
MSA and Optimization of a UHPLC Measurement System

Frank Deruyck

HoGent University of Applied Sciences

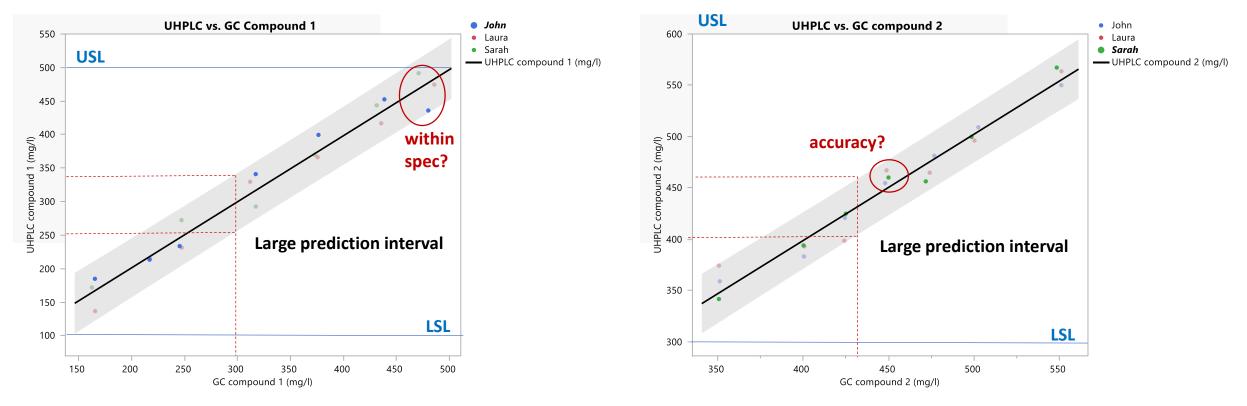
Volker Kraft

JMP Academic Program

Problem description & Goal

- In a chemical company SPC revealed significant batch to batch
- raw material variation resulting in product quality problems
- Analysis of all supplied batches is necessary however
- impossible using slow standard GC method.
- A fast UHPLC analytic method is under development but not ready yet for validation because of strong measurement variation
- Goal: Specification of robust & optimal settings for UHPLC method so that validation is possible

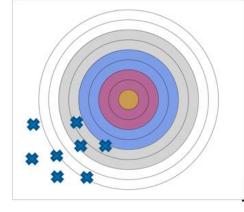
JMP Case Study Library


Teaching resources

Free teaching material

- Managed by JMP Academic Team, developed with JMP users from industry and academia
- Add real-world scenarios for practical problem solving to many university courses
- Include data sets, background and task, solution, exercises "Manufacturing Excellence in Pharma – Part 1, 2, 3"
- Series of three independent case studies (SPC, MSA, DOE)
- Will be added to the Case Study Library at *imp.com/cases* soon
- Already available on request (volker.kraft@jmp.com)

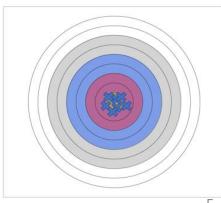
Screening UHPLC vs. GC for Compound 1 & 2


GC accurate & precise standard method, but too slow UHPLC method faster, but high operator variation → MSA study

