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Simple Linear Regression

𝑟𝑖

What is simple linear regression?

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖+ 𝜖𝑖

Usually we assume 
𝜖𝑖 ∼ 𝑁(0,𝜎2)

We don’t have to assume 
normality, but it makes inference 
a lot easier.



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Simple Linear Regression

Assuming that the errors (and response) are normal makes life a lot easier. 

Why? 

Things like estimation and inference become much easier.

Example:
መ𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

𝑐𝑜𝑣 መ𝛽 = 𝑋𝑇𝑋 −1𝜎2

We get a lot of mileage out of linear regression models, but there are times 
when it just is not appropriate.
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Simple Linear Model
Normality

So what happens when you assume normality when you shouldn’t?

Two main concerns:

1. Predictions outside of meaningful range (maybe not a big deal)

2. Inference is not reliable (probably a bigger deal)
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What if normality is not appropriate?

Let’s say we want to model steals for a basketball player.

What might impact 
performance?

Experience?
Opponent?
Home/Away?
How much rest?
… 

JMP is #1!



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Steals in Basketball

The response will only takes integer values.

And even for the best players, the response will only take 
a couple values.

𝑌 = {0,1,2,3,4,5} for Steve Nash

The normality assumption doesn’t seem appropriate at all 
here, but we still need to build a model.

What should we do?
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Overview

1. Overview of Generalized Linear Models (GLMs)

2. Fitting GLMs in JMP

3. How to evaluate your models

1. Know your data and your distribution

2. R-square

3. Information criteria

4. Examples
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Generalized Linear Models
A quick overview
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Generalized Linear Models
But first, back to the linear model

Our beloved linear model
𝑌𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑝𝑥𝑝𝑖 + 𝜖𝑖

= 𝑥𝑖
𝑇𝛽 + 𝜖𝑖 where 𝑥𝑖 is a 𝑝 + 1 vector

We assume that our errors are independent and normally distributed.
𝜖𝑖 ∼ 𝑁 0, 𝜎2

So given our predictor vector 𝑥𝑖, we know the distribution of the response

𝑦𝑖 |𝑥𝑖 ∼ 𝑁(𝑥𝑖
𝑇𝛽, 𝜎2)
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Generalized Linear Model

Same idea as linear regression but instead of normality, we’re going to 
assume that 𝑦𝑖|𝑥𝑖 has some distribution.

And there are lots of situations where 𝑦𝑖 |𝑥𝑖 may not be normal

1. Count data (ex: number of defects on a product)

2. Skewed data (ex: salaries)

3. Proportions

4. Labels (ex: good/neutral/bad or yellow/blue/green)
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Generalized Linear Model
Formal Statement

We assume a probability function for our response

𝑓 𝑦 𝜃,𝜙 = exp
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
− 𝑐(𝑦, 𝜙)

This is called an exponential family distribution. 
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Generalized Linear Model
Example

Normal

𝑓 𝑦; 𝜇, 𝜎 =
1

2𝜋𝜎
exp −

𝑦 − 𝜇 2

2𝜎2

= exp
𝑦𝜇 − 𝜇2/2

𝜎2 −
𝑦2

2𝜎2 − log 𝜎 − log( 2𝜋)

So…

𝜃 = μ 𝑏 𝜃 =
𝜃2

2

𝜙 = 𝜎 𝑎 𝜙 = 𝜙2 𝑐 𝑦,𝜙 = ൗ𝑦2

2𝜙2 + log 𝜙 + log 2𝜋
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Generalized Linear Model
Example

Poisson

𝑓 𝑦, 𝜆 =
exp −𝜆 𝜆𝑦

𝑦!

= exp −𝜆 + 𝑦log 𝜆 − log(𝑦!)

And so…

𝜃 = log(𝜆) 𝑏 𝜃 = exp 𝜃

𝑎(𝜙) = 1 𝑐 𝑦, 𝜙 = log(𝑦!)
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Generalized Linear Models

Do we really need to know about exponential families and all this?

…Not really, it’s more of a homework problem.

