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ClassifiCation of Breast CanCer Cells Using JMP®

Abstract

This paper illustrates some of the features of JMP that support classification and 
data mining. We will utilize the Wisconsin Breast Cancer Diagnostic Data Set, 
a set of data used to classify breast lumps as malignant or benign based on 
the values of 30 potential predictors, obtained by measuring the nuclei of fluid 
removed using a fine needle aspirate. We begin by illustrating some visualization 
techniques that help build an understanding of the data set. After partitioning 
our data into a training set, a validation set and a test set, we fit four models 
to the training data. These include a logistic model, a partition model and two 
neural net models. We then compare the performance of these four models 
on the validation data set to choose one. The test set is used to assess the 
performance of this final model. 

1. Introduction

The purpose of this paper is to illustrate a number of features of JMP that 
support classification and data mining. We acknowledge at the outset that JMP 
is not intended to be a complete data mining package. However, it contains a 
number of modeling techniques that can be profitably used in data mining. It is 
our goal to show how a classification model can be fit relatively efficiently using 
JMP capabilities.

To illustrate these techniques, we will use a published data set, the Wisconsin 
Breast Cancer Diagnostic data, which is described in detail in the next section. 
For now, we only mention that the response of interest is whether a tumor is 
malignant or benign, and we will attempt to classify into these two categories 
using 30 potential predictors. After we describe the Wisconsin study and the 
data set, we will show ways to visualize this data, and then we will fit four 
classification models using three techniques: logistic modeling, recursive 
partitioning, and neural nets. We conclude with a comparison of the four 
classification models, choosing the best one based on performance on a 
validation subset of our data set.

2. The Wisconsin Breast Cancer Diagnostic Data Set

The Wisconsin Breast Cancer Data Set arises in connection with diagnosing 
breast tumors based on a fine needle aspirate (Mangasarian, OL, et al., 1994). 
In this study, a small-gauge needle is used to remove fluid directly from the lump 
or mass. The fluid is placed on a glass slide and is stained, so as to reveal the 
nuclei of the cells. A software program is used to determine the boundaries 
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of the nuclei. A typical image consists of 10 to 40 nuclei. The software computes 
10 characteristics for each nucleus: radius, perimeter, area, texture, smoothness, 
compactness, number of concave regions and size of concavities (a concavity is an 
indentation in the cell nucleus), symmetry, and fractal dimension of the boundary (a 
higher value means a less regular contour). (For more detail on these characteristics, 
see Street, WN, et al., 1993.)

A set of 569 images was processed as described above. Since a typical image 
can contain from 10 to 40 nuclei, the data was summarized. For each variable, 
the Mean, Max and Standard Error of the Mean were computed. These are the 
30 variables in our data set. The model developed by the researchers utilized a 
linear programming method that identified separating hyperplanes. Using all 569 
observations, a classification accuracy of 97.3 percent was achieved. Even more 
remarkably, the next 131 cases that were analyzed were classified with 100 percent 
accuracy. Our final model utilized only three variables: Mean Texture, Max Area, and 
Max Smoothness.

We will utilize this data set in illustrating some of JMP software’s capabilities in 
the area of classification analysis. The data set can be downloaded from the UCI 
Machine Learning Repository at
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). 
JMP versions of this data set with embedded scripts that can be used to develop 
predictive models can be downloaded from http://www.jmp.com/fileexchange. 

Breast Cancer Data Files:

BreastCancerClassification_Raw.jmp – This consists of the raw data and only two 
columns defined by us, namely the Data Set Indicator column (to ensure the same 
analysis data sets) and the Random Unif column on which the previous column is 
based. The user can utilize this data file to recreate, from scratch, the analyses in this 
paper.

BreastCancerClassification_Scripts.jmp – This data file contains scripts for most 
analyses, but the user must run these, save columns, and add formula columns to 
complete the analyses.

BreastCancerClassification.jmp – This data file contains the scripts that are in the 
file above as well as all of the added columns.

3. Training, validation and test sets

Our plan will be to construct models using three approaches: logistic regression, 
recursive partitioning and neural nets. These will be constructed using a portion of 
our data called the training set. Since bias (resulting from a tendency to overfit) 
may be built into these models as a result of being fit using the training data, we will 
assess these models relative to their performance on a hold-out portion of our data, 

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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an independent data set called the validation set. The best model will be chosen, 
and, again, because choosing a model based on the validation set can also lead 
to overfitting, we will confirm the performance of the chosen model on another 
independent data set, called the test set. (See Bishop, CM, 1995, and Ripley, BD, 
1996.)

Once again, if you wish to recreate our analysis on your own, use the data table 
BreastCancerClassification_Raw.jmp. If you want to do part of the work on your 
own, use BreastCancerClassification_Scripts.jmp. Otherwise, you will find all of 
the following work included in our working data table, BreastCancerClassification.jmp.

We begin by splitting our data set of 569 rows into three portions: a training set 
consisting of about 60 percent of the data, a validation set consisting of about 20 
percent of the data, and a test set consisting of the remaining 20 percent of the 
data. We accomplish this in JMP by defining a new column, called Random Unif, 
containing the formula Random Uniform(). We then define another new column, 
called Data Set Indicator, using a formula (shown in Figure 1) that assigns rows to 
one of the three data sets based on the value of the random uniform value assigned 
in the column Random Unif. Note that we have hidden and excluded the column 
Random Unif, since it is not needed in what follows. To Hide and Exclude a 
column, right-click on the column name in the Columns panel, and choose Hide 
and Exclude. Two little icons will appear to the right of the column name to indicate 
that it is hidden and excluded.