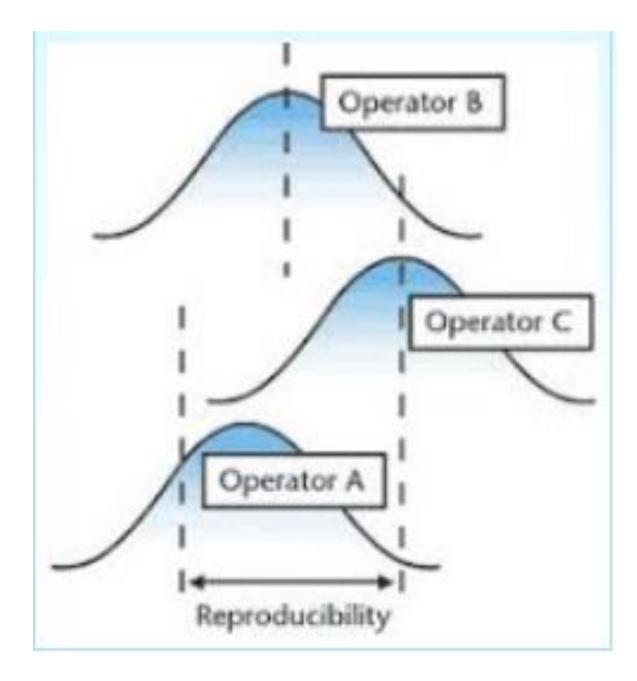
Statistical Problem Solving

High variation UHPLC measurement system

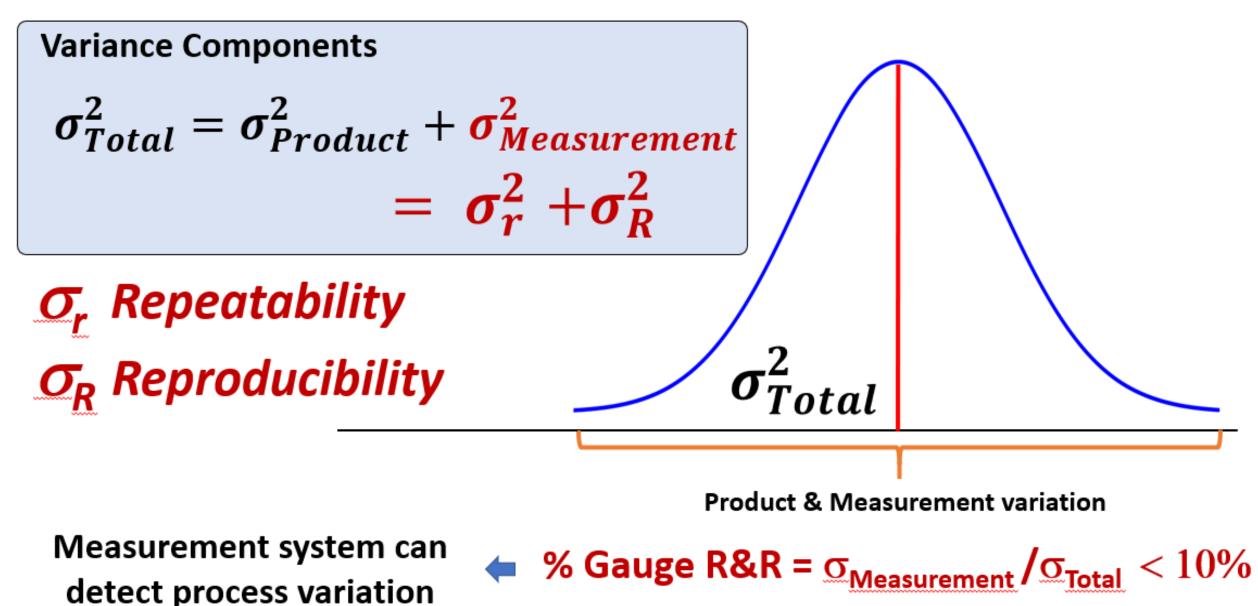
Biased and Not Precise



MSA – Gauge R&R DOE


Variation root cause(s)

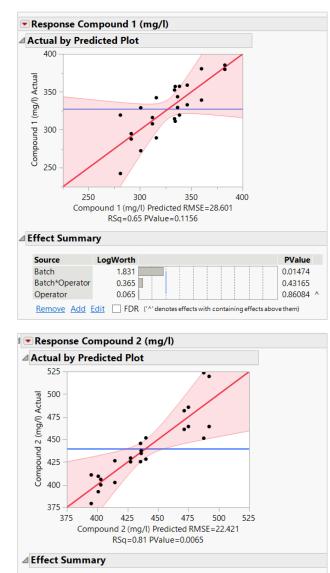
Optimal & robust settings UHPLC measurement system


> Accurate and Precise

Measurement System Analysis (MSA)

MSA - Gauge R&R study

7


MSA - GAUGE R&R UHPLC ANALYSIS

Full Factorial DOE Gauge R&R study UHPLC

۹ 🔍 💽				
	Batch	Operator	Compound 1 (mg/l)	Compound 2 (mg/l)
1	B3	John	380	435
2	B1	Laura	316	446
3	B2	Sarah	353	461
4	B4	Laura	333	411
5	B1	John	319	486
6	B1	John	242	464
7	B2	Sarah	315	482
8	B3	John	385	438
9	B2	Laura	329	524
10	B1	Sarah	295	425
11	B4	Sarah	380	392
12	B1	Sarah	288	429
13	B4	John	344	400
14	B1	Laura	308	425
15	B2	Laura	272	451
16	B3	Laura	311	428
17	B3	Laura	357	452
18	B4	John	329	406
19	B3	Sarah	357	402
20	B3	Sarah	319	426
21	B2	John	289	520
22	B2	John	342	464
23	B4	Laura	359	379
24	B4	Sarah	339	409

ANOVA Results for compound 1 and compound 2

Source

Operator Batch*Operator

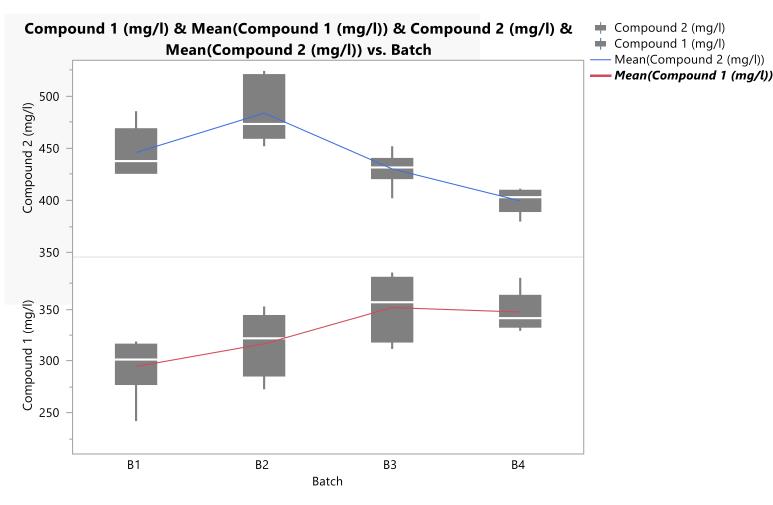
Batch

LogWorth

Remove Add Edit FDR

3.582

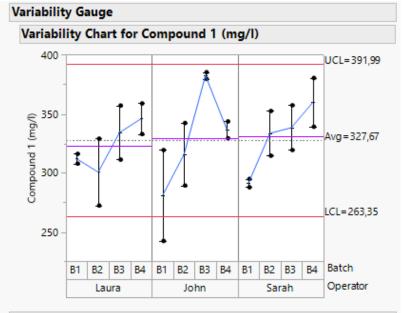
0.780


0.133

PValue

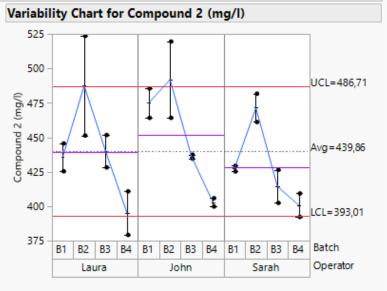
0.00026

0.16607


0.73542

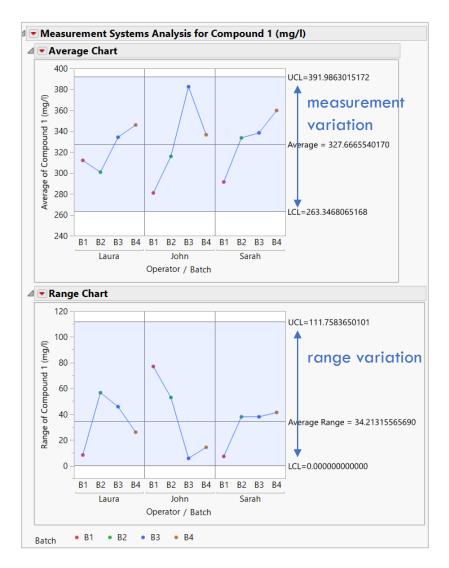
Significant difference between batch averages

