KOREA 2020

DISCOVERY SUIVAINT ONLINE

Copyright © SAS Institute Inc. All rights reserved

INNOVALUE PARTNERS

Jong-Chan Kim

Copyright © SAS Institute Inc. All rights reserved.

Presenter

Jong - Chan Kim

- Senior Researcher, InnoValue Partners
- AI & BD Camp Data Analysis Instructor
- POSCO HRD Professor
- ✓ Big data analysis education consulting using JMP
- ✓ Data analysis education consulting using Python/R
- ✓ Artificial Neural Network & Deep Learning (Artificial Neural Network & Deep Learning)
- ✓ Python crawling and data analysis platform construction

Data Analysis Process

Determining the four basic steps of the data analysis process, collection, storage, processing and analysis is very important to business.

And by using a tool suitable for each step, you need to analyze data quickly and easily.

JMP Program

- JMP is very powerful and suitable for importing data, visualizing it and performing statistical analysis.
- JMP is a user-friendly and easy-to-use UI that can be easily used by users who want to analyze data.
- However, the easy-to-use UI has clear limitations.

JMP Script Language, JSL

- In order for users to process and analyze data faster and more automatically, they need the help of Script.
- If you use JMP Script, you can process and analyze data more powerfully and quickly, and you can build automatic procedures.
- And by combining the Python programming language in JMP Script, you can enjoy this effect even more.

Python

- Python is object-oriented.
- Python can use several libraries.
- Python is simple and suitable for data analysis.

**One thing to note is that when using Python in JMP, check the Version carefully.

Version of whether the Python programming language is available in JMP Confirm.

```
ver = Trim(
  Run Program(
    Executable( "python.exe" ),
    Options( "--version" ),
    Read Function( "text" )
  )
);
Show( ver );
```


Calls a Python program and performs calculations using Python.

```
Python Init();
Python Submit( "df2= 100+200" );
Python Submit("print(df2)");
Python Term();
```


Load one example script file and declare it as a variable.

```
Python Init();

df1 = Open("$SAMPLE_DATA/Big Class.jmp", invisible );

Python Send(df1);
```


Process the data, using Python syntax.

The functions below are the functions to grasp basic property information of data.

It uses a Python library called Pandas

Check only the top 6 data. Then, summarizes the continuous data and saves the data under the name 'result.csv'

```
Python Submit("\[
import pandas as pd

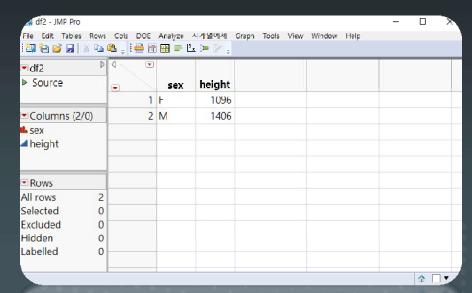
print(df1.head())

print(df1.describe())

df2 = df1.pivot_table(index='sex', values='height', aggfunc='sum').reset_index()

df2.to_csv('/Users/ainbd/Desktop/result.csv')

]\");
```



```
height weight
           age sex
     name
            12
                         59
                                 95
    KATIE
  LOUISE
                         61
                                123
            12
     JANE
                 F
                         55
                                 74
            12
   JACLYN
            12
                         66
                                145
  LILLIE
            12
                         52
                                 64
                     height
                                  weight
             age
       40.000000
                  40.000000
                               40.000000
count
       13.975000
                  62.550000
                              105.000000
mean
std
        1.476092
                   4.242338
                               22.201871
min
       12.000000
                  51.000000
                               64.000000
25%
                               91.750000
       13.000000
                  60.750000
50%
       14.000000
                  63.000000
                              105.000000
75%
       15.000000
                  65.000000
                              115.250000
       17.000000
                  70,000000
                              172,000000
max
```


The result of the operation calculated in Python is brought back to JMP and a window is displayed.

```
df2 = Python Get( df2 );
df2 << New Data View;
Python Term();</pre>
```


If you use this well, you can easily and simply automate tasks with Python, and visualize them with JMP.

Let's look at an example of a simple automation of repetitive daily tasks in the actual retail industry.

The company needed to calculate and visualize the delivery and inventory of certain items every week.