 

Figure 1.  Formula defining assignment to data sets

Now we need to make these three data set assignments convenient for use as we 
explore the data and fit models. We do this through the use of row state variables. 
A row state variable is a column whose contents are row states, namely attributes, 
such as Exclude, Hide and Select, that are applied to certain rows. 
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To create a row state variable, we start by defining a new column. In the Column 
Information window, under Data Type, choose Row State. Then click OK. This 
defines the new column as a row state column. We create three new columns in this 
fashion, calling them Training Set, Validation Set and Test Set. 

We would like the column Training Set, when applied to the data table, to exclude 
and hide all rows that are not part of the training set. To accomplish this, we first 
apply this configuration to the data table, namely, we exclude and hide all rows that 
are not part of the training set. We go to Rows > Row Selection > Select Where, 
and select all rows where Training Set Indicator does not equal Training Set. We 
then choose Rows > Exclude and Rows > Hide. This inserts Exclude and Hide 
icons next to the selected rows. Finally, deselect the rows by left-clicking in the lower 
left triangular region in the upper left of the data grid, as shown in Figure 2. This 
deselects the rows, but retains the Exclude and Hide row states. 

Figure 2.  Lower triangular region of the data grid corresponding to rows

Finally, to insert these row states as values into the row state variable Training Set, 
we go to the Columns panel in the data table window, shown in Figure 3. Click on 
the star next to the row state variable, and choose Copy from Row States. We 
enter values into the three columns Training Set, Validation Set and Test Set using 
this procedure. 
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Figure 3.  Columns panel showing choice for copying row states into the column  
Training Set 

To further enhance our understanding of the data, it will be useful to color and/or 
mark the points in our plots according to the diagnosis. We will want to add this 
information to the row state variables that we have just created. Begin by going to 
Rows > Clear Row States. We will add colors and markers, and this will ensure that 
these are the only row states available at this time. Once row states are cleared, go 
to Rows > Color or Mark by Column, and click on Diagnosis. If you are following 
along on a computer, you can simply click Make Legend with Window, and JMP 
will color the points red and blue, based on whether the tumor is malignant or 
benign. A small legend window, which can be used to highlight points in plots, will 
also be created. To accommodate gray-scale printing of this paper, we also choose 
Standard Markers from the Markers drop-down menu. The markers for malignant 
masses are circles and the markers for benign masses are plus signs. When we click 
OK, the markers appear in the row margins. Now, for each row state variable in turn, 
we click the star to the left of that variable in the Columns panel and we choose Add 
From Row States. (Do this with care – it is easy to make mistakes!)
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Just in case our colors and markers disappear, we create another row state column 
called Diagnosis Colors. We Copy from Row States so that this new variable 
contains the colors (and markers) that we have just defined. If you are creating these 
columns on your own, now is a good time to save your work!

To apply these row states as we need them, we will now simply be able to click on the 
star corresponding to the appropriate data set column, and choose Copy to Row 
States.

4. Data visualization

4.1 One variable at a time

At this point, no rows should be excluded or hidden. This can be verified by checking 
the Rows panel, shown in Figure 4, and noting that no rows are Excluded or 
Hidden. If there are excluded or hidden rows, go to Rows > Clear Row States. 
This removes all row states. Then go to the row state variable Diagnosis Colors 
in the Columns panel, and select Copy to Row States to reinstate the colors.

Figure 4.  Rows panel

We want to see distribution reports for all of our variables. To do this, go to Analyze 
> Distribution and populate the launch window as shown in Figure 5. 
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Figure 5.  Launch window for distribution platform

Clicking OK results in 31 distribution reports, the first five of which are shown in Figure 6. 
The vertical layout for the graphs is the JMP default. However, this can be changed 
under File > Preferences. The bar graph corresponding to Diagnosis indicates that 
212, or 37.258 percent, of the tumors included in the study were malignant. Scrolling 
through the plots for the 30 predictors, one can assess the shape of the distributions 
and the presence of outliers. We note that most distributions are skewed to the right 
and that there may be some outliers (for example, there may be two outliers for SE 
Concavity). One can also determine, by looking at N under Moments, that there are 
no missing values for any of the variables. 

Figure 6.  First five of 31 distribution reports
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The script that generates the analysis in Figure 6 is saved to the data table as 
Distribution – 31 Variables. It can be found in the Table panel at the upper left 
of the data table. To run a script, simply click on the red triangle and choose Run 
Script.

4.2 Two variables at a time

In this section, we consider the issue of bivariate relationships among the variables. 
Of special interest is whether the predictors are useful in predicting Diagnosis. 

For initial insight on this issue, we can utilize our Distribution output. Go to the bar 
graph for Diagnosis, and click on the bar corresponding to M. This has the effect of 
selecting all rows in the table for which Diagnosis has the value M. These rows are 
dynamically linked to all open plots, and so, in the 30 histograms corresponding to 
predictors, areas that correspond to the rows where Diagnosis is M are highlighted. 
We show five of the histograms corresponding to Max values in Figure 7. Note that 
masses that are malignant tend to have high values for these five variables.  
By scrolling through, one can detect relationships with most of the other variables as 
well. For example, malignant masses tend to have smaller SE Texture values than 
do benign masses. One can click on the bar for Diagnosis equal to B for additional 
insight.

