Not Quite Normal

Choosing the Best Distribution to Model your Response

Clay Barker, PhD
JMP Principal Research Statistician Developer




Simple Linear Regression

4 = Bivariate Fit of weight By height
180

) Whatis simple linear regression?
160

. Y =Bo+ P1x; + €
Usually we assume

€ ~ N(O,O'Z)
100
We don’t have to assume

normality, but it makes inference
a lot easier.
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Simple Linear Regression

Assuming that the errors (and response) are normal makes life a lot easier.
Why?
Things like estimation and inference become much easier.

Example: A
p =&)Xy
cov(B) = (XTX) 102

We get a lot of mileage out of linear regression models, but there are times
when it justis not appropriate.



Simple Linear Model
Normality
So what happens when you assume normality when you shouldn’t?

Two main concerns:
1. Predictions outside of meaningful range (maybe not a big deal)
2. Inferenceis not reliable (probably a bigger deal)

4 = Bivariate Fit of Severe Diabetes By BMI

1 .o -e oo




What if normality is not appropriate?

Let’s say we want to model steals for a basketball player.

What might impact
performance?

Experience?
Opponent?
Home/Away?
How much rest?




Steals in Basketball

The response will only takesinteger values.

Frequencies

And even for the best players, theresponse will only take
Level Count Prob

0 656 0.49065 a couplevalues.
1 467 0.24929 Y ={0,1,2,3,4,5} for Steve Nash
2 159 0.11892
7 1 H ’ .

i ;”3 ggggfz The normality assumption doesn’t seem appropriate at all
5 1 0.00075 here, but we still need to build a model.
Total 1337 1.00000
N Missing 0 What should we do?

b Levels



Overview

Overview of Generalized Linear Models (GLMs)
Fitting GLMs in JMP

How to evaluate your models
Know your data and your distribution
R-square
Information criteria

Examples



Generalized Linear Models

A quick overview



Generalized Linear Models
But first, back to the linear model

Our beloved linear model
Yi = Bo + Bi1x1; + Paxy + o+ Bpxpi + €
=x/ B +€; where x; isa p + 1 vector

We assume that our errors are independent and normally distributed.
e; ~ N(0,0%)

So given our predictor vector x;, we know the distribution of the response

yilx; ~ N(x/ B,a?)



Generalized Linear Model

Same idea as linear regression but instead of normality, we're going to
assume that y;|x; has some distribution.

And there are lots of situations where y; |x; may not be normal

1.
2.
3.

Count data (ex: number of defects on a product)
Skewed data (ex: salaries)

Proportions

Labels (ex: good/neutral/bad or yellow/blue/green)



Generalized Linear Model
Formal Statement

We assume a probability function for our response

y8 — b(0)
a()

f16,¢) = EXP( —c(, 4)))

This is called an exponential family distribution.



Normal

Generalized Linear Model

fuo) =

Example

1 (_(y—u)2>
V2mo P 20°

2

Y

0-2

B (yu — /2
= exp

62
b(8) = —

a(¢) = p?

202

log(o) — log(x/ﬂr))

¢, $) =7/, 42 + log(@) + log(v2)

Gsas



Poisson

And so...
68 =log(A)
a(¢) =1

Generalized Linear Model
Example

—NAY
.0 = exp(y! :

= exp(—21 + ylog(2) —log(y"))

b(0) = exp(0)
c(y, ¢) = log(y!)

Gsas



Generalized Linear Models

Do we really need to know about exponential families and all this?
...Not really, it’s more of a homework problem.

Instead we’ll focus on the most important parts of using GLMs.



Generalized Linear Models

There are three key ingredients to a GLM

1.

2.

3.

A distribution for the response given the predictors (the random piece)
A linear predictor xl-T,B (the systematic piece)

A link function (the piece that connects 1 and 2)



Generalized Linear Model
The Distribution

When we specify the distribution of a GLM, we're specifying the
distribution of the response given the predictors.

This is a critical piece!

In general itis not the distribution of the residuals. (Exception: Normal, ...)



Generalized Linear Model
The Distribution

Because of the Normal distribution,
it’s easy to think that we’re talking
about the distribution of the
residuals.

How can we avoid this mistake?
Here is a helpful reminder:

The Gamma distribution is strictly
positive.

The residuals for this Gamma

regression are positive and negative.