•											
	날짜	SKU ID	5KU 명	바고드	받주가능상태	웨고수랑	구광훈고수랑	구팡현재재교수랑	자재번호	자재명	카테고리
11	2019-05-16	29349	리큐진한겥	880104689	받주가능	384	287	5/88	6077374	19리큐	사탈사자
2	2019 05 16	29350	리큐	880104689	발주가능	0	235	2//2	6077394	19리큐	세탁세제
-3	2019 05 16	29351	울섭푸이똣	880104687	발수가능	0	2	35	6077406	19울샵푸이	세탁세제
ৰ	2019-05-16	29352	울샴푸아웃	880104607	발주가능	207	-41	2083	6077404	19울샴푸아	저막세세
5	2019-05-16	29359	Pack	880104688	발주가능	288	312	3411	5009109	182080 ♀	덴탈게어
6	2019 05 16	32052	케라시스	880104699	발수가능	0	Ω	86	6075349	19KS可告	레이케이
7	2019-05-16	32053	케리시스	880104699	발주가능	0	662	10164	6075350	19KS퍼폼	헤어케어
8	2019-05-16	32054	계라시스	880104699	받주가능	520	190	6/09	6075351	19KS퍼퓸	헤어게어
9	2019 05 16	32055	케라시스	880104699	발주가능	80	88	1071	6075352	19㎏피퓸린	레이케이
10	2019 05 16	34399	리큐진한겓	880104624	발수가능	0	62	2689	6078472	19리큐	세탁세제
11	2019-05-16	34402	올 <i>샴푸오리</i>	880104687	발주가능	1128	276	6074	6068101	18 일삼푸오	세탁세세
12	2019-05-16	34403 -	윤심푸	880104687	발주가능	U	60	2464	606/114	18윤심푸오	사탁사자
13	2019 05 16	34404	울샴푸오리	880104624	말주가능	0	2	0	6067119	18울샵푸오	세탁세제
14	2019-05-16	41345	리큐	880104624	발수가능	0	6	455	6067081	17리큐미니	세탁세제
15	2019-05-16	41346	리규	880104624	발주가능	96	12	323	6067082	17리큐미니	세탁세세
16	2019-05-16	41357	엄마의선택	880104624	발주가능	816	14/	4505	6075861	19엄마의선	시탁세제
17	2019 05 16	41358	순档Bubble	880104689	발수가능	0	66	1167	6057471	10순설Bub	수방세제
18	2019-05-16	45232	케라시스	880104624	발수가능	0	44	321	6075574	19KS 린스	6 0 7 0
19	2019-05-16	45327	케리시스	880104624	발주가능	120	154	887	6075906	19KS퍼퓨	하이케인

The process was automated using several Python data preprocessing techniques and JMP visualization.


```
Python Submit( "\[
import pandas as pd

print(df1.head())

print(df1.describe())

cond1 = (df1['카테고리']=='세탁세제')

df2 = df1.loc[cond1]

df2['datetime'] = pd.to_datetime(df2['날짜'])

df2['year'] = df2['datetime'].dt.year

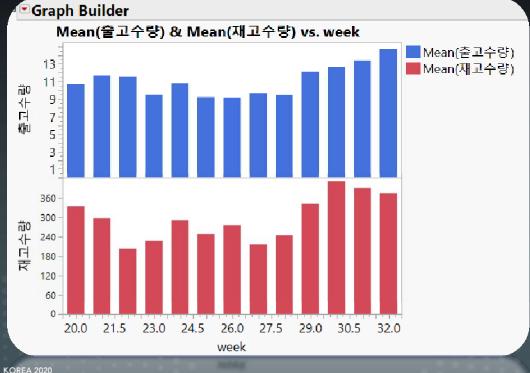
df2['week'] = df2['datetime'].dt.week

df2['day'] = df2['datetime'].dt.day

df3 = df2[['datetime','카테고리','출고수량','재고수량','year','week','day']]

]\" );

df3 = Python Get( df3 );
```


```
df3 << New Data View;

Graph Builder(df3,
    Size( 518, 448 ),
    Show Control Panel( 0 ),
    Variables( X( :week ), Y( :출고수량 ), Y( :재고수량 ) ),
    Elements( Position( 1, 1 ), Bar( X, Y, Legend( 18 ) ) ),
    Elements( Position( 1, 2 ), Bar( X, Y, Legend( 19 ) ) )
);
```


jmp

KOREA 2020

0001jmp@gmail.com

qmįį

Copyright © SAS Institute Inc. All rights reserved.