Figure 7.  Five histograms for Max variables, with areas for malignant diagnoses 
highlighted

 We are also interested in how the 30 predictors relate to each other. To see 
bivariate relationships among these 30 predictors, we will look at correlations and 
scatterplots. Go to Analyze > Multivariate Methods > Multivariate.  In the launch 
window, enter all 30 predictors, from Mean Radius to SE Fractal Dimension, as Y, 
Columns. Clicking OK results in a report that shows a correlation matrix. Go to the 
red triangle and choose Scatterplot Matrix from the drop-down menu. This gives a 
30 by 30 matrix showing all bivariate scatterplots for our 30 predictors (see Figure 8). 
The script that generates this output is saved to the data table as Scatterplots and 
Correlations.

We can think of radius, perimeter and area as variables that describe the size of the 
nuclei. From the 3-by-3 square at the top left of the scatterplot matrix (see Figure 
8), we see that Mean Radius and Mean Perimeter are highly correlated (see 
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Correlations panel, which gives r = 0.9979), not an unexpected result. We also see 
that Mean Area is highly correlated with both Mean Radius and Mean Perimeter, 
with an expected quadratic relationship.

Figure 8.  Portion of 30-by-30 scatterplot matrix corresponding to Mean variables

 We note that the Max size variables are also highly correlated among themselves (all 
correlations greater than 0.9776), as are the SEs of the size variables (all correlations 
greater than 0.9377).  These last details are easy to see if one clicks the red triangle 
next to Multivariate, and asks for Pairwise Correlations. (If you have run the script, 
this panel is already open.) Once in the Pairwise Correlations panel of the report, 
right-click, choose Sort by Column, and sort by Correlation.

It is also of interest to note that the Max size variables are fairly highly correlated with 
the Mean size variables. Again, this is not an unexpected result. 

The effects of multicollinearity for explanatory models are well-known. For predictive 
models, such are the ones that we will be constructing, the impact of multicollinearity 
is minimal, so long as future observations come from within the range of the 
multicollinear relationships. In other words, if multicollinear relationships are present, 
we can interpolate, but we should not extrapolate.

Further examination of the scatterplot matrix suggests that there may be a few 
bivariate outliers. We choose not to pursue these at this point. However, one might 
want to consider their inclusion in model-building since they have the potential to be 
influential.

Incidentally, this is a nice opportunity to remind the reader of one of the shortfalls of 
interpreting correlations of grouped data. Consider the two variables Mean Area and 
Mean Compactness. From the correlation matrix, we see that their correlation is 
0.4985, which seems somewhat substantial. To see the relationship between these 
two variables more clearly, we go to Analyze > Multivariate Methods > Multivariate, 
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and enter only Mean Area and Mean Compactness as Y, Columns.  Clicking OK 
gives the output in Figure 9 (the script is Scatterplot Matrix – Two Variables). There 
does appear to be some correlation. 

Figure 9.  Correlations and Scatterplot Matrix for Mean Area and Mean Compactness

 Now, we go back to Analyze > Multivariate Methods > Multivariate, click on 
Recall to repopulate the menu with the previous entries, and add Diagnosis as a 
By variable (the script is Scatterplots – By Diagnosis). The resulting output, shown 
in Figure 10, shows very little correlation between these two variables, based on 
Diagnosis grouping. The apparent correlation when the data is aggregated is a 
function of how the two Diagnosis groups differ relative to the magnitudes of the two 
predictors.

 

Figure 10.  Correlations and scatterplots for Mean Area and Mean Compactness  

by diagnosis
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4.3 More than two variables at a time

JMP provides several ways to visualize high-dimensional data. We will only look at a 
few of these.

To see the three-dimensional relationship among the three size variables, Mean Radius, 
Mean Perimeter, and Mean Area, we will go to Graph > Scatterplot 3D. Enter the 
three size variables as Y, Columns, and click OK. The resulting plot is a rotatable 3D 
plot of the data, shown in Figure 11. The script generating this plot is called Scatterplot 
3D. The dependencies of the three variables are striking. (Note that the markers and 
colors and the Legend window must be previously constructed through the Rows 
menu – this is not captured in the Scatterplot 3D script.)

Figure 11.  Three-dimensional view of Mean size variables, by diagnosis

It is possible to enter all 30 predictor variables as Y, Columns in the Scatterplot 3D launch 
window. When that is done, JMP allows the user to select three variables from the drop-
down menus at the bottom of the plot to be used for the axes. Figure 12 displays the 
3D scatterplot for three of the Max variables. Note that the two diagnosis classes have a 
reasonable degree of separation in this three-dimensional space. The script that generates 
this report is called Scatterplot 3D 2, and is saved to the data table.

 

Figure 12.  Scatterplot 3D for Max Radius, Max Concave Points and Max Texture, by diagnosis
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4.4 Comparison of analysis data sets

We might be interested in confirming that our training, validation, and test sets do not 
differ greatly in terms of the distributions of the predictors. JMP software’s Graph 
Builder (new in JMP 8), which is found under Graph, provides an intuitive interface 
for comparing the distributions of multiple variables in a variety of ways. The graph in 
Figure 13 utilizes boxplots to compare the distributions of the variable Area, for the 
Mean, Max, and SE groupings, across the training, validation and test sets. (The script 
that creates this output is saved as Graph Builder – Area.) We conclude that the 
distributions across the analysis sets are quite similar, with the exception of two outliers 
for SE Area that appear in the Validation and Test sets. We also note that the shapes 
of the distributions for the Mean and Max size values are similar as well.

Figure 13.  Boxplots of Mean, Max and SE of Area, by analysis data set

Figure 14 compares the distributions of Radius, Perimeter and Texture across 
analysis sets, using Graph Builder. The script that generates this graph is Graph 
Builder – Radius, Perimeter, Texture. Again, the distributions are quite similar, but 
we note the outliers on SE Perimeter for the validation and test sets. By selecting 
these two points in the graph in Figure 14, the points for the corresponding rows 
become selected in the graph in Figure 13, and we see that the outliers for SE 
Perimeter are the same rows as are outliers for SE Area.