Instead we’ll focus on the most important parts of using GLMs.
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Generalized Linear Models

There are three key ingredients to a GLM

1. A distribution for the response given the predictors (the random piece)

2. A linear predictor 𝑥𝑖
𝑇𝛽 (the systematic piece)

3. A link function (the piece that connects 1 and 2)



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Generalized Linear Model
The Distribution

When we specify the distribution of a GLM, we’re specifying the 
distribution of the response given the predictors.

This is a critical piece!

In general it is not the distribution of the residuals. (Exception: Normal, …)
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Generalized Linear Model
The Distribution

Because of the Normal distribution, 
it’s easy to think that we’re talking 
about the distribution of the 
residuals.

How can we avoid this mistake?

Here is a helpful reminder:

The Gamma distribution is strictly 
positive.

The residuals for this Gamma 
regression are positive and negative.
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Generalized Linear Model
The Distribution

Another common mistake to avoid:

The distribution is not the distribution of the response, it’s the distribution 
of the response given the predictors.

Why is this distinction important? Let’s look at an example.
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Generalized Linear Model
The Distribution

We have a single effect to model the response.
Based on this histogram, should we do a mixture of normals regression?
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Generalized Linear Model
The Distribution

100% No!

The truth is that this is just a 
simulated One-way ANOVA model

𝑦𝑖 = 4+ 4 ∗ I 𝑥𝑖 = 2 + 𝑧𝑖
𝑧𝑖 ∼ 𝑁(0,1)
𝑥𝑖 = {1,2}

The histogram of the response 
ignores our predictor(s), so be 
careful using it to choose a 
distribution.
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Generalized Linear Models
The Linear Predictor

A linear function that ties our predictors to the mean of the distribution.

𝑥𝑖
𝑇𝛽 = 𝛽0 +෍

𝑗=1

𝑝

𝑥𝑗𝛽𝑗

Pretty much exactly what it sounds like. 

In ordinary least squares, our model is just the linear predictor.

𝑥𝑖
𝑇𝛽 can take any value, we may need to map it into a meaningful range… 
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Generalized Linear Models
The Link Function

Converts linear predictor into the correct range for the distribution’s mean.

𝑥𝑖
𝑇𝛽 = 𝑔 𝜇 𝑔−1 𝑥𝑖

𝑇𝛽 = 𝜇

Some important link functions

1. Identity: 𝑔−1 𝑥𝑖
𝑇𝛽 = 𝑥𝑖

𝑇𝛽 maps into (−∞,∞)

2. Log: 𝑔−1 𝑥𝑖
𝑇𝛽 = exp(𝑥𝑖

𝑇𝛽) maps into 0,∞

3. Logit: 𝑔−1 𝑥𝑖
𝑇𝛽 = ൗ

1
1+exp(−𝑥𝑖

𝑇𝛽)
maps into (0,1)

There are plenty of others, but these are the big ones.
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Generalize Linear Models
Inverse Link Functions

Identity Logit Log

For when the 
response can 
take any value

The response should 
be in [0,1] 
(probably probabilities)

The response needs 
to be positive
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Generalized Linear Models
The Link Function

We choose the link to convert an unbounded number to an appropriate 
range for the response…that’s the key.

Fit Model’s Generalized Linear Model personality lets you choose the link 
function, otherwise JMP uses the one that makes the most sense.
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Generalized Linear Model
An Example

Put the three pieces together and what do we have? 

Let’s look at a simple gamma example.

Y increases as a function of X

Y seems to become more variable with X 
(less obvious)

These make the Gamma a natural choice.

Gamma is defined for 𝑦 ∈ (0,∞), so the 
log link is a natural choice.



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Generalized Linear Model
An Example

Output from the Generalized Regression Platform in JMP Pro.

Recall our model looks like
𝑦|𝑥 ∼ Gamma 𝜇, 𝜎 𝜇 = exp(𝛽0 + 𝛽1𝑥)

And መ𝛽0 = 3.924 ො𝜎 = .140
መ𝛽1 = .0213

This is the 
linear 
predictor.
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Generalized Linear Model
An Example

So what does that tell us about our response at say, x=60?
exp 3.924 + .0213 ∗ 60 ≈ 181.6

𝑦|𝑥=60 ∼ Gamma(181.6, . 14)

E y x = 181.6
Var 𝑦 𝑥 = 181.6∗ .14
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Fitting GLMs in JMP
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Fitting GLMs in JMP

