

SVEM is a remarkable new method to extract more insights with fewer experimental cycles and build more accurate predictive models from small sets of data, including DOEs.

Less Cost / Faster to Market / Faster Problem-Solving

	Compaction	Sintering	Sintering			Shrinkage
	Pressure	Time	Temp C		1	-0.37
1	75	30.80	1122		2	-0.58
2	80	27.48	1111		3	-0.16
3	100	27.48	1127	Fit models to the	4	0.05
4	100	27.48	1118	training set	5	-1.50
_5	85	20.85	1221	training set	6	-0.09
6	100	27.48	1118		7	0.55
_7	95	27.48	1138		8	-1.43
Ŭ	05	50.00	1122			
				Assess models	9	-0.93
9	75	30.80	1113	using the	10	-0.79
10	70	30.80	1127		11	-1.22
11	90	20.85	1221	validation set	12	-1.00
12	70	30.80	1221		12	-1.99

WHY NOT AF	PLY MA	CHINE L	EARNI	NG TO D	OEs?								
							_						
⊿ Effect Tests													
	Source Nparm DF Squares F Ratio Prob > F												
Source	Source Nparm DF Squares F Ratio Prob > F Sintering Temp(1000 1250) 1 1 3,2802443 240,26823 0,0041*												
Sintering Temp(1000,1250)	1	1	3.2802443	240.26823	0.0041*								
Compaction Pressure*Sintering Temp	1	1	0.0464416	3.4017103	0.2064								
Sintering Time*Sintering Temp	1	1	0.002799	0.205015	0.6951								
Compaction Pressure(60,115)	1	0	0	0	1.0000	LostDFs							
Sintering Time(15,30)	1	0	0	0	1.0000	LostDFs							
Compaction Pressure*Sintering Time	1	0	0	0	1.0000	LostDFs							
Statistical Discovery ^w From SAS.	Copyright © 2018.	SAS Institute. Inc.	All rights reserved	i.			S.Sas. THE POWER TO KNOW.						
<u>,</u>	, , , , , ,		0				-						

WHY NOT APPLY MACHINE LEARNING TO DOEs? Compaction Sintering Sintering
 Sintering
 Shrinkage
 Validation

 1000
 -1.85
 Training
 Time 15 Pressure -1.85 Validation -2.01 Training -2.01 Validation -3.75 Training -3.75 Validation -1.74 Training -1.74 Validation -3.8 Training -3.8 Validation -3.74 Training -3.74 Validation -1.95 Training -1.95 Validation -3.32 Training -3.32 Validation -2.79 Training -2.79 Validation -1.23 Training -1.23 Validation -1.31 Training -1.31 Validation -2.35 Training -2.35 Validation SSAS. THE POWER TO KNOW Statistical Discovery... From SAS. Copyright © 2018, SAS Institute, Inc. All rights reserved.

	HOLDBA	CK AS	6 A WE	IGHTIN	IG SCI	HEME	
	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	Training Weight	Validation Weight	
1	60	15	1000	-1.85	1	0	
	60	15	1000	-2.01	1	0	
	60	20	1250	-3./5	1	0	
	60	30	1250	-3.8	1	0	
6	60	30	1250	-3.74	1	0	
7	115	15	1000	-1.95	1	0	
8	115	15	1250	-3.32	1	0	
9	115	15	1250	-2.79	0	1	
10	115	30	1000	-1.23	0	1	
11	115	30	1000	-1.31	0	1	
12	115	30	1250	-2.35	0	1	
Statistical Discovery:" From SAS.		Copyright © 20)18, SAS Institu	ute, Inc. All righ	ts reserved.		SSAS. THE FOWER

	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	U	Training Weight	Validation Weight
1	60	15	1000	-1.85	0.077	2.565	0.08
2	60	15	1000	-2.01	0.154	1.872	0.167
3	60	15	1250	-3.75	0.231	1.466	0.262
4	60	30	1000	-1.74	0.308	1.179	0.368
5	60	30	1250	-3.8	0.385	0.956	0.486
6	60	30	1250	-3.74	0.462	0.773	0.619
7	115	15	1000	-1.95	0.538	0.619	0.773
8	115	15	1250	-3.32	0.615	0.486	0.956
9	115	15	1250	-2.79	0.692	0.368	1.179
10	115	30	1000	-1.23	0.769	0.262	1.466
11	115	30	1000	-1.31	0.846	0.167	1.872
12	115	30	1250	-2.35	0.923	0.08	2.565
	115	30	1250	-2.35	0.923	0.08	2.565

<u>j</u>mp. st

_													
								ROA	יפ חד ח				
								NOA	0103				
		1		1	l.				1	I.	I.		
	Compaction	Sintering	Sintering	Chrinkago		Training	Validation						
1	60 FT	15	1000	-1.85	0.804	0.218	1.63						
2	60	15	1000	-2.01	0.033	3.426	0.033						
3	60	15	1250	-3.75	0.624	0.472	0.978						
4	60	30	1000	-1.74	0.972	0.028	3.585						
5	60	30	1250	-3.8	0.992	0.008	4.85						
6	60	30	1250	-3.74	0.146	1.922	0.158						
7	115	15	1000	-1.95	0.046	3.082	0.047						
8	115	15	1250	-3.32	0.362	1.017	0.449						
9	115	15	1250	-2.79	0.154	1.871	0.167						
0	115	30	1000	-1.23	0.052	2.955	0.053						
1	115	30	1000	-1.31	0.019	3.962	0.019						
2	115	30	1250	-2.35	0.587	0.533	0.884						
													1

Statistical Discovery:" From SAS.

Copyright © 2018, SAS Institute, Inc. All rights reserved.

ROAD TO SVEM
 Compaction
 Sintering Time
 Sintering Temp
 Shrinkage

 60
 15
 1000
 -1.85

 60
 15
 1000
 -2.01

 7
 1250
 -3.75
 -1.74
 Shrinkage Prediction Formula 1 Training Validation Weight 0.218 1.63 3.426 0.033 U 0.804 0.033 -2.01 -2.01 2 3 4 5 6 7 8 9 10 11 12 0.624 0.472 0.978 -3.62 60 60 60 115 30 1000 -1.74 0.972 0.028 3.585 -2.01 -3.8 -3.74 -1.95 0.992 0.146 0.046 -3.62 -3.62 -1.351 1250 0.008 4.85 30 30 15 15 15 1250 1000 1.922 3.082 0.158 0.047 115 115 115 -3.32 -2.79 0.362 -2.962 -2.962 1250 1.017 0.449 1250 0.167 1.871 30 30 115 115 1000 -1.23 -1.31 0.052 2.955 0.053 -1.351 -1.351 1000 3.962 0.019 115 30 1250 -2.35 0.587 0.533 0.884 -2.962 S.Sas. THE POWER TO KNOW Statistical Discovery." From SAS. Copyright © 2018, SAS Institute, Inc. All rights reserved.

