

Discovery Summit Amsterdam - March 2016

Test Time Reduction and Predictive Analysis

Alain Gautier
Pr Subcontracts Program Manager
Lean six sigma Black Belt
Rockwell Collins Proprietary Information

Rockwell Collins Today

- Rockwell Collins develops smart and secure communications and advanced aviation electronics solutions for commercial and governmental customers.
- Rockwell Collins is 19,000 employees worldwide (80 locations)
- Over 50 years of presence and innovation in EuMEA (Subsidiaries in France, Germany, the UK and the UAE) with \$1B sales & 2000 employees

Rockwell Collins France

Headquarters located in Toulouse-Blagnac since 1978

Headcount: 750 employees (> 250 engineers)

- Avionics for military transport aircraft & helicopters
- Avionics for commercial solutions
- Communications & Navigation products
- **UAV** systems

Context

- Over the last decade, established aeronautic and military product
 manufacturers saw a rise in competition, putting pressure on production
 costs.
- While the requirements on quality and reliability cannot be relaxed, testing is a significant share of the production cost.
- In this context, new methods are required to optimise the production test time.
- This study will describe a customised analytical process based on advanced statistical tools available in JMP platforms:
 - measurement system analysis optimisation using D-optimal design
 - gauge Repeatibility & Reproducibility
 - principal component analysis
 - hierarchical component analysis.
 - regression analysis is used to predict tests to be removed

Problem to be solved

Problem → Increase the production capacity with the same production test bench quantity and without any impact on quality and reliability.

On one of our complex equipment, the final production test includes:

- 2.500 electrical measurements (test time ~ 4 hours)
- 3.400 additional electrical measurements on 10% of the production (test time \sim 9 hours 40 min)

The cost of a production test bench is higher than 400K\$

Solution → Apply DMAIC process and analyse data to propose a test time reduction without any impact on quality and reliability.

Important Notes:

Technical information's related to the equipment and final application can't be shared. All data and graphs are unidentifiable via the anonymize JMP's menu

Methodology

DMAIC process

Test Time reduction Flow

Measurement System Analysis

Definition

Measurement System Analysis (MSA) is a critical first step that should precede any data-based decision making. MSA consist of understanding the variation of the measurement system in term of Repeatability and Reproducibility with a Gage R&R analysis

Gage Repeatability & Reproducibility

The Gage R&R consists to analyse data collected from several reference units tested several times on each measurement systems.

Example: 3 reference units tested 3 times on 3 production test benches with 2 slots each.

Problem! Data collection = 220hours * 9 days full time * Test time ~ 4hrs

Solutions?

- → Remove 1 factor from analysis ?
 - → Find a way to optimise data collection?

Gage R&R with D-Optimal design

Creation of a D-Optimal design (Design Of Experiment)

The aim of D-Optimal design is to collect less data but keep information's from all factors.

Representation of a standard Gage R&R design

Data collection: 220hrs/9d full time

Representation of a D-Optimal Gage R&R design

Data collection: 140hrs/6d full time

Gage R&R with D-Optimal design

Example of Gage R&R results with D-Optimal design

Gauge R&R				
Measurement		Variation	% of	
Source		(6*StdDev)	Tolerance	
Repeatability	(EV)	0.33649124	11.22	Equipment Variation
Reproducibility	(AV)	0.43876415	14.63	Appraiser Variation
Test Bench		0.31627800	10.54	
Slot		0.30410887	10.14	
Gauge R&R	(RR)	0.55293791	18.43	Measurement Variation
Part Variation	(PV)	0.06523649	2.17	Part Variation
Total Variation	(TV)	0.55677297	18.56	Total Variation
0 LSL 3 USL	nce = ion/To	Part Variatio Distinct Cated USL-LSL Dierance Ratio	n = RR/PV gories = 1.41 o = RR/(USL- lumber' for F	LSL) Part.
		Var		
Component	(omponent	% of Total	20 40 60 80
Gauge R&R		0.00849279	98.63	
Repeatability	,	0.00314518	36.53	
Reproducibi		0.00534761	62.10	
Part-to-Part		0.00011822	1.37	1 1 1

Note: With D-Optimal design, the Gage R&R analysis is focused on main effects

Gage R&R with D-Optimal design

Benefits

- → Gage R&R data collection could be optimised by using a D-Optimal Design
- → Even with long test time, D-Optimal design allows to perform Gage R&R with all factors
- → Gage R&R analysis with D-Optimal design is focused on main effects.
- → D-Optimal and standard designs provide similar results

Data collection and production Test bench availability have been improved by 33% on our program!