4 Gamma Regression Plot
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Generalized Linear Model
The Distribution

Another common mistake to avoid:

The distributionis notthe distribution of the response, it’s the distribution
of the response given the predictors.

Why is this distinction important? Let’s look at an example.



We have a single effect to model the response.

Generalized Linear Model
The Distribution

Based on this histogram, should we do a mixture of normals regression?

== R = R R e

(== R = B R e R S =R =]

T N N O A P N N P TR ST L R Y Y

y
7.0162854981
4.0386487397
44338481271
8.2583367405
7.9299166628

8.702887227
4.0108668732
4.9949182007
3.1320939511
2.0186977526
43297091457
4.2820937666
8.0227569107
22373278872
44325240733
7.2590334776
36260192102
8.5409317333

4 = Distributions

4=y

]

0 2 4

——MNormal 2 Mixture

< Compare Distributions

Number of
Parameters

w

Oogooooogao®

how Distribution

Normal 2 Mixture
Normal 3 Mixture
SHASH

Weibull

Extreme Value
Normal

Johnson SI

Glog

Johnson Su
Gamma
LogNormal
Exponential

5

L A B - VR U R L R L R L - e

-2*LogLikelihood
818.953942
816.874722
864.222905
897.129797
897.129797

904.82289
903415717
904.821383

904.8219
913.733893
932.613106
1116.95332

AlCc
829.26322
833.628649
872428033
901.190711
901.190711
908.884804
909.538166
910.943832
913.027028
917.794807
936.67402
111897353



Generalized Linear Model
The Distribution

100% N 0O | 4 (~|Standard Least Squares
) < Parameter Estimates for Original Predictors
T.he truth is that this is JUSt d Term  Estimate Std Error Chis:::: Chi:q“;:r:
S|mu|ated One_Way ANOVA mode| Intercept  8.1326884 0.1357975  3586.615 0001
x[1-2]  -3.934476 0.1939964  411.32619

MNormal Distribution

yl p— 4 + 4‘ * I(xl p— 2) + Zl Parameters Estimate Std Error
Scale 0.9697881 0.0696267
z; ~ N(0,1)

4 Normal Quantile Plot

x; = {1,2} :

The histogram of the response
ignores our predictor(s), so be
careful using it to choose a .
distribution. ,

MNormal Quantile

Standardized Residual




Generalized Linear Models
The Linear Predictor

A linear function that ties our predictors to the mean of the distribution.
p
Tp _
X[B=Fo+ ) xf;
j=1

Pretty much exactly what it sounds like.

In ordinary least squares, our model is just the linear predictor.

xl-T,B can take any value, we may need to map it into a meaningful range...



Generalized Linear Models
The Link Function

Converts linear predictorinto the correct range for the distribution’s mean.

x{ B =g g7 (x{B) =n

Some importantlink functions

1. ldentity: g‘l(xl-T,B) =x/ B maps into (—oo, o)
2. Log: g (xTB) = exp(x] B) maps into (0, )

3. Llogitt g7 Y xTp) = 1/1+exp(—xl.Tﬁ) maps into (0,1)

There are plenty of others, but these are the big ones.



Li

ldentity

For when the
responsecan
take any value

Generalize Linear Models

Inverse Link Functions

Logit Log

08 8
06

c 04

Inverse Link

0.2
2

0.0
0
20 -15 -10 -05 00 05 1.0 1.5 2.0

The response should The response needs
bein [0,1] to be positive
(probably probabilities)



Generalized Linear Models
The Link Function

We choose the link to convertan unbounded number to an appropriate
range for the response...that’s the key.

Fit Model’s Generalized Linear Model personality lets you choose the link
function, otherwise JMP uses the one that makes the most sense.

8 Fit Model - JMP Pro [15.0.0 - 2019.02,10] - O x
4 ~|Model Specification

Select Columns

* 14 Columns

Pick Role Variables

Personality:

v ]y

Distribution:

Generalized Linear Model *

v Poisson
ik ¥ Binary Link Function [ | oq
ol ¥ Crdinal = N -
g | Weight | optienal numeric ] Overdisper Identity
th Gender | Freq ||.:-_:.':c..= | [ Firth Bias-A Logit
A B T —— Prabit
4P | |[optionat numeric | Tre] o

ota olesterol optianat (=] eciproca
A Total Cholesteral [ ey || |\ Recal [| Reciprocal
4 LDL Power
4w

Comp Loglog

4 TcH Construct Model Effects
4 LTG Add | |




Generalized Linear Model
An Example

Put the three pieces together and what do we have?
Let’s look at a simple gamma example.