S.Sas. THE POWER TO KNOW.

								ROA	D TO SVEM	
	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	U	Training Weight	Validation Weight	Shrinkage Prediction Formula 1		
1	60	15	1000	-1.85	0.804	0.218	1.63	-2.01		
2	60	15	1000	-2.01	0.033	3.426	0.033	-2.01		
3	60	15	1250	-3.75	0.624	0.472	0.978	-3.62		
4	60	30	1000	-1.74	0.972	0.028	3.585	-2.01		
5	60	30	1250	-3.8	0.992	0.008	4.85	-3.62		
7	115	50	1200	-5.74	0.140	2,0922	0.158	-5.02		
-	115	15	1250	-1.95	0.040	1.017	0.047	-1.551		
0	115	15	1250	-3.32	0.302	1.017	0.449	-2.902		
10	115	30	1000	-1.23	0.052	2,955	0.053	-1.351		
11	115	30	1000	-1.31	0.019	3.962	0.019	-1.351		
12	115	30	1250	-2.35	0.587	0.533	0.884	-2.962		
ř	nn Statistical	Discovery."" From	n SAS.					Consulate a		SAS THE POWER
יו								copyright @	2018, SAS Institute, Inc. All rights reserved.	TO KNOW.

								ROA	AD TO	SVEM				
	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	U	Training Weight	Validation Weight	Shrinkage Prediction Formula 1	Shrinkage Prediction Formula 2					
1	60	15	1000	-1.85	0.529	0.637	0.753	-2.01	-1.902					
2	60	15	1000	-2.01	0.055	2.9	0.057	-2.01	-1.902					
3	60	15	1250	-3.75	0.637	0.451	1.014	-3.62	-3.82					
4	60	30	1000	-1.74	0.714	0.337	1.251	-2.01	-1.826					
5	60	30	1250	-3.8	0.93	0.073	2.654	-3.62	-3.745					
6	60	30	1250	-3.74	0.721	0.326	1.278	-3.62	-3.745					
7	115	15	1000	-1.95	0.466	0.763	0.628	-1.351	-1.951					
8	115	15	1250	-3.32	0.254	1.372	0.293	-2.962	-3.082					
9	115	15	1250	-2.79	0.644	0.44	1.033	-2.962	-3.082					
10	115	30	1000	-1.23	0.694	0.366	1.183	-1.351	-1.229					
11	115	30	1000	-1.31	0.627	0.467	0.985	-1.351	-1.229		I			
12	115	30	1250	-2.35	0.231	1.464	0.263	-2.962	-2.36					
	10 113 30 100 -1.23 0.030 11.05 -1.25 11 115 30 1000 -1.31 0.627 0.467 0.985 -1.351 -1.229 - </th													
j	mp. Statistical	Discovery. ^{na} Fro	m SAS.					Copyright ©	2018, SAS Inst	itute, Inc. All rights reserved.	S.Sas.			

								ROA	ND TO	SVEM	
	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	U	Training Weight	Validation Weight	Shrinkage Prediction Formula 1	Shrinkage Prediction Formula 2		
1	60	15	1000	-1.85	0.529	0.637	0.753	-2.01	-1.902		
2	60	15	1000	-2.01	0.055	2.9	0.057	-2.01	-1.902		
3	60	15	1250	-3.75	0.637	0.451	1.014	-3.62	-3.82		
4	60	30	1000	-1.74	0.714	0.337	1.251	-2.01	-1.826		
5	60	30	1250	-3.8	0.93	0.073	2.654	-3.62	-3.745		
6	60	30	1250	-3.74	0.721	0.326	1.278	-3.62	-3.745		
7	115	15	1000	-1.95	0.466	0.763	0.628	-1.351	-1.951		
8	115	15	1250	-3.32	0.254	1.372	0.293	-2.962	-3.082		
9	115	15	1250	-2.79	0.644	0.44	1.033	-2.962	-3.082		
10	115	30	1000	-1.23	0.694	0.366	1.183	-1.351	-1.229		
11	115	30	1000	-1.31	0.627	0.467	0.985	-1.351	-1.229		
12	115	30	1250	-2.35	0.231	1.464	0.263	-2.962	-2.36		
Ĵ	mp. Statistical	Discovery.™ Fro	m SAS.					Copyright ©	2018, SAS Inst	titute, Inc. All rights reserved.	Sas. Power to know.

								PO		SVEM						
								NOF								
								a	a	a				1	1	1
	Compaction	Sintering	Sintering			Training	Validation	Shrinkage Prediction	Shrinkage Prediction	Shrinkage Prediction						
\sum	Pressure	Time	Temp	Shrinkage	U	Weight	Weight	Formula 1	Formula 2	Formula 3						
1	60	15	1000	-1.85	0.033	3.418	0.033	-2.01	-1.902	-1.885						
2	60	15	1000	-2.01	0.146	1.925	0.158	-2.01	-1.902	-1.885						
3	60	15	1250	-3.75	0.367	1.001	0.458	-3.62	-3.82	-3.885						
4	60	30	1000	-1.74	0.093	2.379	0.097	-2.01	-1.826	-1.746						
5	60	30	1250	-3.8	0.027	3.606	0.028	-3.62	-3.745	-3.747						
6	60	30	1250	-3.74	0.425	0.857	0.553	-3.62	-3.745	-3.747						
7	115	15	1000	-1.95	0.761	0.273	1.431	-1.351	-1.951	-1.935						
8	115	15	1250	-3.32	0.189	1.667	0.209	-2.962	-3.082	-3.031						
9	115	15	1250	-2.79	0.416	0.876	0.539	-2.962	-3.082	-3.031						
10	115	30	1000	-1.23	0.687	0.375	1.162	-1.351	-1.229	-1.255						
11	115	30	1000	-1.31	0.56	0.581	0.82	-1.351	-1.229	-1.255						
12	115	30	1250	-2.35	0.982	0.018	4.026	-2.962	-2.36	-2.35						
Ĵ	np. Statistical	Discovery.™ From	m SAS.					Copyright ©	2018, SAS Inst	titute, Inc. All ri	thts reserved.				Sas.	THE POWER TO KNOW,