Analysis of a large dataset

After Gage R&R step, the challenge is to identify good correlations between parameters on large dataset

Option 1 Multivarite analysis (scatterplot matrix)

→ Hard to identify correlations

Principal Component Analysis

Principal Component Analysis (PCA) is a dimension-reduction technique.

The Principal Component Analysis consist of:

- reducing a large dataset into a lower number of independent linear combinations called principal components
- capturing the most of the variability in the original variables

On this example, a PCA is computed on 100 electrical tests.

- 2 dimensions summarise approx. 85% of the dataset information (variance).
- 2 dimensions are plotted on a correlation circle.

Principal Component Analysis

Examples of Principal Component Analysis

PCA on test category 1 (100 tests)

Eigenvalue	20 40 60 80
57.9357	
28.5625	
5.5776	
4.0324	1 : : : :\

85% of the dataset information is summarized by 2 eigenvalues

PCA on test category 2 (65 tests)

Eigenvalue	20	40	60	80	
58.1965					
2.7596	- :			: '	1
1.1116	- :	- :		- :	1

98% of the dataset information is summarized by 2 eigenvalues

PCA on test category 3 (650 tests)

Eigenvalue	20 40 60 8	30
269.6146		
73.8168		
61.4286	■ : : .\	
34.4833	□ : : :\	
21.4989	1 : : : \	
17.3228] : : : \	
15.4505]	
13.9892		
11.4007		/
10.9263) 	1

80% of the dataset information is summarized by 10 eigenvalues

PCA on test category 4 (105 tests)

igenvalues					
Number	Eigenvalue	Percent	20 40 60 80	Cum Percent	
1	11.2200	13.357	J	13.357	
2	8.3130	9.896	1 1 1 1	23.254	
3	6.2052	7.387	1:\:	30.641	
4	5.1187	6.094	1 : \	36.734	
5	4.6375	5.521	1 : 1 : :	42.255	
6	4.1602	4.953		47.208	
7	3.4608	4.120		51.328	
8	3.3107	3.941		55.269	
9	2.6149	3.113		58.382	
10	2.5015	2.978		61.360	
11	2.3660	2.817		64.177	
12	2.1499	2.559		66.736	
13	1.9190	2.285		69.021	
14	1.7977	2.140		71.161	
15	1.6872	2.009		73.169	
16	1.5887	1.891		75.061	
17	1.4189	1.689		76.750	
18	1.2975	1.545		78.295	
19	1.1775	1.402		79.696	
20	1.1285	1.344		81.040	
21	1.1063	1.317		82.357	
22	1.0596	1.261		83.618	
23	0.9841	1.172		84.790	
24	0.9498	1.131		85.921	
25	0.9235	1.099		87.020	
26	0.8714	1.037		88.057	
27	0.8633	1.028		89.085	
28	0.7686	0.915		90.000	
29	0.7235	0.861		90.861	
30	0.6885	0.820		91.681	

90% of the dataset information is summarized by 30 eigenvalues

Hierarchical Clustering Analysis

Hierarchical Clustering Analysis (HCA) is used to

- Find similarity or dissimilarity between each pairs of object in the data set.
- Classify and illustrate clusters arrangement on a Dendrogram

Dendrogram

Hierarchical Clustering Analysis

Different types of illustrations of Hierarchical Clustering Analysis

5 clusters: test groups with "similar" behaviors

(example from 65 electrical parameters)

Hierarchical Clustering Analysis

Another use of Hierarchical Clustering Analysis

HCA could be used to identify elements with "similar" behavior.

Benefits in:

- → reliability analysis
- → yield improvement
- → Process flow improvement

Statistical Regression

Statistical Regression is used to explain Y parameter by X parameter and to predict electrical tests that could be removed

The correlation between both tests is very good: r = 0.98

Conclusion:

We could predict with a **confidence level at 95%** test B by measuring only test A

Statistical Regression

Good correlation is not enough for Test Time Reduction!

More constraints on test A

→ Test B could be removed

More constraints on test B

→ Test B could not be removed

Statistical Regression

Choice of confidence curve and α level

→ "Confidence curve Indiv" option displays the confidence limits for each individual predicted values.

The choice of the "confidence curve" and α level depends on your application and quality constraints

Take away

- Gage R&R data collection's impact could be reduced by using a D-Optimal Design: Data collection reduced by 33% on our program.
- Principal Components and clustering procedures combined with multivariate techniques are very useful tools for variable reduction.
- Statistical regression combined with confidence interval helps to predicts test behaviors, identify good correlations and reduce production test time with no impact on quality.

Benefits on our program

- → Test quantity reduced by 40%
- →Test time reduced by 30%
- **→** No impact on quality
- → New business opportunity due to capacity increase

THANKS for your attention!

All rights reserved.