Figure 14.  Boxplots of Mean, Max, and SE of Radius, Perimeter, and Texture, by analysis data set
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Now, we could have obtained boxplots for all 10 variables in the format shown in 
Figure 14. But, because of the differences in scaling, the boxplots for the rest of the 
variables would have appeared as horizontal lines, showing no detail whatsoever. So, 
a caveat in using Graph Builder is that variables need to be comparable in terms of 
scale in order for the type of display shown in Figure 14 to be meaningful.

Boxplots for the remaining variables, Smoothness, Compactness, Concavity, 
Concave Points, Symmetry and Fractal Dim, are shown in Figure 15. The script 
for this collection of graphs is called Graph Builder – Smoothness to Fractal Dim. 
Again, the distributions are roughly comparable across analysis data sets, although 
there is evidence of two outliers on SE Concavity in the training set.

 

Figure 15.  Boxplots for Mean, Max and SE of Smoothness through Fractal Dim, by 
analysis data set

5. Logistic model

At this point, we will begin the process of fitting classification models to our data. 
We will utilize only the training set for fitting models. So, we copy the values in the 
variable Training Set to the row states in our data table (click on the star to the right 
of Training Set in the Columns panel and select Copy to Row States). In the Rows 
panel, we should see that 222 rows are Excluded and Hidden.

5.1 A two-predictor model for visualization

Before fitting our “official” logistic model for classification, we want to take the 
opportunity to show what a logistic model, based on only two predictors, might 
look like. We will construct a surface plot for the predicted probability that a mass 
is malignant, based on a logistic model with only two predictors: Mean Perimeter 
and Mean Smoothness. The script for the model is Logistic – Two Predictors. For 
those following along using the data table BreastCancerClassification.jmp, first run 
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this script. Then, under the red tab in the Nominal Logistic Fit report, choose Save 
Probability Formula. This will save four new formula columns to your data table. In 
particular, we are interested in the predicted probability of malignancy, which is called 
Prob[M] 2. (The “2” is added because the data table already contains a column 
called Prob[M] from our comprehensive analysis, which we will run shortly.)

The surface plot in Figure 16 is obtained by going to Graph > Surface Plot, and 
adding Prob[M] 2, Mean Perimeter and Mean Smoothness as Columns. The 
surface represents the predicted probability of a malignant diagnosis (Prob[M] 2). The 
values of Prob[M] 2 are plotted for the points in our training set; recall that these points 
are represented as red circles for malignant tumors and blue plus signs for benign 
tumors. Note that a grid has been inserted at Prob[M] = 0.5. If you were to classify 
observations with Prob[M] values above 0.5 as malignant and below 0.5 as benign, 
then you can see that the classification rule would correctly classify a fair number of 
observations (to be exact, 312 of the 347 observations are correctly classified). 

Figure 16.  Logistic model based on Mean Perimeter and Mean Smoothness

 It’s important to realize that logistic regression results in an estimate of the 
probability of class membership, conditional on the values of the predictor variables. 
So, it makes sense to classify a new observation into the malignant class if and only 
if Prob[M] 2 exceeds (or equals) 0.5. (If you are following along and have saved 
columns based on this analysis, please delete them now.)

5.2 A comprehensive logistic model for classification

At this point, we consider fitting a model based on all 30 potential predictors. Our 
first issue relates to variable selection. We are given 30 potential predictors, but we 
could expand this set if we wished. For example, two-way interactions (such as the 
interaction of Mean Perimeter and Mean Texture, which might be a useful predictor) 
and/or quadratic terms could be explored in fitting classification models. This brings us 
quickly to an intimate awareness of the well-known “curse of dimensionality.” Even with 
only 30 predictors, there are well over 1 billion different possible logistic models.
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Why not simply use all 30 predictors? There are several reasons. Too many 
predictors can lead to overfitting. In other words, with enough predictors, it is 
possible to fit every point in a data set exactly. But such models tend not to 
generalize very well. So it is important to find a set of predictors that describes 
the structure of the data, and not the vagaries of individual points. Also, there 
can be computational issues when too many predictors are present. In particular, 
multicollinearity can degrade models obtained using certain algorithms (such as least 
squares regression). 

For our breast cancer data, if we fit a logistic model to Diagnosis using all 30 
predictors, we can perfectly classify every observation in our training set. But, when 
we apply the classification formula to our validation set, it behaves quite poorly. So 
it is important that we reduce the number of variables. We will do so using JMP 
software’s stepwise variable selection procedure.

We go to Analyze > Fit Model, where we enter Diagnosis as Y and all 30 of our 
predictors in the Construct Model Effects box. Under Personality, we choose 
Stepwise. This window can be obtained by running the script Stepwise Logistic 
Launch Window.

Clicking Run Model opens the Stepwise Fit report. This window allows the user 
to make stepwise selection choices similar to those available in linear regression 
analysis. Just as a reminder, forward and backward selection procedures consist, 
respectively, of entering the most desirable variable and removing the least desirable 
variable at each step. We will do our variable selection using a mixed procedure, 
meaning that each Enter step will be followed by a Remove step. To communicate 
this to JMP, we set Direction equal to Mixed. We also set both the Prob to Enter 
and Prob to Leave values at 0.15. This will allow variables with significance level 
below 0.15 to enter, and variables that have entered at a previous stage, but which 
now have significance levels exceeding 0.15, will be available to be removed. The 
Stepwise Regression Control panel is shown in Figure 17; it can be obtained by 
running the script Stepwise Fit Report.