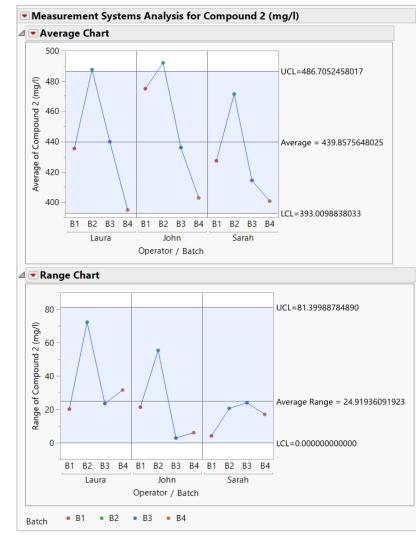
detected by individual UHPLC measurements?


Variability Chart of Compound 1 & Compound 2

John has more variation

variation not consistent across batches

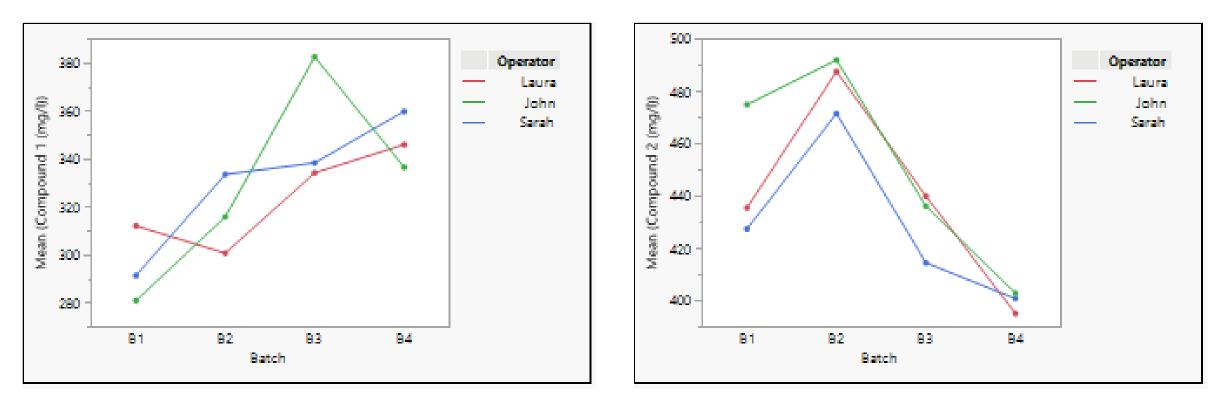

Variability Gauge



Laura has more variation

variation not consistent across batches

Average & Range Chart of Compound 1 and Compound 2



Individual UHPLC measurements cannot detect quality shifts between batches!

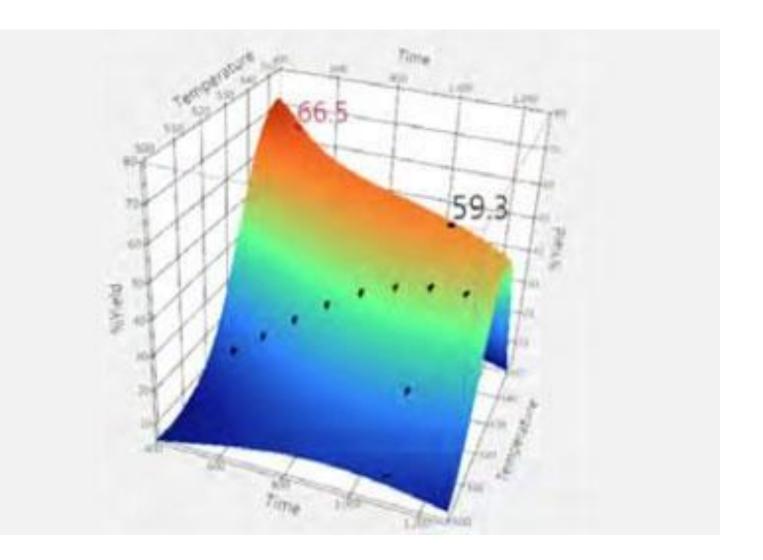
No significant difference in measurement range between operators

Parallelism Plots for Operator and Batch for Compound 1 and Compound 2

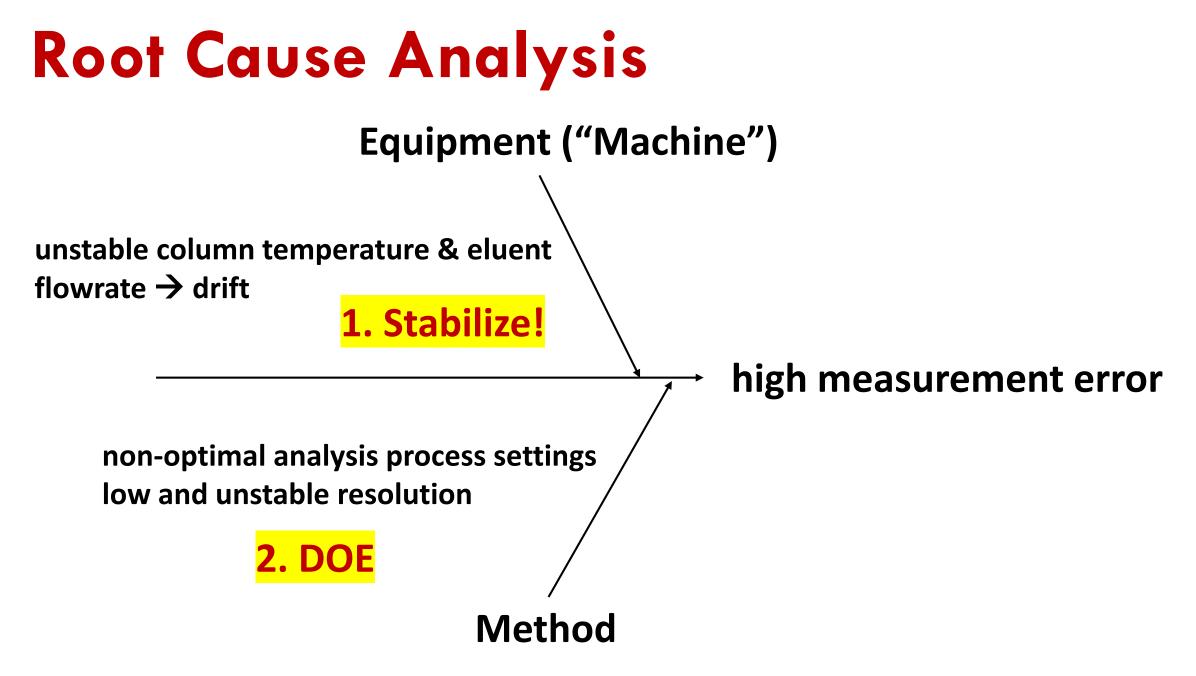
Lines are not parallel and there is a major crossing

