(Stance Width C-0.06849)
(Stance Width C-0.06849)*(Stance Width C-0.06849)
Stance Width C
(Ball Forward in Stance C-0.0274)*(Ball Forward in Stance C-0.0274)
(Stance Width C-0.06849)*(Distance to Ball C-0.06849)
(Right Hand C+0.09589)*(Distance to Ball C-0.06849)
(Distance to Ball C-0.06849)*(Distance to Ball C-0.06849)

"Ball in Stance" and "Stance Width" interaction

Use Data Filter to see Various Combinations such as Back \& Wide

Graph Builder

Data Filter			
8 matching rows			
Select	Show		Include
Right Hand			
Neutral	Strong	Weak	
Stance Width			
Narrow	Normal	Wide	
Distance to Ball			
Close	Far	Middle	
Ball Forward in Stance ??? (2)			
Back (20)			
Forward (24)			
Middle (36)			

Validating Results

- Unfortunately, access to Balloon Fiesta Park is a paperwork nightmare
- The true test is on the golf course
- I've been playing golf with my brother for 15 years and have never beat him
- With this new set-up, I tied him (missed a birdie putt on 18 or I would have beat him)
- I played my very next round in Phoenix. I strive for 6 pars, and only accomplish that about half the time. I had 11 pars that day!

Other Applications of DOE

- Design of New Equipment, such as a new putter
- What Factors are significant with respect to minimizing putt variation?
» Moment of Inertia?
» Center of Gravity?
» Shaft Length?
- Comparing Existing Equipment
- Is a hybrid better than an iron?
- Which driver loft angle, shaft material, and shaft length are best for me?

Conclusion

- This portion of the presentation wasn't about showing you how I improved my game; it was about showing you how DOE can be used even on the most obscure processes
- Design of Experiments was used to Optimize the Set-up
- Right Hand Position (Weak to Strong)
- Stance Width
- Distance to Ball (Reach)
- Ball Forward / Backward in Stance
- The Interaction between Ball in Stance and Stance Width would have never been detected by varying only one of these at a time!
- A well-designed experiment can give us much more information at a fraction of the cost of multiple experiments

Student Feedback on Using Practical Examples

- "Great new ways to simply look at existing data"
- "Tools and modeling should be added to BB training"
- "Make it (statistical modeling) mandatory for BB certification"
- "The examples were great. They really held my interest much more than boring technical examples."

Questions / Discussion

"... all models are wrong; the practical question is how wrong do they have to be to not be useful ..."

George Box and Norman Draper, Empirical Model Building and Response Surfaces, John Wiley, 1987, pg. 74

[^0]: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