Figure 17.  Stepwise Fit panel for logistic variable selection
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When we click on Go, seven variables are selected. Then, we click on Make 
Model. This results in a Fit Model window containing the specification for our seven 
predictor model (the script is called Stepwise Logistic Model). The report that 
opens when we click Run Model shows details about the model fit. Under the red 
triangle, for example, we can ask to view the Receiver Operating Characteristic 
(ROC) curve or the Lift curve. We will ask to Save Probability Formula. This saves 
a number of formulas to the data table, including Prob[M] and Prob[B] – the 
probability that the tumor is malignant or benign, respectively – as well as a column 
called Most Likely Diagnosis, which gives the Diagnosis class with the highest 
probability, conditional on the values of the predictors.

To see just how well the classification performs on the training data, we can now 
go to Analyze > Fit Y by X. Enter Most Likely Diagnosis as Y, Response, and 
Diagnosis as X, Factor. The resulting mosaic plot and contingency table are shown 
in Figure 18. Of the 347 rows, only five are misclassified. We remind the reader, 
though, that there is inherent bias in evaluating a classification rule on the data used 
in fitting the model. In a following section, we will compare our three models using 
the validation data set.

Figure 18.  Mosaic Plot and Contingency Table for classification based on logistic model

6. Recursive partitioning

Our next model will be fit using JMP software’s recursive partitioning platform, 
which provides a version of classification and regression tree analysis. The partition 
platform allows both response and predictors to be either continuous or categorical. 
Continuous predictors are split into two partitions according to cutting values, while 
categorical predictors (predictors that are nominal or ordinal) are split into two groups 
of levels. 
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If the response is continuous, the sum of squares due to the differences between 
means is a measure of the difference in the two groups. Both the variable to be split 
at a given level and the cutting value for the split are determined by maximizing a 
quantity, called the LogWorth, which is related to the p-value associated with the 
sum of squares due to the difference in means. In the case of a continuous response, 
the fitted values are the means within the two groups.

If the response is categorical, as in our case, the splits are determined by maximizing 
a LogWorth statistic that is related to the p-value of the likelihood ratio chi-square 
statistic, reported in the JMP output as G^2. In this case, the fitted values are the 
estimated proportions, or response rates, within groups.

The partition platform is useful for both exploring relationships and for modeling. It is 
very flexible, allowing a user to find not only splits that are optimal in a global sense, 
but also node-specific splits that satisfy various criteria. The platform provides only 
a minimal stopping rule – that is, a criterion to end splitting. This rule is based on 
a user-defined minimum node size. The platform does not incorporate any other 
stopping rules; this is advantageous in that it enhances flexibility. 

To fit our partition model, we go to Analyze > Modeling > Partition. Enter Diagnosis 
as Y, Response, and enter all 30 predictor variables as X, Factor. Clicking OK 
results in an initial report window. Under the red triangle, choose Display Options 
>Show Split Prob – this shows the split proportions in the nodes. This results in the 
report shown in Figure 19 (the script for this analysis is called Initial Partition Report 
Window). The graph shows the blue plus signs, indicating benign tumors, and the 
red circles, indicating malignant tumors, separated by a horizontal line at 0.36, the 
overall proportion malignant.

Figure 19.  Initial partition report window
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We begin to split by clicking on the Split button. JMP software’s algorithm 
determines the best variable on which to split and the best cutting value of that 
variable. The tree, after the first split, is shown in Figure 20. The first split is on the 
variable Max Concave Points, and the observations are split at the value where Max 
Concave Points = 0.14. Of the observations where Max Concave Points >= 0.14 
(the rightmost node), 96.40 percent are malignant. Of those for which Max Concave 
Points < 0.14, 91.95 percent are benign. 

Figure 20.  Partition report after first split

We continue to split for a total of eight splits. At this point, no further splits occur. 
This is because there is a default minimum split size of five and further splitting of 
nodes would result in nodes of smaller size than five. It is true that we could have 
stopped splitting before reaching eight splits. In fact, we may have overfit the data, 
given that some of the final nodes contain very few observations. 

The red triangle at the top of the partition report gives the user many options, 
including ROC Curve, Lift Curve, Leaf Report, K-Fold Cross Validation, etc. 
The Small Tree View that is provided is shown in Figure 21 – it summarizes the 
structure of our splits. This report is given by the script Partition Model. Under the 
red triangle, we go to Save Columns > Save Prediction Formula. This saves two 
new columns to the data table, Prob(Diagnosis==M) and Prob(Diagnosis==B). 
These columns give the predicted probabilities, which are simply terminal node 
proportions, of the respective Diagnosis classes. So, the classification rule consists 
of determining which node a new observation falls into, and predicting its probability 
of class membership based on the sample proportions in that node.
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Figure 21.  Small tree view for partition model

In the data table, we define a new column called Partition Prediction. We construct 
a formula to define this column; this formula classifies an observation as “M” if 
Prob(Diagnosis==M)>=0.5, and as “B” otherwise. Once this is done, we go to 
Analyze > Fit Y by X. We enter Partition Prediction as Y, Response, and Diagnosis 
as X, Factor. The resulting mosaic plot and contingency table are shown in Figure 
22. Of the 347 rows, 11 are misclassified. At first blush, this model does not seem to 
be performing as well as the logistic model. In a later section, we will compare it to 
the logistic model by evaluating it on the validation data set.