indication interaction between operators and batches

 \rightarrow serious reproducibility issue that requires further investigation!


EMP Gauge R&R Results Compound 1 and Compound 2

		Variance			
Component	Std Dev	Component	% of	Total	20 40 60 80
Gauge R&R	27.670253	765.6429		56.3	
Repeatability	27.670253	765.6429	σ_r^2	56.3	
Reproducibility	0.000000	0.0000			
Product Variation	24.391369	594.9389	σ_P^2	43.7	
Interaction Variation	0.000000	0.0000		0.0	
Total Variation	36.886065	1360.5818	σ_{Tot}^2	100.0	


		Variance		
Component	Std Dev	Component	% of Total	20 40 60 80
Gauge R&R	22.598991	510.7144	30.7	
Repeatability	20.817847	433.3827	26.1	
Reproducibility	8.793841	77.3316	4.7	
Product Variation	33.928918	1151.1715	<mark>69.</mark> 3	
Interaction Variation	0.000000	0.0000	0.0	
Total Variation	40.766234	1661.8858	100.0	

Main task for improving the UHPLC measurement system is optimization of the repeatability

→ Specify robust UHPLC process settings

Optimisation UHPLC by Design of Experiments

Goal

- Y = compound concentration in standard sample (mg/l)Model Y = F(UHPLC control factors)
- Specify optimal, robust UHPLC control settings
- Achieve Quality P/T ratio criterion
- $Y \rightarrow$ match target compound concentration </= 10% tolerance
- standard sample 1: Y = 300 +/- 20 mg/l
- standard sample 2: Y = 450 + /-15 mg/I

Model

Main effects $(X_1, X_2, ..., X_i)$ & all quadratic effects (X^2)

- Temperature column 25 35 °C
- Eluent Flowrate 5 15 ml/min

Gradient \rightarrow four continuous factors %Acetonitrile/ml (%ACN/ml)

%ACN (V = 0ml)
$$5 - 20\%$$

%ACN (V = 5ml)
$$35 - 70\%$$

%ACN (V = 6ml)
$$35 - 70$$
 %

Wavelength UV detector 192 – 270 nm

Select interaction effects $X_i^*X_i$

- Temperature * Eluent Flowrate
- Eluent Flowrate * all gradient factors %ACN

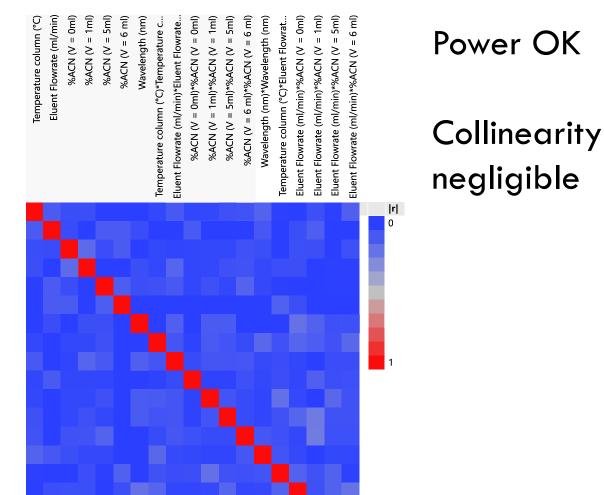
Custom Design

DOE UHPLC OPTIMIZATION

JMP DEMO

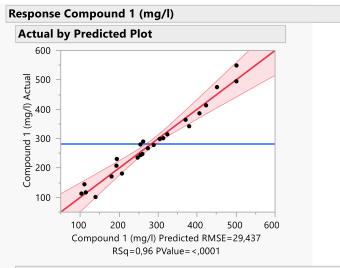
Optimization UHPLC - DOE 25 run Custom Design

Y₂


 \mathbf{Y}_1

	Temperature column (°C)	Eluent Flowrate (ml/min)	%ACN (V = 0ml)	%ACN (V = 1ml)	%ACN (V = 5ml)	%ACN (V = 6 ml)	Wavelength (nm)	300 mg/l compound 1 measured	450 mg/l compound 2 measured
1	30	10	5	12,5	35	35	270	290	418
2	25	5	12,5	12,5	52,5	52,5	192	495	544
3	35	15	20	12,5	35	35	231	244	363
4	25	5	20	5	35	35	231	549	597
5	35	5	12,5	12,5	35	70	231	236	371
6	25	15	5	12,5	70	70	231	208	426
7	35	5	20	12,5	52,5	35	270	171	396
8	30	5	5	5	52,5	70	270	268	370
9	25	5	20	20	70	70	270	386	650
10	25	5	5	20	35	35	270	414	476
11	30	5	20	20	35	52,5	192	248	442
12	30	5	12,5	5	70	35	192	315	393
13	25	10	20	5	70	52,5	231	475	528
14	25	15	12,5	5	35	52,5	270	364	411
15	25	10	5	12,5	52,5	70	192	342	514
16	25	15	20	20	52,5	35	192	279	473
17	35	15	12,5	20	70	70	270	231	415
18	35	5	5	20	70	52,5	231	145	340
19	30	10	12,5	20	52,5	35	231	299	441
20	35	15	5	5	70	35	192	102	339
21	30	15	5	20	35	70	192	117	369
22	35	15	5	20	52,5	52,5	231	113	418
23	30	15	20	5	52,5	70	231	280	292
24	35	10	20	5	35	70	192	302	426
25	30	15	20	12,5	70	52,5	270	181	318