		ROAD TO SVEM														
	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	U	Training Weight	Validation Weight	Shrinkage Prediction Formula 1	Shrinkage Prediction Formula 2	Shrinkage Prediction Formula 3	Shrinkage Prediction Formula 4					
1	60	15	1000	-1.85	0.746	0.293	1.372	-2.01	-1.902	-1.885	-1.921					
2	60	15	1000	-2.01	0.315	1.157	0.378	-2.01	-1.902	-1.885	-1.921					
3	60	15	1250	-3.75	0.163	1.814	0.178	-3.62	-3.82	-3.885	-3.797					
_4	60	30	1000	-1.74	0.474	0.747	0.642	-2.01	-1.826	-1.746	-1.856					
_ 5	60	30	1250	-3.8	0.286	1.253	0.336	-3.62	-3.745	-3.747	-3.731					
6	60	30	1250	-3.74	0.896	0.11	2.265	-3.62	-3.745	-3.747	-3.731					
_7	115	15	1000	-1.95	0.184	1.69	0.204	-1.351	-1.951	-1.935	-2.025					
8	115	15	1250	-3.32	0.075	2.596	0.078	-2.962	-3.082	-3.031	-3.236					
	115	15	1250	-2.79	0.838	0.177	1.819	-2.962	-3.082	-3.031	-3.236					
10	115	30	1000	-1.23	0.452	0.793	0.602	-1.351	-1.229	-1.255	-1.237					
11	115	30	1000	-1.31	0.133	2.014	0.143	-1.351	-1.229	-1.255	-1.237					
12	115	30	1250	-2.35	0.252	1.38	0.29	-2.962	-2.36	-2.35	-2.448					
	115 30 1000 -1.23 0.123															

								ROA	AD TO	SVEM					
	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	U	Training Weight	Validation Weight	Shrinkage Prediction Formula 1	Shrinkage Prediction Formula 2	Shrinkage Prediction Formula 3	Shrinkage Prediction Formula 4	Shrinkage Prediction Formula 5			
1	60	15	1000	-1.85	0.096	2.345	0.101	-2.01	-1.902	-1.885	-1.921	-1.873			
2	60	15	1000	-2.01	0.671	0.399	1.112	-2.01	-1.902	-1.885	-1.921	-1.873			
3	60	15	1250	-3.75	0.161	1.827	0.175	-3.62	-3.82	-3.885	-3.797	-3.749			
4	60	30	1000	-1.74	0.987	0.013	4.322	-2.01	-1.826	-1.746	-1.856	-1.707			
5	60	30	1250	-3.8	0.592	0.524	0.898	-3.62	-3.745	-3.747	-3.731	-3.778			
6	60	30	1250	-3.74	0.736	0.307	1.331	-3.62	-3.745	-3.747	-3.731	-3.778			
-	115	15	1000	-1.95	0.797	0.227	1.594	-1.351	-1.951	-1.935	-2.025	-1.947			
8	115	15	1250	-3.32	0.932	0.07	2.693	-2.962	-3.082	-3.031	-3.230	-2.82			
9	115	10	1250	-2.79	0.342	1.073	0.418	-2.902	-3.082	-3.031	-3.230	-2.82			
11	115	30	1000	-1.23	0.694	0.300	0.357	-1.301	-1.229	-1.200	-1.237	-1.287			
12	115	30	1000	-1.51	0.5	0.000	0.537	-1.551	-1.229	-1.233	-1.257	-1.207			
12	115	50	1250	-2.55	0.595	0.926	0.505	-2.902	-2.50	-2.55	-2,440	-2,534			
Ĵ	np. Statistical	Discovery.™ Fro	m SAS.					Copyright ©	2018, SAS Inst	titute. Inc. All r	ights reserved	ı.		Sas 🕅	VER KNOW,
Ĵĺ	np. Statistical	Discovery.™ Fro	m SAS.					Copyright ©	2018, SAS Inst	itute, Inc. All r	ights reserved	l.		S.Sas.	.V1 CP

