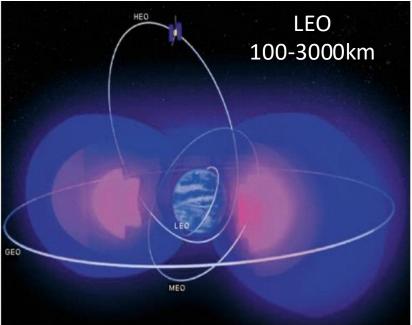
Development of Predictive Single Event Latchup Model

Aerospace & Defense Group

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Laurence Montagner March 2023

 Development of internal SEL prediction tool funded by the CNES, French space agency

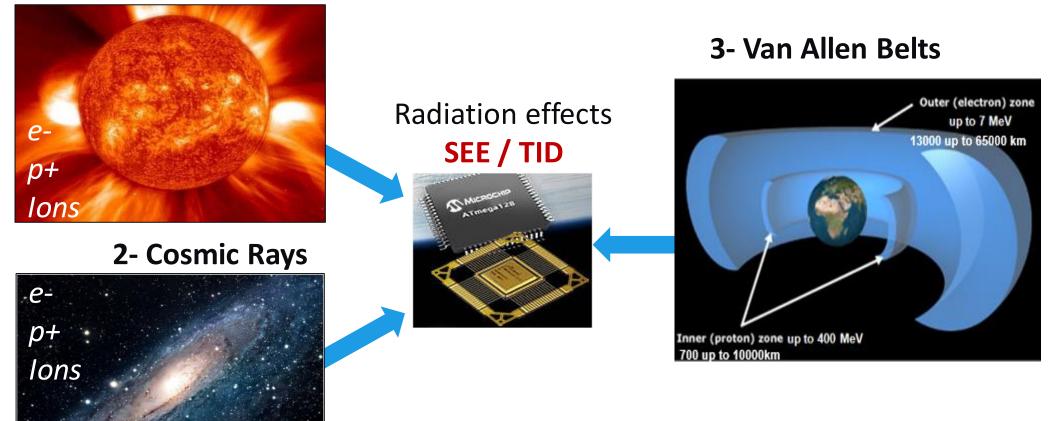

• 2 posters presented at RADECS (2019 and 2021)

New Approach of Single Event Latchup Modeling Based on TCAD Simulations and Design of Experiment Analysis D. Truyen, L.Montagner A Neural Network Approach for Single-Event Latchup Prediction Based on TCAD Simulations in CMOS Technology D. Truyen, E Leduc, L.Montagner, M.Briet, A. Collange

Context

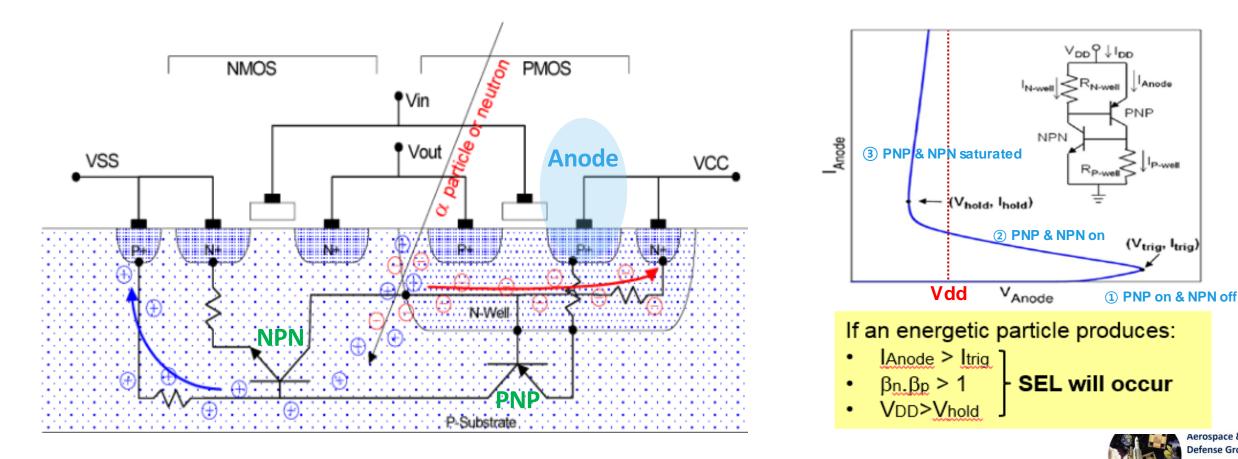
To address the new space market "low cost", COTS (circuits on the shelves) are evaluated and "hardened" to radiation to meet space agency specifications.
 → Need to analyze of a lot of products to estimate quickly their radiation behaviour and their ability to be hardened before any expensive experimental test.