Optimization UHPLC - DOE

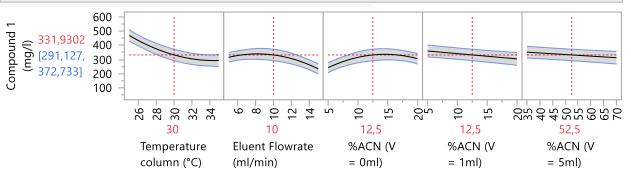

Design evaluation

Design Evaluation		
Power Analysis		
Significance Level 0,05		
Anticipated RMSE 1		
	Anticipated	
Term	Coefficient	Power
Intercept	1	0,153
Temperature column (°C)	1	0,873
Eluent Flowrate (ml/min)	1	0,924
%ACN (V = 0ml)	1	0,914
%ACN (V = 1ml)	1	0,878
%ACN (V = 5ml)	1	0,883
%ACN (V = 6 ml)	1	0,904
Wavelength (nm)	1	0,844
Temperature column (°C)*Temperature column (°C)	1	0,417
Eluent Flowrate (ml/min)*Eluent Flowrate (ml/min)	1	0,34
%ACN (V = 0ml)*%ACN (V = 0ml)	1	0,389
%ACN (V = 1ml)*%ACN (V = 1ml)	1	0,422
%ACN (V = 5ml)*%ACN (V = 5ml)	1	0,418
%ACN (V = 6 ml)*%ACN (V = 6 ml)	1	0,397
Wavelength (nm)*Wavelength (nm)	1	0,454
Temperature column (°C)*Eluent Flowrate (ml/min)	1	0,793
Eluent Flowrate (ml/min)*%ACN (V = 0ml)	1	0,796
Eluent Flowrate (ml/min)*%ACN (V = 1ml)	1	0,766
Eluent Flowrate (ml/min)*%ACN (V = 5ml)	1	0,804
Eluent Flowrate (ml/min)*%ACN (V = 6 ml)	1	0,771

Optimization UHPLC - DOE

Analysis DOE results Compound 1

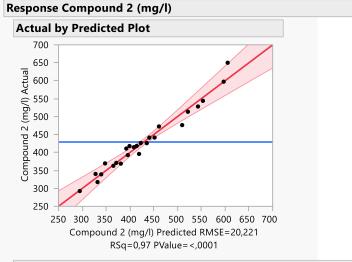
Effect Summary


Source	LogWorth	PValue
Temperature column (°C)(25,35)	8,128	0,00000
Eluent Flowrate (ml/min)(5,15)	4,564	0,00003
Temperature column (°C)*Eluent Flowrate (ml/min)	4,463	0,00003
%ACN (V = 0ml)(5,20)	3,351	0,00045
%ACN (V = 0ml)*%ACN (V = 0ml)	3,043	0,00091
Eluent Flowrate (ml/min)*Eluent Flowrate (ml/min)	2,728	0,00187
Temperature column (°C)*Temperature column (°C)	2,719	0,00191
%ACN (V = 1ml)(5,20)	2,700	0,00200
%ACN (V = 5ml)(35,70)	1,762	0,01729
Eluent Flowrate (ml/min)*%ACN (V = 0ml)	1,696	0,02011

Summary of Fit

RSquare	0,964036
RSquare Adj	0,938348
Root Mean Square Error	29,43681
Mean of Response	282,149
Observations (or Sum Wgts)	25

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t			
Intercept	331,93018	19,0243	17,45	<,0001 *			
Temperature column (°C)(25,35)	-88,60203	7,253126	-12,22	<,0001			
Eluent Flowrate (ml/min)(5,15)	-41,04818	6,72579	-6,10	<,0001			
%ACN (V = 0ml)(5,20)	31,538215	6,91661	4,56	0,0004			
%ACN (V = 1ml)(5,20)	-27,9162	7,368386	-3,79	0,0020			
%ACN (V = 5ml)(35,70)	-19,58999	7,257906	-2,70	0,0173			
Temperature column (°C)*Temperature column (°C)	49,041669	12,8711	3,81	0,0019			
Eluent Flowrate (ml/min)*Eluent Flowrate (ml/min)	-57,74613	15,11408	-3,82	0,0019			
%ACN (V = 0ml)*%ACN (V = 0ml)	-58,44641	13,94525	-4,19	0,0009			
Temperature column (°C)*Eluent Flowrate (ml/min)	47,894533	8,026571	5,97	<,0001			
Eluent Flowrate (ml/min)*%ACN (V = 0ml)	20,435806	7,795239	2,62	0,0201			

