

**ENERGY** TECHNOLOGIES

# Driving Product Development Through Modelling New and Historic Data in JMP Stuart Little

2021-EU-30MP-780





#### CONTENTS

Potential uses for dielectric fluids in hybrid and electric vehicles



#### Introduction

#### Dielectric fluids What are they, and what we are trying to achieve?

#### Investigating historic data in JMP

Investigating the relationship between the physical properties of dielectric fluids

#### Structure-Performance modelling of Dielectric fluids

Building performance models and validation through future synthetic work

#### Conclusions and future work





#### WHO WE ARE

We are the name behind the high performance ingredients and technologies in some of the biggest, most successful brands in the world: developing, making and supplying specialty chemicals that are relied on by industries and consumers everywhere.

#### **Our Business Model**



#### Engage

We work in close partnership with customers and develop emerging technologies around the world



#### Create

We design innovative ingredients that enhance everyday products



#### Make

We manufacture to consistently high standards across the world



#### Sell

We generate revenue by selling our ingredients directly to customers





# MARKETS WE SERVE

| Personal Care | Life Sciences |           | Industrial Chemicals    |
|---------------|---------------|-----------|-------------------------|
| Personal Care | Health Care   | Crop Care | Industrial<br>Chemicals |









# PROBLEM DEFINITION

- How do we improve the efficiency of electrical cooling systems?
  - Primary driver for this project is the electrification of transport
  - Primary focus on battery technology and automotive fluids

- What are the current cooling methods?
  - How can these be improved?
- Can build understanding of cooling fluids through data exploration and modelling?





| W         | hat? | Why?                   | How?                                 | Alternatives |
|-----------|------|------------------------|--------------------------------------|--------------|
| Batteries |      | To prevent degradation | Air cooling<br>Cold plate<br>cooling |              |
|           |      |                        |                                      |              |
|           |      |                        |                                      |              |
|           |      |                        |                                      |              |
|           |      |                        |                                      |              |
|           |      |                        |                                      |              |





| W                    | hat? | Why?                   | How?                                 | Alternatives |
|----------------------|------|------------------------|--------------------------------------|--------------|
| Batteries            |      | To prevent degradation | Air cooling<br>Cold plate<br>cooling |              |
| Power<br>electronics |      | To prevent overheating | Heatsinks                            |              |
|                      |      |                        |                                      |              |





| w                    | hat? | Why?                                 | How?                                 | Alternatives |
|----------------------|------|--------------------------------------|--------------------------------------|--------------|
| Batteries            |      | To prevent degradation               | Air cooling<br>Cold plate<br>cooling |              |
| Power<br>electronics |      | To prevent overheating               | Heatsinks                            |              |
| Electric<br>motors   |      | To minimise<br>current<br>resistance | Cooling jackets                      |              |





| w                    | hat? | Why?                              | How?                                 | Alternatives                  |
|----------------------|------|-----------------------------------|--------------------------------------|-------------------------------|
| Batteries            |      | Prevent degradation               | Air cooling<br>Cold plate<br>cooling | Direct immersion cooling      |
| Power<br>electronics |      | Prevent<br>overheating            | Heatsinks                            | Direct immersion cooling      |
| Electric<br>motors   |      | Minimise<br>current<br>resistance | Cooling jackets                      | Spray cooling<br>Drip cooling |





 $\bigcirc$   $\bigcirc$  9

### EFFICIENT LIQUID COOLING OF ELECTRICAL EQUIPMENT



#### **Dielectric Fluids**

- Must be non-electrically conductive
- Should have high thermal conductivity for cooling
- Should be low viscosity to aid pumping efficiency





### DIELECTRIC FLUID PROPERTIES

• The ability of a fluid to transfer heat is based on the equation below

$$Q = \frac{\mathbf{k}A(T_2 - T_1)}{\mathbf{k}A(T_2 - T_1)}$$

| Q                               | Heat transfer (W)                                              |
|---------------------------------|----------------------------------------------------------------|
| k                               | Heat transfer coefficient (W m <sup>-2</sup> K <sup>-1</sup> ) |
| А                               | Area (m <sup>2</sup> )                                         |
| T <sub>2</sub> , T <sub>1</sub> | Temperature of object surface and cooling liquid, respectively |

• For efficient heat transfer a high heat transfer coefficient is required





# DIELECTRIC FLUID PROPERTIES

• The heat transfer coefficient is defined in the equation below

$$\mathbf{k} = \frac{\rho \lambda C_p}{\nu}$$

| ρ              | Density (kg m <sup>-3</sup> )                                 |
|----------------|---------------------------------------------------------------|
| λ              | Thermal conductivity (W m <sup>-1</sup> K <sup>-1</sup> )     |
| C <sub>p</sub> | Specific heat capacity (kJ kg <sup>-1</sup> K <sup>-1</sup> ) |
| v              | Kinematic viscosity (mm <sup>2</sup> s <sup>-1</sup> )        |





# DIELECTRIC FLUID PROPERTIES

- · In order to optimise this coefficient we want
  - High ↑ density
  - High ↑ thermal conductivity
  - High ↑ specific heat capacity
  - Low  $\checkmark$  viscosity







<>> 14

# DIELECTRIC FLUID PROPERTIES

- We wanted to understand relationship between structure and performance
- Large scale study to measure physical properties of esters
- Modelling work carried out the relate physical properties to structure







JMP





# DIELECTRIC FLUIDS

- Structure performance model created through linear regression in JMP
- Model used to direct the synthesis of new materials
- Acceptable correlation seen between model and new molecules







#### NEW MOLECULES



- Directed synthesis of molecules with higher thermal conductivity
- Targeted improvement in thermal conductivity is possible
- Model aims to balance thermal conductivity with other factors
  - Must not negatively impact other properties
- Further development ongoing to refine model and widen scope





### CONCLUSIONS

- Data obtained from applications testing has been used to successfully model
  product performance
- Model demonstrates the structure performance relationship of esters
- Model was used to predict materials with high thermal conductivity
- Predictions from the model verified through synthesis of new materials
- Demonstrated the possibility of tailoring the properties of dielectric fluids
- Success of this work has built momentum for the use of data and JMP to drive NPD





# Thank you! Any questions?

Contact us:

- HQ Cowick Hall, Snaith, Goole, East Yorkshire, DN14 9AA, UK
- +44 (0) 1405 860551

CrodaPlc