Compaction Pressure Sintering Time Shrinkage Term Shrinkage Weight Shrinkage Prediction Weight Shrinkage Prediction Shrinkage Prediction Shrinkage Prediction Shrinkage Prediction Shrinkage Prediction 1 06 15 1000 -1.85 0.06 2.34 0.101 -2.01 -1.920 -1.885 -1.921 -1.673 2 60 15 1000 -2.01 0.039 1.112 -2.01 -1.902 -1.885 -1.921 -1.673 4 60 30 0100 -1.74 0.897 0.132 0.201 -1.922 -3.885 -3.707 -3.749 4 60 30 1250 -3.74 0.937 1.321 -3.22 -3.825 -3.707 -3.749 6 60 30 1250 -3.74 0.592 0.524 0.898 -3.62 -3.745 -3.747 -3.711 -3.778 7 115 15 1000 1-195 0.307 1.231 -1.935 <td< th=""><th></th><th></th><th></th><th>SVEM</th><th>AD TO</th><th>ROA</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>				SVEM	AD TO	ROA								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Shrinkage Prediction Formula 5	Shrinkage Prediction Formula 4	Shrinkage Prediction Formula 3	Shrinkage Prediction Formula 2	Shrinkage Prediction Formula 1	Validation Weight	Training Weight	U	Shrinkage	Sintering Temp	Sintering Time	Compaction Pressure	
2 00 15 1000 -2.01 0.97 -1.302 -1.385 -1.321 -1.383 -1.843 3 60 15 1250 -3.75 0.161 18.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.161 8.27 0.174 0.967 0.13 4.322 -3.82 -3.885 -3.749 0.374 0.374 0.374 0.374 0.374 0.374 0.371 0.375 0.32 0.307 1.331 -3.62 -3.745 -3.747 -3.731 -3.778 0.377 0.377 0.377 0.377 0.371 1.351 1.951 1.935 -2.025 -1.947 0.418 0.418 -3.745 -3.747 -3.731 -3.731 -3.778 0.418 -2.962 -3.082 -3.031 -3.235 -2.82 0.418 -1.351 -1.229 -1.235 -1.237 -1.287 0.418 -2.962		-1.873	-1.921	-1.885	-1.902	-2.01	0.101	2.345	0.096	-1.85	1000	15	60	1
5 00 15 1230 -3-73 0.101 1.627 0.113 -3-32 -3-362 -3-363 -3-737 -3-749 -3-749 4 60 30 1250 -1.74 0.987 0.013 4.322 -2.01 -1.826 1.746 -1.856 -1.707 0.101 1.027 0.987 0.013 4.322 -2.01 -1.826 1.746 -1.856 -1.707 0.217 0.987 0.013 4.322 -2.01 -1.826 -1.747 -3.713 -3.778 0.101 0.102 0.797 0.227 1.391 -3.62 -3.745 -3.747 -3.731 -3.778 0.101 0.102 0.797 0.227 1.391 -1.951 -1.935 -2.025 -1.947 8 115 115 1250 -3.32 0.992 0.077 2.692 -3.082 -3.031 -3.226 -2.82 0.921 0.932 0.932 0.932 0.932 -2.962 -3.082 -3.031 -3.236 -2.82 0.935 0.928 0.337 -1.251 -1.237 -1.287 1.287 1		-1.8/3	-1.921	-1.885	-1.902	-2.01	1.112	0.399	0.6/1	-2.01	1000	15	60	-2
4 00 30 1000 -11,14 0.937 -11,00<		-5.749	-5./9/	-5.003	-5.02	-5.02	4 222	0.012	0.101	-5.75	1250	20	60	
5 60 30 1250 -1320 0.324 0.304 0.304 0.304 -3.74 -3.747 -3.731 -3.778 6 60 1250 -1370 0.307 0.327 1.331 -3.62 -3.745 -3.747 -3.731 -3.778 - 7 115 15 1000 -1.95 0.797 0.227 1.594 -1.351 -1.935 -2.025 -1.947 -		-1.707	4 60 30 1000 -1.74 0.987 0.013 4.322 -2.01 -1.826 -1.746 -1.856 -1.707 5 60 30 1250 -3.8 0.592 0.524 0.898 -3.62 -3.745 -3.747 -3.731 -3.778											
0 0		-3.778	-3.731	-3.747	-3.745	-3.62	1 3 3 1	0.324	0.392	-3.74	1250	30	60	6
8 115 12 0 3.32 0.932 0.07 2.693 -2.962 -3.082 -3.031 -3.236 -2.82 9 115 15 1250 -2.79 0.342 1.073 0.418 -2.962 -3.082 -3.031 -3.236 -2.82 10 115 30 1000 -1.23 0.694 0.366 1.183 -1.255 -1.237 -1.287		-1.947	-2.025	-1.935	-1.951	-1.351	1.594	0.227	0.797	-1.95	1000	15	115	7
9 115 15 1250 -2.79 0.342 1.073 0.418 -2.962 -3.082 -3.031 -3.236 -2.82 10 115 30 1000 -1.23 0.694 0.366 1.183 -1.351 -1.229 -1.255 -1.237 -1.287 11 115 30 1000 -1.31 0.3 1.203 0.357 -1.351 -1.229 -1.255 -1.237 -1.287 12 115 30 1250 -2.35 0.395 0.928 0.503 -2.962 -2.35 -2.35 -2.354		-2.82	-3.236	-3.031	-3.082	-2.962	2,693	0.07	0.932	-3.32	1250	15	115	8
10 115 30 1000 -1.23 0.694 0.366 1.183 -1.229 -1.235 -1.237 -1.287 11 115 30 1000 -1.31 0.3 1.203 0.357 -1.351 -1.229 -1.255 -1.237 -1.287 12 115 30 1250 -2.35 0.395 0.928 0.503 -2.962 -2.35 -2.448 -2.354		-2.82	-3.236	-3.031	-3.082	-2.962	0.418	1.073	0.342	-2.79	1250	15	115	9
11 115 30 1000 -1.31 0.3 1.203 0.357 -1.351 -1.229 -1.255 -1.237 -1.287 12 115 30 1250 -2.35 0.395 0.928 0.503 -2.962 -2.36 -2.35 -2.448 -2.354		-1.287	-1.237	-1.255	-1.229	-1.351	1.183	0.366	0.694	-1.23	1000	30	115	10
12 115 30 1250 -2.35 0.395 0.928 0.503 -2.962 -2.36 -2.35 -2.448 -2.354		-1.287	-1.237	-1.255	-1.229	-1.351	0.357	1.203	0.3	-1.31	1000	30	115	11
		-2.354	-2.448	-2.35	-2.36	-2.962	0.503	0.928	0.395	-2.35	1250	30	115	12
														I

								ROA	AD TO	SVEM						
	Compaction Pressure	Sintering Time	Sintering Temp	Shrinkage	U	Training Weight	Validation Weight	Shrinkage Prediction Formula 1	Shrinkage Prediction Formula 2	Shrinkage Prediction Formula 3	Shrinkage Prediction Formula 4	Shrinkage Prediction Formula 5	SVEM Prediction	Í		
1	60	15	1000	-1.85	0.096	2.345	0.101	-2.01	-1.902	-1.885	-1.921	-1.873	-1.9183			
2	60	15	1000	-2.01	0.671	0.399	1.112	-2.01	-1.902	-1.885	-1.921	-1.873	-1.9183			
3	60	15	1250	-3.75	0.161	1.827	0.175	-3.62	-3.82	-3.885	-3.797	-3.749	-3.7744			
4	60	30	1000	-1.74	0.987	0.013	4.322	-2.01	-1.826	-1.746	-1.856	-1.707	-1.8293			
5	60	30	1250	-3.8	0.592	0.524	0.898	-3.62	-3.745	-3.747	-3.731	-3.778	-3.7242			
6	60	30	1250	-3.74	0.736	0.307	1.331	-3.62	-3.745	-3.747	-3.731	-3.778	-3.7242			
	115	15	1000	-1.95	0.797	0.227	1.594	-1.351	-1.951	-1.935	-2.025	-1.947	-1.842			
8	115	15	1250	-3.32	0.932	0.07	2.693	-2.962	-3.082	-3.031	-3.236	-2.82	-3.026			
9	115	15	1250	-2.79	0.342	1.073	0.418	-2.962	-3.082	-3.031	-3.236	-2.82	-3.026			
10	115	30	1000	-1.23	0.694	0.366	1.183	-1.351	-1.229	-1.255	-1.237	-1.287	-1.272			
$\frac{11}{42}$	115	30	1000	-1.31	0.3	1.203	0.357	-1.351	-1.229	-1.255	-1.237	-1.287	-1.2/2			
12	115	30	1250	-2.35	0.395	0.928	0.503	-2.962	-2.36	-2.35	-2.448	-2.354	-2.4948			
															6000	THE
j	mp. Statistical	Discovery.™ Fro	m SAS.					Copyright ©	2018, SAS Inst	itute, Inc. All i	ights reserved				<u>s</u> sas	THE POWER TO KNOV

SIMULATIONS

- Definitive Screening and Box Behnken Designs in 4 and 8 DoE factors •
- Tried many "classical" and autovalidation based modeling approaches, all based on ٠ quadratic RSM.
- 1000 simulation reps per situation •
- Each sim rep had its own set of "true" model coefficients •
 - · Nonzero model coefficients were double exponentially distributed
 - "True" nonzero coefficients represented 50%-100% of all possible coefficients •
- Models evaluated on an independent set RMSE (n=10k, spacefilling design) vs. true model •

Statistical Discovery... From SAS.