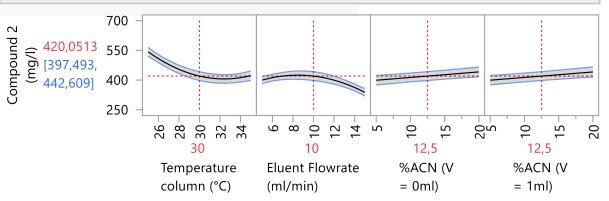

Prediction Profiler

23

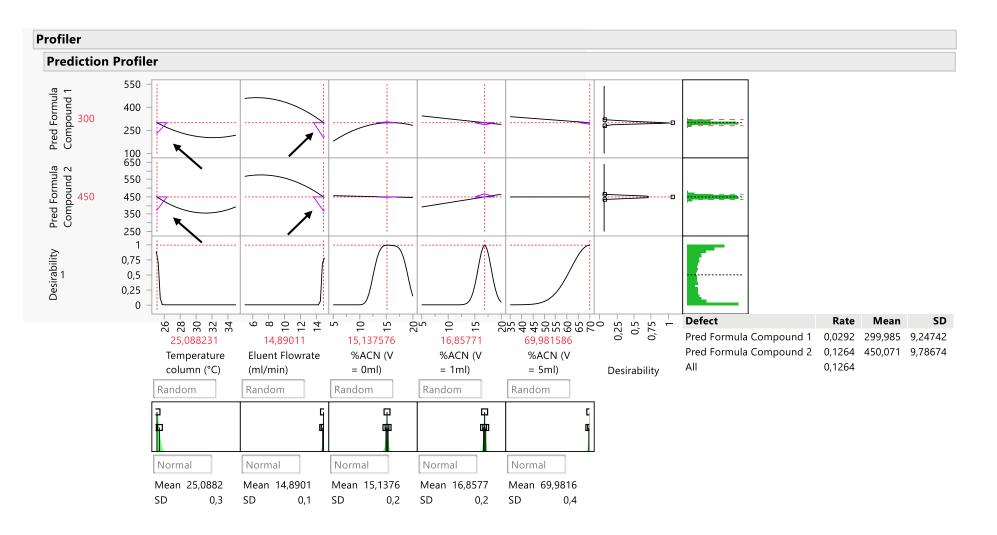
Optimization UHPLC - DOE

Analysis DOE results Compound 2

Effect Summary


Source	LogWorth	PValue
Temperature column (°C)(25,35)	8,397	0,00000
Temperature column (°C)*Temperature column (°C)	5,394	0,00000
Eluent Flowrate (ml/min)(5,15)	5,185	0,00001
Temperature column (°C)*Eluent Flowrate (ml/min)	4,292	0,00005
Eluent Flowrate (ml/min)*%ACN (V = 0ml)	3,799	0,00016
Eluent Flowrate (ml/min)*Eluent Flowrate (ml/min)	3,779	0,00017
%ACN (V = 0ml)(5,20)	3,305	0,00050
%ACN (V = 1ml)(5,20)	3,026	0,00094
Eluent Flowrate (ml/min)*%ACN (V = 1ml)	2,036	0,00921

Summary of Fit

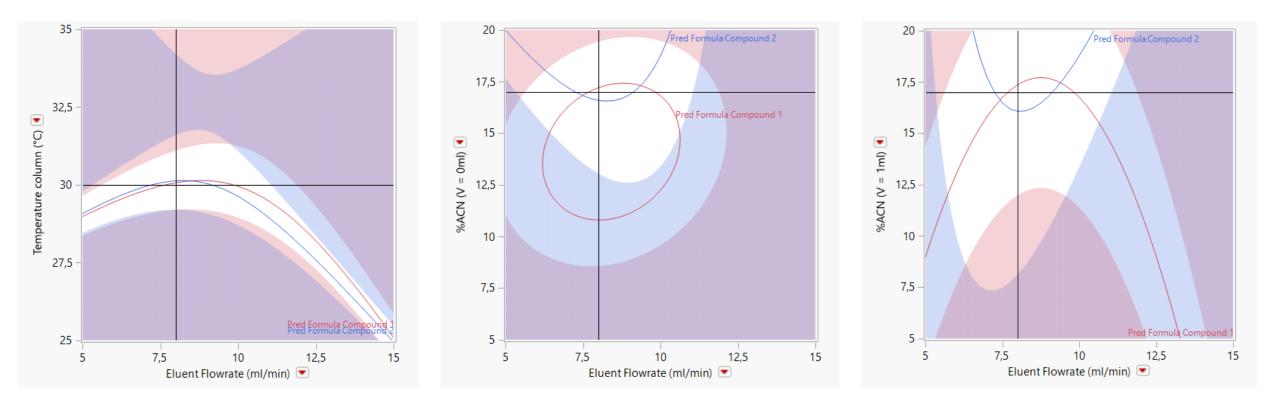

RSquare	0,965345
RSquare Adj	0,944551
Root Mean Square Error	20,22141
Mean of Response	429,1664
Observations (or Sum Wgts)	25

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t			
Intercept	420,05129	10,58335	39,69	<,0001 *			
Temperature column (°C)(25,35)	-60,12599	4,983292	-12,07	<,0001 *			
Eluent Flowrate (ml/min)(5,15)	-31,01553	4,595035	-6,75	<,0001 *			
ACN (V = 0ml)(5,20)	20,982086	4,745405	4,42	0,0005 *			
%ACN (V = 1ml)(5,20)	20,746393	5,057633	4,10	0,0009 *			
Temperature column (°C)*Temperature column (°C)	62,591934	8,896357	7,04	<,0001 *			
Eluent Flowrate (ml/min)*Eluent Flowrate (ml/min)	-51,33267	10,3199	-4,97	0,0002 *			
Temperature column (°C)*Eluent Flowrate (ml/min)	30,884169	5,518854	5,60	<,0001 *			
Eluent Flowrate (ml/min)*%ACN (V = 0ml)	-26,84522	5,37124	-5,00	0,0002 *			
Eluent Flowrate (ml/min)*%ACN (V = 1ml)	16,522124	5,531272	2,99	0,0092 *			