Figure 22.  Mosaic Plot and Contingency Table for classification based on partition model
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7. Neural net models

7.1 Background

As we mentioned earlier, data mining algorithms for classification and prediction 
can be based on neural nets. Neural net algorithms were originally inspired by how 
biological neurons are believed to function. Starting in the 1940s, scientists in the 
area of artificial intelligence pursued the idea of designing algorithms that “learn” in a 
fashion that emulates neurons in the human body.

The science of biologically informed computation had its origins in a seminal paper 
called “A Logical Calculus of Ideas Immanent in Nervous Activity,” by Warren 
McCulloch and Walter Pitts (both at MIT), published in 1943. This paper showed that 
the “ideas” in nerve cells were carried by the entire collection of neurons as a whole. 
They were implicit. (Immanent, in the title of the paper, means “having existence or 
effect only within the mind or consciousness” – Webster’s.) 

Research since these early days has leveraged the idea of utilizing neuron-based 
processing elements arranged in nets to produce the algorithms that appear today 
in neural net software. Neural nets are based on neuron-like processing elements 
arranged in nets. There is an input layer of neurons, an output layer, and a hidden 
layer where processing occurs. 

For some intuition on the way neural net algorithms work, consider the diagram in 
Figure 23, where a neural net is attempting to distinguish a golf ball from a football. 
Note that the neurons are arranged in three layers: input neurons, hidden neurons (the 
hidden layer), and output neurons. Neurons can be excited to various degrees – they 
are not completely “on” (excited, black) or “off” (unexcited, white). The input neurons 
are sensory, in that they react to a stimulus and output a value that reflects the 
intensity of that stimulus. A pattern of weights connects the remaining neurons and 
determines the degree to which each is excited. The output and hidden layer neurons 
sum their inputs and compare this sum to a threshold value to determine their output.

The net learns when it makes an error. The degree of error is propagated back 
through the network. Connections that were wrong are down-weighted, while those 
that were correct are strengthened. Active neurons with strong connections that were 
wrong are strongly penalized. In our golf ball and football example, prior to training, 
the connection strengths and excitation levels would be random.
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Figure 23.  Schematic of a neural net being trained to distinguish a football from a golf ball

Now, in a mathematical sense, a neural net is nothing more than a nonlinear 
regression model. In its implementation of neural nets, JMP uses standard nonlinear 
least squares regression methods. Although a general neural net can have many 
hidden layers, one layer is considered sufficient for most modeling situations, and 
JMP utilizes a single hidden layer. Each hidden node is modeled using a logistic 
function applied to a linear function of the predictors. In a classification situation, such 
as ours, the output value consists of the logistic function applied to a linear function 
of the hidden nodes. This means that, for example, for 30 input variables, one 
response and k hidden nodes, the number of parameters to be estimated  
is 31*k + k + 1.

With so many parameters, it is easy to see that a major advantage of a neural net is 
its ability to model a variety of response surfaces. But the large number of parameters 
comes at a cost. There are many local optima, and convergence to a global optimum 
can be difficult. Also, with so many parameters, overfitting is problematic. (This is why 
validation sets are critical to neural net modeling strategies.) Another disadvantage of 
neural net models is that they tend not to be interpretable, due to the hidden layer.

JMP software’s implementation provides a user-specified overfitting penalty to help 
minimize overfitting issues. The overfitting penalty also helps mitigate the effects of 
multicollinearity. The user is able to set the number of nodes in the hidden layer. Here, 
a small number can lead to underfitting and a large number can lead to overfitting. 
Each application of the algorithm has a random start, and JMP refers to these 
individual fits as tours. About 20 tours are recommended in order to find a global 
optimum.

JMP also provides two methods to help a user select a neural net model that will 
extend well to new data. One of these methods is called Random Holdback. In this 
method, a sample of the observations is withheld (the holdback sample) and the 
remaining observations are used to train a neural net. JMP computes an R2 value 
for the training sample, and then applies the neural net to the holdback sample and 
calculates an R2 for that sample, which is called the crossvalidation R2, denoted CV 
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RSquare in the JMP report. The user can vary the number of nodes and the overfit 
penalty in an attempt to find a model that generalizes well to the holdback sample. 
This method works well for large samples, where one can easily fit a model to 75 
percent or fewer of the observations (JMP uses two-thirds of the complete data set 
by default).

The second method is called K-Fold Crossvalidation. Here, a neural net model is 
fit to all of the data to provide starting values. Then, the observations are divided 
randomly into K groups (or folds). Each of these groups, in turn, is treated as a 
holdback sample. For each of the K groups, a model is fit to the data in the other 
(K – 1) folds, using the starting values from the full fit. The model is then extended 
to the holdback group. An R2 is calculated for each holdback sample, and these are 
averaged to give a CV RSquare that represents how the model might perform on 
new observations. (The starting values from the full fit are used because the function 
being optimized is multimodal, and this practice attempts to bias the estimates for 
the submodels to the mode of the overall fit.)

7.2 First model – Neural Net 1

We will begin by fitting a model to our breast cancer data without any use of 
crossvalidation. To fit a neural net model, we go to Analyze > Modeling > Neural 
Net. As usual, we enter Diagnosis as Y, Response and all 30 predictors as X, 
Factors. A diagram of a model with three hidden nodes is shown in Figure 24; this 
can be obtained by choosing Diagram under the red triangle in the report window. 
The final model will be a linear combination of three models, each of which relates 
one of the hidden nodes – H1, H2, and H3 – to the 30 predictors.