Copyright © 2018, SAS Institute, Inc. All rights reserved

S.Sas. THE POWER TO KNOW

		%D0	Induction	Induction	Feed	pDNA Titor mg/l
1	6.8	30	42.5	40	19	285 60
2	7.0	30	41.0	30	2.7	364.00
3	7.0	30	41.0	30	2.7	348.08
4	7.0	30	41.0	30	2.7	434.74
5	7.0	30	41.0	30	2.7	339.74
6	7.2	40	42.5	20	1.9	154.46
7	7.0	30	41.0	30	2.7	430.35
8	6.8	20	42.5	40	3.5	341.00
9	7.2	20	42.5	20	3.5	303.82
10	7.2	30	39.5	20	3.5	398.00
11	7.0	30	41.0	30	2.7	411.74
12	6.8	20	39.5	20	3.5	517.23
13	6.7	30	41.0	30	2.7	338.68
14	7.2	20	41.0	40	1.9	229.00
15	7.0	30	41.0	17	2.7	282.29
16	6.8	40	41.0	20	3.5	377.00

pDNA DoE Discovery Marc	h 2021 - J	IMP Pro [2	2]						- 0	X
File Edit Tables Rows C	ols DO	E Analy:	ze Grap	h Tools	Add-Ins V	iew Window	Help			
i 🚑 🤮 💕 🛃 X 🗈 🕰	13 🙀	Custor	n Design	N	Creat	es an optimal de	sign for yo	ur		
▼pDNA DoF Discov	ব 😥	Augme	ent Desigr	1 V3	= specif	ic experimental	settings.			-
Full Quadratic Model	-	Definit	ive Screer	nina	•					
-		Classic	al		•					
		Design	Diagnost	ics	⁺ ction	Induction	Feed	nDNA		
		Consu	mer Studi	es	^b npC	OD600	Rate	Titer mg/L		
		Special	l Purpose		42.5	40	1.9	285.60		
Columns (7/0)		Sample	e Size Exp	lorers	+ 41.0	30	2.7	364.00		
0		3	7.0	30	41.0	30	2.7	348.08		
4 11-14	-	4	7.0	30	41.0	30	2.7	434.74		
		5	7.0	30	41.0	30	2.7	339.74		
Induction TempC *		6	7.2	40	42.5	20	1.9	154.46		
▲ Induction OD600 ★		7	7.0	30	41.0	30	2.7	430.35		
A Feed Rate *		8	6.8	20	42.5	40	3.5	341.00		
pDNA Titer mg/L *		9	7.2	20	42.5	20	3.5	303.82		
Rows		10	7.2	30	39.5	20	3.5	398.00		
All rows 46		11	7.0	30	41.0	30	2.7	411.74		
Selected 0		12	6.8	20	39.5	20	3.5	517.23		
Hidden 0		13	6.7	30	41.0	30	2.7	338.68		
evaluations done									3 🛧	•

File Edit Tables Rows Cols DOE Analyze	e Graph Tools Add-In	s View Window He	lp			
Custom Design A Responses						
Add Deserves						
Response Name	Coal	Louver Limit	Linner Limit	Importance	Lower Detection Limit	Unner Detection Limit
kesponse Name	Goal	Lower Limit	Opper Limit	Importance	Lower Detection Limit	Opper Detection Limit
Covariate/Candidate Runs Select Covariate Factors the curre pecify Factors Vdd a factor by clicking the Add Fact Double click on a factor name or leve Continue	et of candidate r uns t ent data table. tor button. el to edit it.	for covariates from				
						9 1