Prediction Profiler



Optimal (& Robust) UHPLC Settings


No robust settings \rightarrow too high sensitivity

Optimal & Robust UHPLC Settings

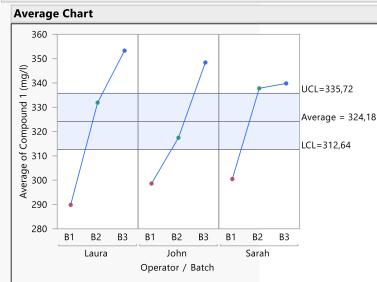
More robust settings

Optimal & Robust UHPLC Settings

Contour Profiler

VALIDATION EXPERIMENTS

APPROVED

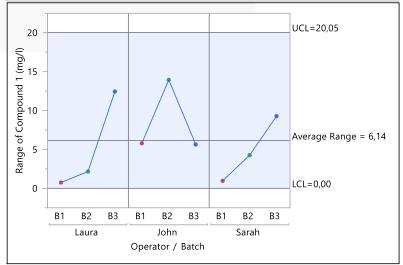

Full Factorial DOE MSA UHPLC - VALIDATION

	_				
•	Batch	Operator	Instrument	Compound 1 (mg/l)	Compound 2 (mg/l)
1	B1	John	GC	301	451
2	B1	John	GC	304	448
3	B1	John	UHPLC	302	449
4	B1	John	UHPLC	296	450
5	B1	Laura	GC	286	442
6	B1	Laura	GC	292	446
7	B1	Laura	UHPLC	289	443
8	B1	Laura	UHPLC	290	440
9	B1	Sarah	GC	295	451
10	B1	Sarah	GC	298	447
11	B1	Sarah	UHPLC	300	450
12	B1	Sarah	UHPLC	301	449
13	B2	John	GC	318	486
14	B2	John	GC	321	480
15	B2	John	UHPLC	310	481
16	B2	John	UHPLC	324	482
17	B2	Laura	GC	336	479
18	B2	Laura	GC	336	488
19	B2	Laura	UHPLC	333	486
20	B2	Laura	UHPLC	331	483
21	B2	Sarah	GC	335	484
22	B2	Sarah	GC	338	492
23	B2	Sarah	UHPLC	340	488
24	B2	Sarah	UHPLC	336	488
25	B 3	John	GC	343	408
26	B3	John	GC	345	406
27	B3	John	UHPLC	346	406
28	B3	John	UHPLC	351	408
29	B3	Laura	GC	353	408
30	B 3	Laura	GC	356	411
31	B 3	Laura	UHPLC	360	408
32	B 3	Laura	UHPLC	347	403
33	B3	Sarah	GC	340	404
34	B3	Sarah	GC	337	397
35	B3	Sarah	UHPLC	335	396
36	B3	Sarah	UHPLC	344	403

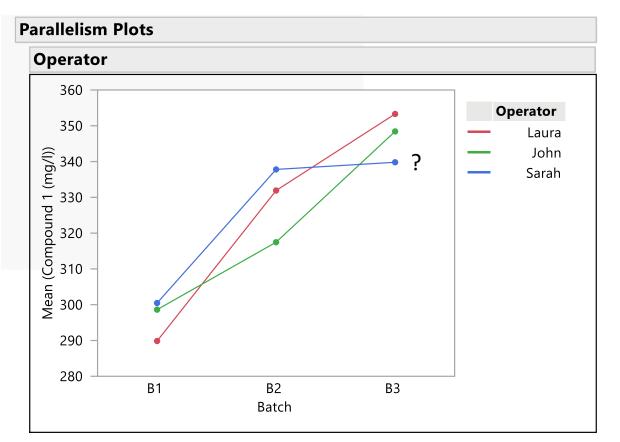
GAUGE R&R

Three batches → batch variation Three operators → one repeated UHPLC & GC measurement/batch

Measurement Systems Analysis for Compound 1 (mg/l) Instrument=UHPLC

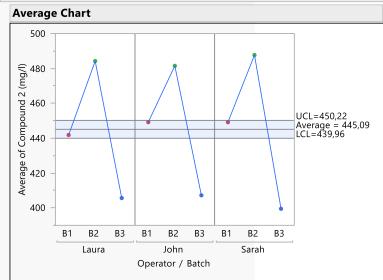

EMP Gauge R&R Results

		Variance		
Component	Std Dev	Component	% of Total	20 40 60 80
Gauge R&R	5,401311	29,17416	4,0	
Repeatability	5,401311	29,17416	4,0	
Reproducibility	0,000000	0,00000	0,0	
Product Variation	25,368507	643,56117	89,3	
Interaction Variation	6,941584	48,18559	6,7	
Total Variation	26,849971	720,92092	100,0	

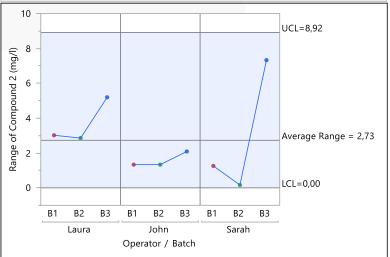

Mainly product variation

Individual UHPLC measurements can detect quality shifts between batches!

Range Chart



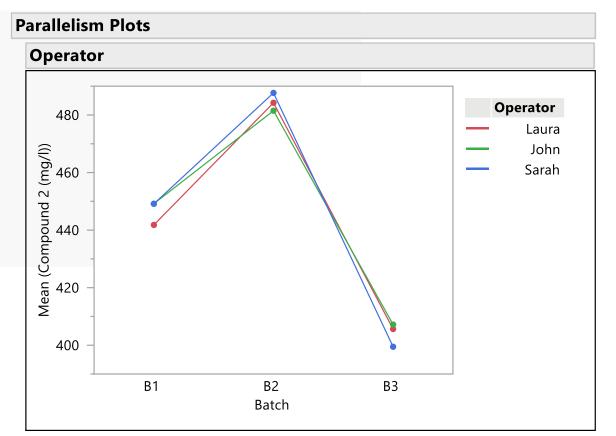
Precision/Tolerance ratio = 6*5,40/400 = 8% \rightarrow Precision OK!