Figure 24.  Diagram of neural net model for 30 predictors with three hidden nodes
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The settings for the neural net are entered in the Control Panel, shown above the 
diagram in Figure 24 and repeated in Figure 25. Note that the overfit penalty in JMP 
8 is set by default at 0.01, a value that we accept for this model. (Smaller values of 
the overfit penalty led to models with sharp curves, suggesting overfitting.) We accept 
these defaults and click GO to obtain the fitted model. Depending on the data set 
size and the settings in the Control Panel, the fitting procedure can take a noticeable 
amount of time. 

Figure 25.  Neural Net Control Panel settings

Results for the current fit (JMP provides a Fit History panel that retains history for all 
fits) are shown in the Current Fit Results panel (Figure 26). In our sequence of 20 
tours – recall that each has a random start – only one of the 20 tours Converged at 
Best, and this is the fit that JMP uses. (We have saved the script for this analysis in 
Neural Net Report. However, because of the random starts, when you run this script, 
your results will likely differ from those in Figure 26.) Note that 97 parameters (Nparm) 
have been estimated. These are listed in the Parameter Estimates panel, but they 
are not of intrinsic interest.

Figure 26.  Results of neural net fit to diagnosis with 30 predictors
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In order to be able to refer to the same model and same results, we have saved a 
script to the data table that reproduces the model that we explore below (the one 
that was selected in Figure 26). This script is called Neural Net 1. If you are following 
using JMP, you should run this script at this point.

After running Neural Net 1, under the red triangle, we choose the option to Save 
Formulas. This adds five new columns to the data table: the formulas for the three 
hidden nodes, called H1 Formula, H2 Formula, and H3 Formula; a formula called 
SoftSum, which calculates an intermediate result; and the final estimated probability, 
in our case called Diagnosis[M] Formula, which applies a logistic function to the 
estimated linear function of the hidden nodes.

Histograms for the probabilities predicted by the model, conditioned on whether the 
actual Diagnosis is malignant or benign, are provided in the Neural Net report, as 
shown in Figure 27. Note that, for the training data, the probabilities predicted by the 
model appear to classify masses into the two classes quite accurately. Also note that 
the RSquare for the model, fit to the training data, is 0.99547. 

Figure 27.  Histogram for neural net estimate of probability of malignant

To get some sense of what our 31-dimensional model looks like, the Neural Net 
report provides various options. Under the red triangle in the Neural Net report 
window, we can choose Profiler. This opens the Prediction Profiler, a portion of 
which is shown in Figure 28. The dotted red vertical lines represent settings for 
each of the variables. For a given variable, the traces in the Prob(Diagnosis=M) 
and Prob(Diagnosis=B) squares represent the cross sections of the fitted model in 
that variable’s direction, at the settings of the other variables. When we change one 
variable’s value, we can see the impact of this change on the surface for all other 
variables. As one changes values and scrolls through the plots, one sees that the 
surface appears fairly smooth, with some steep peaks, but no very jagged areas.
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Figure 28.  Part of prediction profiler for Neural Net Model 1

 Another way to visualize the surface is using the Surface Profiler. This gives a 
three-dimensional view of the effect of predictor variables, taken two at a time, on 
Prob(Diagnosis=M) and Prob(Diagnosis=B). Figure 29 shows one of the 30*29/2 = 
435 possible surface plots for Prob(Diagnosis=M).

Figure 29.  Surface plot of probability of malignancy as a function of Max Area and SE 
Compactness in Neural Net Model 1
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To assess the performance of this model on the training set, we define a variable 
called NN1 Prediction. As usual, predicted probabilities equal to or greater than 
0.50 will lead to a classification of M, while values less than 0.50 will result in a 
classification of B. The resulting Fit Y by X analysis, for the training set, is shown in 
Figure 30. There are no misclassifications. But keep in mind that neural nets have a 
tendency to overfit the training set.

Figure 30.  Mosaic Plot and Contingency Table for classification based on Neural Net 
Model 1

In the neural net platform, one can explore the effects of various variable 
combinations and specifications of hidden layer nodes. For example, if one uses 
the variables from our logistic stepwise selection and a single hidden node, then 
the resulting neural net model gives predicted probabilities that are similar to those 
obtained using the logistic fit. One can also utilize crossvalidation to determine a 
model that might generalize well to new data. This is the topic of the next section.

7.3 Second model – Neural Net 2

In this section, we will explore various neural net model architectures using K-fold 
crossvalidation. Once again, we go to Analyze > Modeling > Neural Net. We fill in 
the launch window as before, with Diagnosis as Y and all 30 predictors as our Xs. 
However, we make another selection; namely, we choose K-Fold Crossvalidation 
from the drop-down menu at the bottom of the launch window, as shown in Figure 
31. (We note that we will be doing crossvalidation within the context of our 347 
observation training set, in order to have consistency with our other three models. 
In practice, when using K-fold crossvalidation, we would not hold out a separate 
validation set.)
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Figure 31.  Launch window for neural net with K-fold crossvalidation 

Clicking OK brings up the Control Panel. The default number of groups is five, 
and we consider that reasonable, given the size of our data set – we have 347 
observations, and so each of the five training samples will contain at least 276 rows 
(there are about 347/5 = 69 observations in each fold, and four folds in the training 
sample, so about 69*4 = 276 observations in each training set). When we click Go, 
the Control Panel changes back to give us the choices that we have seen earlier. 

This time, we will explore the effect of different numbers of hidden nodes and various 
values of the overfit penalty on the fit. To do this, we select Sequence of Fits from 
the red triangle drop-down menu in the Neural Net report. We populate the resulting 
dialog box as shown in Figure 32. This will allow us to explore models with two, three 
and four hidden nodes, and overfit penalties that vary from 0.01 to 1.28, by multiples 
of two. This is a total of 24 models.