Custom Design Custom Design Custom Design Responses Add Responses Covariate Covariate	Custom Design Custom Design Courter the second of the secon	File Edit Tables Rows Cols	2] DOF Analyze Granh Too	ls Add-Ins View	Window Help					- 🗆 ×
Add Response * Remove Number of Responses Response Name Goal Lower Limit Upper Limit Importance Lower Detection Limit Upper Detection Limit Y Maximize Factors Made Factor * Remove Add N Factors 1 * PiH Covariate Easy 0.74 7.26 . . . * Moducion TempC Covariate Easy 17 43 . . . * Induction Ob600 Covariate Easy 17 43 * Covariate/Candidate Runs * Covariate/Candidate Runs . <t< th=""><th>Add Responses Add Responses Response Name Goal Lower Limit Upper Limit Importance Lower Detection Limit Upper Detection Limit Y Maximize </th><th>✓ Custom Design</th><th>ioc Analyze orapin ioo</th><th></th><th>Thilden Thep</th><th></th><th></th><th></th><th></th><th></th></t<>	Add Responses Add Responses Response Name Goal Lower Limit Upper Limit Importance Lower Detection Limit Upper Detection Limit Y Maximize	✓ Custom Design	ioc Analyze orapin ioo		Thilden Thep					
Add Response * Remove Number of Responses Response Name Goal Lower Limit Upper Limit Importance Lower Detection Limit Upper Detection Limit Y Maximize # Factors Add Factor * Remove Add N Ractors 1 Mame Role Changes Values *pH Covariate Easy 5.74 7.26 . . . *gbD Covariate Easy 1.7 4.3 .	Add Response * Remove Number of Responses Response Name Goal Lower Limit Upper Limit Importance Lower Detection Limit Upper Detection Limit Y Maximize Factors Made Factor * Remove Add N Factors 1 . <th>A Responses</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	A Responses								
Response Name Goal Lower Limit Upper Limit Importance Lower Detection Limit Upper Detection Limit Y Maximize I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Response Name Goal Lower Limit Upper Limit Importance Lower Detection Limit Upper Detection Limit Y Maximize Factors Made Factor Remove Add N Factors 1 PpH Covariate Easy 6.74 7.26 . . . *Nome Role Changes Values *PpH Covariate Easy 17 43 Induction TempC Covariate Easy 1.66 3.74 Specify factors Add factor button. Double click on a factor name or level to edit it. .	Add Response - Remove	Number of Response	es						
Y Maximize I Factors Add Factor Remove Add N Factors Add Factor Remove Add N Factors 1 Name Role Changes Values Opt Covariate Easy 6.74 7.26 +bDO Covariate Easy 1nduction TempC Covariate Easy 1.66 3.74 Specify Factors Specify factors Add a factor by clicking the Add Factor button.	Y Maximize * Factors Add factor * Remove Add N Factors 1 * PpH Covariate Easy 6.74 7.26 . . * Sp00 Covariate Easy 17 43 . . * Induction TempC Covariate Easy 17 43 . . * Induction OD600 Covariate Easy 17 43 * Covariate/Candidate Runs Easy 1.66 3.74 * Specify factors Add factor buton. Double click on a factor name or level to edit it. . <td>Response Name</td> <td>Goa</td> <td>al Lowe</td> <td>er Limit</td> <td>Upper Limit</td> <td>Importance</td> <td>Lower Detection Limit</td> <td>Upper Detection Limit</td> <td></td>	Response Name	Goa	al Lowe	er Limit	Upper Limit	Importance	Lower Detection Limit	Upper Detection Limit	
Add Factors Add N Factors 1 Name Role Changes Values PpH Covariate Easy 6.74 7.26 4sbO Covariate Easy 17 43 Induction TempC Covariate Easy 17 43 Induction TempC Covariate Easy 1.66 3.74 Feed Rate Covariate Easy 1.66 3.74 Ocovariate/Candidate Runs Specify Factors Add a factor by dicking the Add Factor button.	Factors Add factor remove Add N Factors 1 Name Role Changes Values PpH Covariate Easy 17.7.26 1 Moduction TempC Covariate Easy 17.7.43 Induction 00500 Covariate Easy 17.6 - Feed Rate Covariate Easy 1.66 3.74 Ocavariate Covariate Easy 1.66 3.74 Specify Factors Add factor by clicking the Add Factor button. Double click on a factor name or level to edit it.	Y	Ma	ximize .						
Specify Factors Add a factor by clicking the Add Factor button.	Specify Factors Add a factor by clicking the Add Factor button. Double click on a factor name or level to edit it. Conting	 Induction OD600 Feed Rate Covariate/Candida 	Covariate Covariate te Runs	Easy Easy	17 1.66		43 3.74			
Add a factor by clicking the Add Factor button.	Add a tactor by dicking the Add Factor button. Double click on a factor name or level to edit it. Continger	Specify Factors								
Double click on a factor name or level to edit it.		Add a factor by clicking th Double click on a factor na Contin	e Add Factor button. ame or level to edit it.							
		evaluations done								

邱 DOE - Custom Design - JMP Pr	[2]				- 🗆 ×	
File Edit Tables Rows Cols	DOE Analyze Graph Too	ols Add-Ins View	Window Help			
Responses						
4 Factors						
Add Factor T Remove /	dd N Factors					
Name	Role	Changes	Values			
⊿рн	Covariate	Easy	6.74	7.26		
<mark>4</mark> %DO	Covariate	Easy	17	43		
Induction TempC	Covariate	Easy	39.05	42.95		
Feed Rate	Covariate	Easy	1,66	3.74		
Covariate/Candid	ate Runs					
4 Define Factor Cons	traints					
4 Model	sinations script					
Main Effects Interaction	s - RSM	Powers • Remov	ve Term			
Name	0	Estimabili	ty			
Intercept		Necessary	/			
%DO		Necessary	/			
Induction TempC		Necessary	/			
Induction OD600		Necessary	(
recorde		recessory	, ,			
> Alias Terms						
Design Generation						
Include all selected co	wariate rows in the desi	ign				
Allow covariate rows	to be repeated					
BUILDONDOF OF MUDDL	40					
Number of Runs:						

	THE PL		DNA	(nDNA)	FXPFRM	FNT	
				(pbin)			
	HT DOE - Curtom Darian - IMP Pro 12	1				- n x	
	File Edit Tables Rows Cols DO) DE Analyze Graph Tool	Is Add-Ins View	Window Help		u ,	
	Custom Design						
	Responses						
	⊿ Factors						
	Add Factor Remove Add	d N Factors 1					
	Name	Role	Changes	Values			
	рн	Covariate	Easy	6.74	7.26		
	4%DO	Covariate	Easy	17	43		
	Induction OD600	Covariate	Easy	17	42.95		
	Feed Rate	Covariate	Easy	1.66	3.74		
	Covariate/Candidat	e Runs					
	⊿ Define Factor Constr	aints					
	None						
	 Specify Linear Constrain Use Disallowed Combin 	its ations Filter					
	 Use Disallowed Combin 	ations Script					
	4 Model						
	Main Effects Interactions	RSM Cross F	owers - Remo	ove Term			
	Name		Estimabili	ity			
	Intercept		Necessary		^		
	pН		Necessary				
	%DO		Necessary	Necessary			
	Induction OD600		Necess	If Possible			
	Feed Rate		Necessary	L3			
	рН*рН		Necessary				
	pH*%DO		Necessary		v		
	Alias Terms						
	Design Generation						
	Include all selected cova	riate rows in the desi	gn				
	Number of Runs:	46					
	Make Design						
	evaluations done					0 r	
Statistical Discovery:" From SAS.		Copyright © 20)18, SAS Inst	titute, Inc. All rig	hts reserved.		S.Sas. THE POWER TO KNOW.