JMP fits GLMs in a variety of places…

1. Generalized Linear Model

2. Nominal and Ordinal Logistic 

3. Generalized Regression in JMP Pro

And in some places that we won’t cover…

1. Fit Y by X (simple logistic regression)

2. Parametric Survival (for when you have a censored response)

3. Choice/MaxDiff (very specific)
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Fitting GLMs in JMP
Generalized Linear Model Personality

A personality within Fit Model. This is a great place to go when…

1. You want to pick your link function (logit, probit, log, …)

2. One of the available distributions is appropriate (Normal, Poisson, 
Binomial, and exponential)

Go to Analyze>Fit Model and choose the GLM Personality
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Fitting GLMs in JMP
The GLM Platform
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Fitting GLMS in JMP
Nominal and Ordinal Logistic Regression

If our response is not continuous, then we should use the Nominal Logistic 
or Ordinal Logistic personalities in Fit Model.

If our response takes ordered values, us ordinal logistic.

Ex: Y={low, medium, high, alert}

Otherwise, go with Nominal Logistic. But keep in mind, Nominal Logistic 
models use up a lot of parameters.

Ex: Y={red, blue, green, yellow} or Y={yes, no}
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Fitting GLMs in JMP
Ordinal and Nominal Logistic
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Fitting GLMs in JMP Pro
The Generalized Regression Platform

JMP Pro personality of Fit Model

1. Supports 20 distributions, including Nominal and Ordinal logistic.

2. Uses default link functions.

3. Includes 10 different variable selection methods including Lasso and 
step based methods.

4. Supports censoring for some distributions.

Genreg tells you which 
links it used.
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Fitting GLMs in JMP Pro
Genreg



C o p y r ig h t  ©  S AS  In st i tu t e  In c.  A l l  r i g h ts  r e se r ve d .

Choosing a Distribution
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Evaluating Models

You probably know a few things about your response.

1. Is it always positive? 

2. Is it always integer valued? 

3. Is the variance constant or is it proportional to the mean?

4. Is the response a proportion?

5. Is it even numeric?

Using what we know about the response, we can usually narrow it down to 
a couple of distributions.
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Evaluating Models
Positive Responses

If your response is always positive and you want to insure positive 
predictions, that narrows it down a little….

Ex: Most physical measurements, time, …

Consider strictly positive distributions, probably with a log link.

Some natural choices:

1. Gamma and Exponential

2. Lognormal

3. Weibull

And if we know we have count data…
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Evaluating Models
Count Data

Is it a binomial?

Are we counting independent events for a given number of trials?

Ex: Number of heads out of 10 coin flips?

…Or is it Beta-Binomial?

Are we counting correlated events for a given number of trials?

The correlation causes the response to be more variable.

Ex: Number of shots made out of 10 attempts in a basketball game.

*The beta-binomial is available in Distribution and Genreg
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Evaluating Models
Binomial vs Beta-Binomial

200 simulated observations from each distribution

Binomial
E 𝑦 = 𝑛𝑝

Var 𝑦 = 𝑛𝑝(1−𝑝)

Beta-Binomial
E 𝑦 = 𝑛𝑝 1−𝑝

Var 𝑦 = 𝑛𝑝 1− 𝑝 [1+ 𝑛− 1 𝛿]
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Building Models
Count Data

What if we’re not counting binary outcomes?

Ex: Number of defects on a product

Number of cars that pass through an intersection in a day

Then we probably need to use the Poisson distribution.

The Poisson is unique in that E 𝑦 = var 𝑦 = 𝜆

And if we need to accommodate overdispersion (extra variance)?

Choose the Negative-Binomial where E 𝑦 = 𝜆 var 𝑦 = 𝜎𝜆
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Building Models
Three flavors of the Poisson

Poisson(𝜆)
E(y) = 𝜆

Var(y) = 𝜆

Need extra variation?
Gamma Poisson(𝜆, 𝜎)

E(y) = 𝜆
Var(y) = 𝜆𝜎

Also known as the 
Negative Binomial.