Figure 32.  Sequence of Neural Fits dialog box
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The models that JMP calculates in the sequence of fits are summarized in the Fit 
History panel. Again, keep in mind that, because of random starts, your results 
will not exactly match ours. Our results are shown in the Fit History panel in Figure 
33. We note that there are three models with a CV RSquare of 0.85 or better. Two 
of these have four nodes (and so 129 parameters) and one has three nodes (97 
parameters). Since simpler models are almost always more desirable, we choose 
the three-parameter model, with an overfit penalty of 0.64, as our current model. 
We click the radio button to the right of the model and the Current Fit Results panel 
updates to show summary values for that model (see Figure 33.)

Figure 33.  Fit History panel for 24 exploratory model fits

 As before, because of the random starts, the results that we obtain likely differ from 
yours. However, the script Neural Net 2 reproduces the final model that we chose in 
Figure 33.
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If you are following along, please run Neural Net 2. Under the report’s red triangle, 
we click on Profiler and Surface Profiler to get a sense of what this model looks 
like. When we do this, we see that this model seems considerably smoother than our 
Neural Net 1 model. For comparison, we show some of the profiler traces in Figure 34.

Figure 34.  Part of Prediction Profiler for Neural Net Model 2

As before, to save this model’s formulas we choose Save Formulas from under the 
report’s red triangle. This inserts five new columns into the data table: H1 Formula 
2, H2 Formula 2, H3 Formula 2, SoftSum 2 and Diagnosis[M] Formula 2. We 
define a new column called NN2 Prediction that gives the classifications for Neural 
Net 2. The Fit Y by X analysis in Figure 35 shows four misclassifications. Recall that 
there were no misclassifications for Neural Net 1 on the training data (Figure 30). 
Did Neural Net Model 1 overfit the data? We will keep that in mind during the model 
validation step.

Figure 35.  Mosaic Plot and Contingency Table for classification based on Neural Net 
Model 2
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 8. Comparison of classification models

At this point, we will select a single model by comparing the performance of 
all four models on our validation set. This kind of activity is sometimes referred 
to as “competing models.” Our single performance criterion will be the overall 
misclassification rate. But note that, in a real setting, we might want to weight the 
two types of misclassification errors differently, since overlooking a malignant tumor 
seems more serious than incorrectly classifying a benign tumor. Although JMP 
provides mechanisms for accomplishing this (for example, one could define a loss 
function and fit models using the nonlinear platform), we will not delve into this here. 

We can easily switch our analyses to our validation set – simply locate the row state 
variable Validation Set in the Columns panel of the data table, left-click on the red 
star to its left, and select Copy to Row States. All but the 109 observations in our 
validation set are now excluded and hidden. We go to Analyze > Fit Y by X, and we 
enter as Y, Response the variables Most Likely Diagnosis (the logistic classification), 
Partition Prediction, NN1 Prediction and NN2Prediction. As X, Factor, we enter 
Diagnosis (the actual diagnosis for that tumor). The script is saved as Performance 
Comparison. 

The report is shown in Figure 36. The logistic and neural net models outperform 
the partition model. Both neural net models slightly outperform the logistic model. 
Neural Net 2 slightly outperforms Neural Net 1. To choose between these two neural 
net models, we refer back to the sequence of fits analysis shown in Figure 33. We 
note that Neural Net 1, which has three nodes and an overfit penalty of 0.01, is 
represented, in the sequence of fits, by a neural net model that has a crossvalidation 
RSquare of 0.70891. For this data, larger overfit penalties seem to result in better 
crossvalidation results. For this reason, we prefer Neural Net 2 over Neural Net 1. On 
this basis, we choose Neural Net Model 2 as our classifier.

 

Figure 36.  Comparison of four models on validation data
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Now, to obtain a sense of how this model will perform on new, independent data, 
we apply it to our test set. We apply row states from the row state variable Test Set 
to the data table in order to exclude all but the test set observations. We rerun the 
script Performance Comparison to see the performance of Neural Net Model 2 on 
the test data. Although the report (Figure 37) shows results for all four models, it is 
Neural Net Model 2 that is of primary interest at this point, as it is our chosen model. 
As hoped for, our chosen model outperforms the others on the test data, netting us 
a misclassification rate of 3/113.

Figure 37.  Performance of four models on test data

9. Conclusion

The goal of this paper was to illustrate some of the features of JMP that support 
classification and data mining. We began by illustrating various visualization 
techniques that provide an understanding of the data and relationships among the 
variables. We partitioned our data into a training set, a validation set and a test set. 
We then fit four models using the training data: a logistic model, a partition model 
and two neural net models. The best classification, based on performance on the 
validation set, was obtained using a neural net model whose structure was chosen 
using K-fold crossvalidation.

We note that the logistic and neural net models had similar performance. Partition 
models tend not to perform as well as nonlinear (or linear) regression techniques 
when the predictors are continuous. They can be very useful, though, when there 
are categorical predictors, and especially when these have many levels. And, unlike 
neural net models and even logistic models, partition models are very intuitive 
and interpretable. In our situation, where classification was the primary goal, the 
interpretability of the model was less important than its ability to classify accurately.

We also wish to underscore the importance of guarding against overfitting, which, 
in the case of neural net models, often results in claims of exaggerated model 
performance. The application of K-fold crossvalidation helped us arrive at a neural 
model that was simple and that generalized well to our test set. Also, in the case 
of neural nets, where overfitting is so easy, it is important to assess the model’s 
performance on an independent data set. Without this step, claims about model 
performance risk being exaggerated.
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