GEO : Geosynchronous Earth Orbit **MEO :** Medium Earth Orbit


LEO : Elliptica Low Earth Orbit **HEO :** Highly I Orbit

©⁷ 2023 Microchip Technology Inc. and its subsidiaries

Context Radiations impact on Electronic Circuits

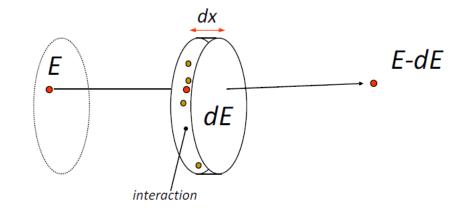

1- The sun

Focus on Single Event Latchup (SEL) Mechanism

- SEL is a critical effect with catastrophic impact on space craft systems
- SEL is a triggering of the parasitic thyristor (2 parasitic bipolars: NPN & PNP)

MICROCHIP

Single Event Effects – Charged Particles Linear Energy Transfer - LET


• Direct ionization (ions): Linear Energy Transfer electronic (LET)

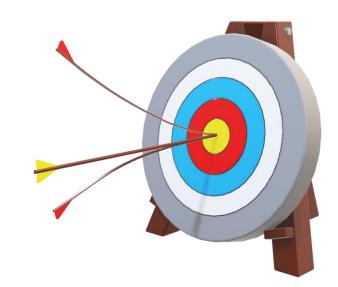
Heavy-ions are described by amount of energy lost in the matter per unit track length in the considered material

LET:

- dE/dx= MeV/cm
- Material density = mg/cm³

$$LET = \frac{dE}{dx} \times \frac{1}{\rho} \implies \frac{MeV}{cm} \times \frac{1}{\frac{mg}{cm^3}} \implies MeV.cm^2/mg$$

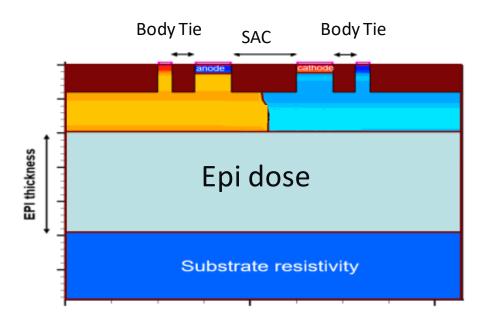
- The parasitic currents increase with the LET
- 100 MeV.cm2/mg = ~ 1pC/μm in the Silicon
 ESA Criteria: immune to latchup >60MeV.cm²/mg



Objective

Implementation of an analytical prediction model based on calibrated simulation

Prediction of SEL sensitivity :


- Vhold
- LETth

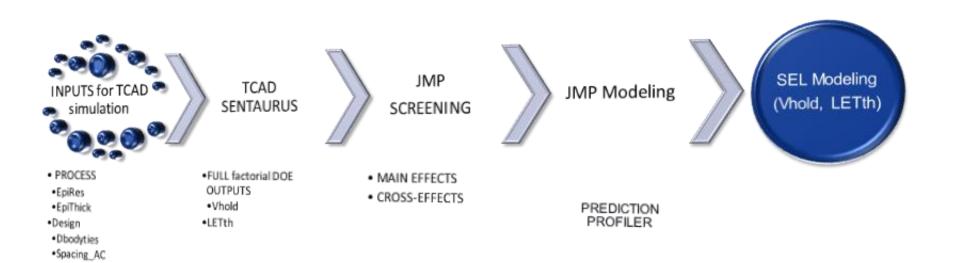
Input and Output definition

TCAD Sentaurus view of inverter

Input	Output
SAC	Vhold
Body Tie	LETth
Epi Thickness	
Epi dose	

LET_{th}, V_{hold}

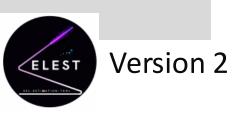
 $V_{hold} > Vcc \rightarrow No SEL, LET_{th} > 60 MeV.cm^2/mg$


 $V_{hold} < Vcc \rightarrow SEL possible, LET_{th} ? \rightarrow LET_{th} Model$

SEL Modeling Flow

Model for SEL prediction:

LETth and Vhold Versus Input parameters



Model validation with experimental results

A Neural Network Approach for Single-Event Latchup Prediction Based on TCAD Simulations in CMOS Technology D. Truyen, E Leduc, L.Montagner, M.Briet, A. Collange

Modification of DOE by adding inputs per technology node for better accuracy Use of neural network models

SUMMARY OF HEAVY ION SEL, AND COMPARISON WITH PREDICTIVE MODEL

Products	Tech. node - (µm)	SEL LET _{th} (MeV.cm²/mg)	
		Pred. Model SELEST	Exp.
16-Bit Microcontroller Dual Core	0.09	12.06	< 3.3
16-Bit SPI I/O Expander with Open-Drain Output	0.6	0.34	4.2
16-Bit digital Signal Controller for digital power Applications	0.18	2.64	< 3.6
64-Mbit Serial Quad I/O (SQI) Flash Memory	0.07	62.3	> 78
Ethernet physical layer transceiver	0.065	65.6	64
8-Bit Microcontroller	0.18	33.5	39

Thanks for your attention