diama a second a second						
24 DUE - Custom Design 3 - JMP F	ro [2]			- 0	×	
File Edit Tables Rows Cols	DOE Analyze Graph Too	ols Add-Ins View	Window Help			
Responses						
4 Factors						
Add Factor Remove A	dd N Factors 1					
Name	Role	Changes	Values			
PH	Covariate	Easy	0./4	43		
Induction TempC	Covariate	Easy	39.05	42.95		
Induction OD600	Covariate	Easy	17	43		
Feed Rate	Covariate	Easy	1.66	3.74		
Covariate/Candid	ate Runs					
4 Define Factor Cons	traints					
Model						
Main Effects Interaction	RSM Cross	Powers • Remov	ve Term			
Main Effects Interaction	s ▼ RSM Cross	Powers Remov Estimabilit	ve Term Y			
✓ Model Main Effects Interaction Name Intercept	s • RSM Cross	Powers Remov Estimabilit Necessary If Possible	ve Term V			
d Model Main Effects Interaction Name Intercept pH %DO	s • RSM Cross	Powers Remov Estimabilit Necessary If Possible If Possible	ve Term V	~		
Main Effects Interaction Name Intercept PH %DO Induction TempC	s • RSM Cross	Powers Remov Estimabilit Necessary If Possible If Possible If Possible If Possible	ve Term	^		
Moin Effects Interaction Name Intercept pH %DO Induction TempC Induction TempC Induction Ob600	S RSM Cross	Powers Remov Estimabilit Necessary If Possible If Pos	ve Term	ŕ		
Model Main Effects Interaction Name Intercept pH %00 Induction TempC Induction CD600 Feed Rate pH	RSM Cross	Powers Remov Estimabilit Necessary If Possible If Pos	ve Term Y	8		
Model Main Effects Interaction Nome Intercept pH %DO induction TempC induction OD600 Feet Rate pH*pH off*pH	RSM Cross	Powers Remov Estimabilit Necessary If Possible If Possible If Possible If Possible If Possible If Possible If Possible	ve Term Y	×		
Model Main Effects Interaction Name Intercept PH StOO Induction COD600 Feed Rate pH*MoO PAIda S Terms	s 🕇 RSM Cross	Powers V Remov Estimabilit Necessary If Possible If Possible If Possible If Possible If Possible If Possible If Possible	<u>ve Term</u> γ			
Model Main Effects Interaction Name Intercept pH %DO Induction TempC Induction Ob600 Feed Rate pH*%DO VAllas Terms / Design Generation	RSM Cross	Powers Remov Estimabilit Necessary If Possible If Possible If Possible If Possible If Possible If Possible	ve Term У	A V		
 ▲ Model Main Effectig Interaction Name Intercept pH NDO Induction TempC Design Generation □ Inductia Iselected oc 	• RSM Cross	Powers Remov Estimabilit Necessary If Possible If Possible If Possible If Possible If Possible If Possible	ve Term] y			
✓ Model Main Effects Interaction Intercept PH ShOC Induction CD0500 Feed Rate pH*fa0 > Allas Terms ✓ Design Generation □ Include all selected oc □ Include all selected oc	• RSM Cross	Powers Remov Estimabilit Necessary If Possible If Possible If Possible If Possible If Possible If Possible	ve Term y	K		
▲ Model Main Effects Interaction Name Intercept pH %OO induction OBGO Feed Rate pH*PH pH*%DO ▶ Alias Terms ▲ Design Generation □Induce all selected oc Number of Runs.	variate rows in the des	Powers Remov Estimabilit Necessary If Possible If Possible If Possible If Possible If Possible If Possible If Possible	ye Term y	A V		
Model Main Effects Interaction Name Intercept PH %DO FedEfate pPTPH %DO FedEfate pPTPH %PO PAlias Terms DIcklong Generation Inducts Interaction Make Design Make Design	• RSM Cross	Powers Remov Estimabilit Necessary If Possible If Possible If Possible If Possible If Possible If Possible	ve Term y			

			אאר		EVDEDMENT		
	译 DOE - Custom Design 3 - JMP Pro	[2]			- 🗆 ×		
	File Edit Tables Rows Cols D	JE Analyze Graph lool	s Add-Ins View	Window Help			
	Responses						
	/ Fastors						
		N Contract					
	Add Factor • Remove Add	Dala Dala	Channes	Malvas			
	A DH	Covariate	Easy	6.74	7.26	-	
	4%DO	Covariate	Easy	17	43	-	
	Induction TempC	Covariate	Easy	39.05	42.95	_	
	Induction OD600	Covariate	Easy	17	43	_	
	Covariate/Candidat	o Pupe	Edsy	1.00	5.74	-	
	Define Faster Canada	-inte					
	None	ants					
	 Specify Linear Constrain 	its					
	 Use Disallowed Combin Use Disallowed Combin 	ations Filter					
	O use Disallowed Combin	ations script					
	⊿ Model						
	Main Effects Interactions	RSM Cross P	owers - Remo	ove Term			
	Name		Estimabil	ity			
	Intercept		Necessary I6 Describite		<u>^</u>		
	%DO		If Possible				
	Induction TempC		If Possible				
	Induction OD600		If Possible				
	Feed Rate		If Possible				
	pH*%DO		If Possible		<u> </u>		
	Alias Terms						
	Design Generation						
	Include all selected cova	riate rows in the desi	qn				
	Allow covariate rows to	be repeated	- -				
	Number of Runs:	16					
	Make Design						
	evaluations done						
*							
Statistical Discovery:" From SAS.		Copyright © 20	18, SAS Inst	itute, Inc. All righ	nts reserved.		Sas The POWER TO KNOW.
							,

伊 DOE - Custom Design 3 - JMP Pr	o [2]			- 🗆 X	1			
File Edit Tables Rows Cols	DOE Analyze Graph Tools	Add-Ins View	Window Help					
Custom Design								
Responses								
⊿ Factors					Ins View	v Window	Help	
Add Factor - Remove A	dd N Factors 1							
Name	Role	Changes	Values					
⊿ рн	Covariate	Easy	6.74	7.26				
4%DO	Covariate	Easy	17	43				
Induction TempC	Covariate	Easy	39.05	42.95	tion I	nduction	Feed	pDNA
Induction OD600	Covariate	Easy	17	43	42.5	40	1 Q	285.60
Feed Rate	Covariate	Easy	1.66	3.74	41.0	30	2.7	364.00
Covariate/Candida	ate Runs				41.0	30	2.7	348.08
Define Factor Const	raints				41.0	30	2.7	434.74
None					41.0	30	2.7	339.74
 Specify Linear Constra Use Disallowed Combined 	ints nations Filtor				42.5	20	1.9	154.46
 Use Disallowed Combi Use Disallowed Combi 	nations Script				41.0	30	2.7	430.35
					42.5	40	3.5	341.00
P MODEI					42.5	20	3.5	303.82
Alias Terms					39.5	20	3.5	398.00
Design Generation					41.0	30	2.7	411.74
Include all selected cov	variate rows in the design		63		39.5	20	3.5	517.23
Allow covariate rows t	o be repeated				41.0	30	2.7	338.68
Number of Runs:	16				41.0	40	1.9	229.00
Make Design								
<				>				