Need extra zeros?
ZI-Poisson(𝜆, 𝜋)
E(y) = 1−𝜋 𝜆

Var(y) = 𝜆 1− 𝜋 1+ 𝜆𝜋
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Evaluating Models
Coefficient of Determination

From working with least-squares models, we all know and love 𝑅2

𝑅2 = 1 −
σ𝑖 𝑦𝑖 − ො𝑦𝑖

2

σ𝑖 𝑦𝑖 − ത𝑦 2
= 1−

𝑆𝑆𝐸

𝑆𝑆𝑇

For GLMs, this quantity isn’t terribly useful since we’re no longer working 
with square loss.

What is 𝑅2 measuring? 

How well a model fits compared to the mean, which we can extend to 
GLMs.
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Evaluating Models
Generalized R-square

For generalized linear models,

𝑅𝑔
2 = 1−

𝐿0
𝐿𝑀

2/𝑛

Where 𝐿0 = likelihood for an intercept only model

𝐿𝑀 = likelihood for our fitted model.

If our model isn’t very good, 𝐿𝑀 ≈ 𝐿0 and 𝑅𝑔
2 will be close to zero.
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Evaluating Models
Be Careful!

For our predictors, we narrowed it down to the gamma or lognormal.

For our gamma model, 𝑅𝑔
2 = .85.

For the lognormal, 𝑅𝑔
2 = .95.

Is the lognormal model better? Maybe.

…but maybe the intercept-only  lognormal model just fits very poorly.

We can use the R-square to compare models within a distribution.

To compare between distributions, we should use an information criteria.
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Evaluating Models
Information Criteria

The AIC and BIC are both popular information criteria that we use to 
compare models. 

AIC = 2𝑝 − 2log(𝐿)

AICc = 2𝑝 − 2 log 𝐿 +
2𝑝(𝑝+1)

𝑛−𝑝−1
small sample correction

BIC = log 𝑛 ∗ 𝑝 − 2 log 𝐿

where p is the number of parms fit, L is the likelihood, and n is sample size. 

These measures balance model fit with model complexity.

Smaller values are better.
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Evaluating Models
Information Criteria

The AIC and BIC estimate the Kullback-Leibler divergence, which is the 
distance from the fitted model to the truth.

So we can use them to compare models within the same distribution and 
across different distributions.
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Evaluating Models
AICc and BIC

The AICc and BIC are great all-purpose tools for

• …comparing 2 or more models

• …that don’t have to be nested

• …that don’t even have to be from the same response distribution

But we have to have a likelihood and degrees of freedom, which can be a 
limitation.

Ex: The degrees of freedom for a tree isn’t well defined.

Rule of thumb: AIC tends to overfit and BIC tends to underfit.
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Choosing the Response Distribution

Using our intuition, we can narrow it down to a few distributions and then 
use the AICc or BIC to guide us.

If we have count data…usually we think of the Poisson.

• Events out of trials? -> binomial or beta-binomial

• Do we need to account for overdispersion?  -> negative binomial

• Do we have extra zeros? -> zero-inflated distribution

• Only observe a couple of distinct values? -> consider switching to logistic
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Choosing the Response Distribution

And if we have a continuous response…

• Do we have negative values? -> normal

• Is it bound to (0,1)? -> beta

• Does variance increase with the mean? -> gamma, Weibull, lognormal

• Is it time to event/censored? -> probably Weibull or lognormal

• A pretty good catch-all? -> normal

• Do we expect to have outliers? -> Cauchy
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Back to Our Basketball Data 
Now let’s try building some models

I love 
regression!
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Wrap-up
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Wrap Up

• GLMs are an important piece of our modeling toolbox. 

• The platforms in JMP make them easy to fit and use.

• How should I choose the response distribution?

• Narrow it down to a handful of meaningful options

• Compare AICc or BIC values to pick the “best”.

• When all else fails, the Normal and Gamma are a good start.

• And remember: it’s the distribution of the response given the predictors.
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Wrap-up
More Resources

Search the JMP Community for past blog posts and talks

A good intro to GLMs

• "Foundations of Linear and Generalized Linear Models" by Agresti (Wiley, 
2015)

Lots of information about the AIC and BIC.

• “Model Selection and Multimodel Inference” by Burnham and Anderson 
(Springer, 2003)

• As well as Ken Burnham’s webpage

https://community.jmp.com/
https://sites.warnercnr.colostate.edu/kenburnham/model-selection-issues/
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Thanks!
Clay.Barker@sas.com
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