Lines are close & parallel with some crossing indicating small batch – operator interaction

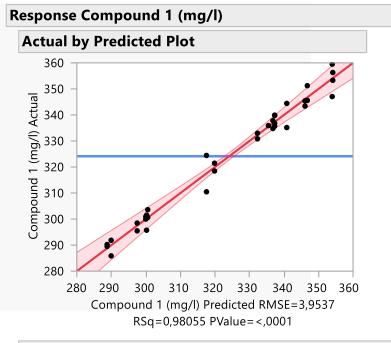
Measurement Systems Analysis for Compound 2 (mg/l) Instrument=UHPLC

Range Chart


EMP	Gaud	e R&R	Results	

		Variance		
Component	Std Dev	Component	% of Total	20 40 60 80
Gauge R&R	2,443365	5,9700	0,3664	
Repeatability	2,443365	5,9700	0,3664	
Reproducibility	0,000000	0,0000	0,0	
Product Variation	40,147447	1611,8175	98,9	
Interaction Variation	3,432175	11,7798	0,7229	
Total Variation	40,367900	1629,5673	100,0	

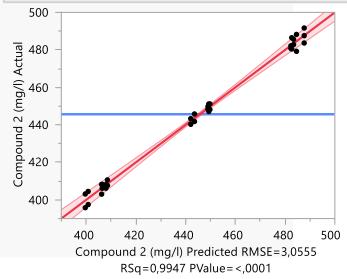
Mainly product variation


Individual UHPLC measurements can detect quality shifts between batches!

Precision/Tolerance ratio = 6*2,44/300 = 5% \rightarrow Precision OK!

Lines are very close & parallel with no major crossing indicating no operator bias

MSA UHPLC VALIDATION – COMPARISON GC

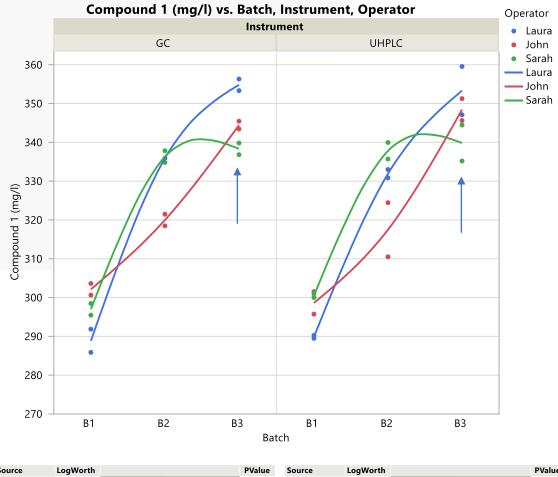


Effect Summary

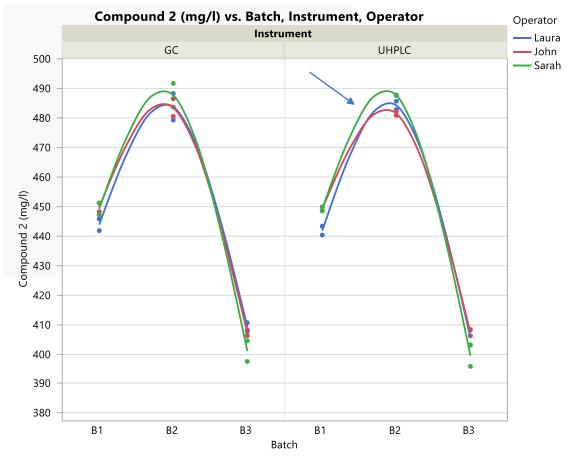
Source	LogWorth	PValue	
Batch	18,388	0,00000	
Batch*Operator	6,758	0,00000	
Operator	1,254	0,05566	^
Operator*Instrument	0,298	0,50303	
Batch*Instrument	0,191	0,64473	
Instrument	0,000	1,00000	^

Response Compound 2 (mg/l)

Actual by Predicted Plot

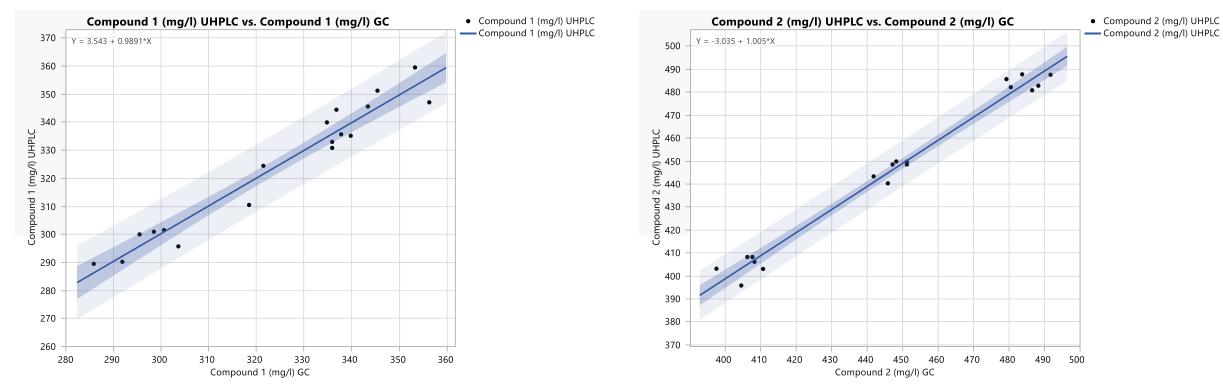


Effect Summary


	Source	LogWorth	PValue	
	Batch	24,994	0,00000	
_	Batch*Operator	3,296	0,00051	
ſ	Instrument	0,473	0,33686	
	Operator	0,367	0,42948	٨
	Operator*Instrument	0,050	0,89098	
L	Batch*Instrument	0,050	0,89098	

no significant instrument effect \rightarrow UHPLC accurate small but significant batch – operator interaction effect

MSA UHPLC VALIDATION – COMPARISON GC


Source	LogWorth	PValue	Source	LogWorth	PValue
Batch	10,012	0,00000	Batch	6,734	0,00000
Batch*Operator	4,805	0,00002	Batch*Operator	1,881	0,01316
Operator	1,566	0,02714	Operator	0,448	0,35629

Source	LogWorth	PValue	Source	LogWorth	PValue
Batch	9,567	0,00000	Batch	11,515	0,00000
Batch*Operator	0,784	0,16442	Batch*Operator	2,087	0,00819
Operator	0,065	0,86180	Operator	0,447	0,35750

Batch – operator interaction Compound 1 observed for GC & UHPLC → Sarah?

MSA UHPLC VALIDATION – COMPARISON GC

UHPLC is accurate

No difference with GC standard analysis method