pDNA DoE Discovery Marc File Edit Tables Rows C	ch 2021 - JMP Pro [Cols DOE Analy	2] ze Grap	h Tools	s Add-Ins V	ew Window	Help			- 0	×
: 🖽 🔁 🥁 🖬 🕺 🕩 🕰	IS A 💶 🗎		- Ľx 🖗	× 2 .						
 pDNA DoE Discov Full Quadratic Model 		рН	%DO	Induction TempC	Induction OD600	Feed Rate	pDNA Titer mg/L	Bayesian I Optimal Subset n=16		
	1	6.8	30	42.5	40	1.9	285.60	0		^
	2	7.0	30	41.0	30	2.7	364.00	0		
(0.01)	3	7.0	30	41.0	30	2.7	348.08	0		
Columns (8/1)	4	7.0	30	41.0	30	2.7	434.74	0		
٩	5	7.0	30	41.0	30	2.7	339.74	0	•	
▲ pH ★	^ 6	7.2	40	42.5	20	1.9	154.46	1	3	- 1
Model Section TempC *	7	7.0	30	41.0	30	2.7	430.35	0		
▲ Induction OD600 ★	8	6.8	20	42.5	40	3.5	341.00	0		
Feed Rate *	9	7.2	20	42.5	20	3.5	303.82	0		
pDNA Titer mg/L *	10	7.2	30	39.5	20	3.5	398.00	1		
Rows	11	7.0	30	41.0	30	2.7	411.74	0		
All rows 46	12	6.8	20	39.5	20	3.5	220.60	1		
Selected 30	14	7.0	20	41.0	30	1.0	220.00	1		
Excluded 0	14	7.0	30	41.0	40	2.7	282.00	0		
Labeled 0	16	6.8	40	41.0	20	3.5	377.00	1		
evaluations done	1 10	0.0	40	41.0	20	5.5	511.00		۵ 🗘	

đ	pDNA DoE Discovery Marc	h 2021_Autovalidation - Model C	Comparison of GenReg n=16 FS+AICc, SVEM n	=162 - JMP F	Pro [2]		- 🗆	×
File	e Edit Tables Rows C	ols DOE Analyze Graph T	Tools Add-Ins View Window Help					
12	# 🔁 🞽 🛃 X 🗈 🛍	15 🗅 📲 🏥 🎁 🖏 🚛 📘	 ? ♣ ⊕ ? ♣ ⊕ ? ♣ ⊕ ? ₽ ? ₽ . + / □ 	■ B O	Ŧ			
⊿ ເ	 Model Compari 	ison						
D	Predictors							
4	Measures of Fit	for pDNA Titer mg/	L					
	Bayesian I Optimal	I				1		
	Subset n=16	Predictor	Creator	.2.4.6.8	RSquare	RASE	AAE	Freq
	0	GenReg n=16 FS+AlCc	Fit Generalized Forward Selection		0.2192	91.452	72.827	60
	0	SVEM n=16			0.5023	73.011	58.265	60
	1	GenReg n=16 FS+AlCc	Fit Generalized Forward Selection		0.7885	48.687	40.628	32
	1	SVEM n=16			0.7740	50.327	38.406	32
							3 🚯	

Philip Ramsey

Case-Study & SVEM Product Demonstration

Traditionally in statistics the full quadratic model (FQM) is used to build models to optimize physical processes. The FQM has the following mathematical form.

 μ = *μ*₀ + *k*₁ + *μ*₁ + *k*₁ + *k*₁ + *μ*₁ +

Factor (level)	-1	0	1
Initial %NaOAc (% A)	0	10	20
Initial %NaOH (% B)	30	40	50
Gradient_01-12 (mM NaOAc /min)	0.415	1.25	2.085
Gradient_12-24 (mM NaOAc /min)	1.25	2.085	2.915
Gradient_24-42 (mM NaOAc /min)	4.72	5.555	6.39

	Two responses y	were chosen to optimiz	e in the experiment; a t	otal of 28
	Retention Time anchors the po glycan peaks.	for glycan 3 (RT_G03) osition of the glucose la) was most important as dder used to identify sp	s it pecific
,	The second resp (Resol_G10).	onse is peak resolution	for charged glycan G1	0
,	Glycan G10 elut	tes late with a number of	of other charged glycan	s.
	Response	Description	Optimization]
	RT_G03	Retention Time	Target ~ 8.5 min	
			N	1

ming ligo	d Post Subs	ete with Mox M	adal Siza -	- 5 and Mhc	5 V EW
1.000 FV	VB runs for	each model.			01 -
-,				1	
Bayesian I-optimal Design	D	Full Model	RASE	RASE	R ²
	Response	(No. Predictors)	Training	Validation	Validation
N = 16	RT_G03	PC (40)	0.190	0.387	0.98
N = 16	RT_G10	PC (40)	0.353	2.148	0.84
N = 13	RT_G03	PC (40)	0.065	0.480	0.97
N = 13	RT_G10	PC (40)	0.172	2.671	0.75
N = 10	RT_G03	FQ (20)	0.225	0.730	0.94
N = 10	RT_G10	FQ (20)	0.240	2.354	0.75

(C)2021 Philip J. Ramsey, Ph.D

							Predictum	Q
			🖹 DSD pDI	NA DoE.jmp			Canability Analysia	
6/0 Cols	рН	%D0	Induction Temperature C	Induction OD600	Feed rate	pDNA Titer	Auto Word Output	
1	7.0	40	42.5	20	1.9	156.20	Developer Papel	
2	7.0	20	39.5	40	3.5	318.45	Developer Parier	
3	7.2	30	39.5	20	3.5	398.00	Self-Validating Ensemb	le Modeling
4	6.8	30	42.5	40	1.9	285.60	Demo Central	
5	7.2	20	41.0	40	1.9	229.00		
6	6.8	40	41.0	20	3.5	377.00		
7	7.2	20	42.5	30	3.5	290.00		
8	6.8	40	39.5	30	1.9	123.00		
9	7.2	40	42.5	40	2.7	299.00		
10	6.8	20	39.5	20	2.7	428.00		
11	7.0	30	41.0	30	2.7	327.80		
12	7.0	30	41.0	30	2.7	339.74		
13	7.0	30	41.0	30	2.7	387.35		
14	7.0	30	41.0	30	2.7	393.97		
15	7.0	30	41.0	30	2.7	348.08		

SVEM ADD-IN

Self-Validated, Ensemble Models (S-VEM) Remarkable new method generating more insightful and accurate models from small sets of data

Request SVEM Evaluation: <u>levin@predictum.com</u> Click <u>here</u> to request JMP Pro Evaluation