4 =|Graph Builder

400 ) Y increases as a function of X
m Y seems to become more variable with X
J? (less obvious)

300

- ot These make the Gamma a natural choice.

200

: Gamma is defined for y € (0, ), so the
st log link is a natural choice.

50 60 70 a0 a0 100

150

GSas



Generalized Linear Model
An Example

Output from the Generalized Regression Platform in JMP Pro.

4 Regression Plot

< Parameter Estimates for Original Predictors
400

Prob = o
330 Term Estimate Std Error  ChiSquare Th IS IS th €
, 300 Intercept 2.9230060 0.0227003 <.0007* |inea r
250 b 00213169 0.0002734 <. 0007* .
200 - Gamma Distribution pred Ictor.
150 Parameters Estimate 5td Error
B U Dispersicn 0.130047 0.0312987

x

Recall our model looks like
ylx ~ Gamma(u, o) u=exp(By + B1x)
And By =3.924 6 =.140
B, =.0213



Generalized Linear Model
An Example

So what does that tell us about our response at say, x=607?
exp(3.924 +.0213 x 60) = 181.6

VY|x=¢o ~ Gamma(181.6,.14)

0.08 E(Y|X) = 181.6
Var(y|x) = 181.6 .14

170 175 180 185 190 195 200
¥



Fitting GLMs in JMP



Fitting GLMs in JMP

JMP fits GLMs in a variety of places...

1.
2.
3.

Generalized Linear Mode|
Nominal and Ordinal Logistic
Generalized Regression in JMP Pro

And in some places that we won’t cover...

1.
2.
3.

FitY by X (simple logistic regression)
Parametric Survival (for when you have a censored response)
Choice/MaxDiff (very specific)



Fitting GLMs in JMP

Generalized Linear Model Personality
A personality within Fit Model. This is a great place to go when...
1. You want to pick your link function (logit, probit, log, ...)

2. One of the available distributionsis appropriate (Normal, Poisson,
Binomial, and exponential)

Go to Analyze>Fit Model and choose the GLM Personality



4~ Model Specification
Select Columns
g6 Columns

A satell

th color

th spine

A width

A weight
A weightstd

Fitting GLMs in JMP
The GLM Platform

Pick Role Variables

A satell

Weight | optional numeric

Generalized Linear Model ~

Poisson v

Link Function Log v

[_] Overdispersion Tests and Intervals
[ Firth Bias-Adjusted Estimates

| Freq | optional numeric
Offset | optional numeric
By | optional

|Run|

Construct Model Effects

[] Keep dialog open

Add color
spine
Cross width

Nest weight

Macros ~

Attributes =
Transform =

=]
@
(=]
=
o}
@

[ No Intercept



Fitting GLMS in JMP

Nominal and Ordinal Logistic Regression

If our response is not continuous, then we should use the Nominal Logistic
or Ordinal Logistic personalities in Fit Model.

If our response takes ordered values, us ordinal logistic.
Ex: Y={low, medium, high, alert}

Otherwise, go with Nominal Logistic. But keep in mind, Nominal Logistic
models use up a lot of parameters.

Ex: Y={red, blue, green, yellow} or Y={yes, no}



Fitting GLMs in JMP

Ordinaland Nominal Logistic

4~ Ordinal Logistic Fit for spine

4 Effect Summary

Source LogWorth PValue
color 6.004 0.00000
weight 1.255 [I0J 0.05561
width 1.025 | P 0.09437

Remove Add Edit []FDR

> Whole Model Test
> Fit Details
4Lack Of Fit

Source DF -Loglikelihood ChiSquare
Lack Of Fit 319 112.64850 225.297
Saturated 324 6.59167 Prob:>ChiSq
Fitted 5 119.24017 1.0000
4 Parameter Estimates
Term Estimate Std Error ChiSquare
Intercept[ Both Good] 404787948 3.8118496 1.13
Intercept][ One Worn/Broken] 4.61218315 3.8155585 1.46
color| Light Med] 249804583 0.5695442 19.24
color[ Medium] 0.09350613 0.3224414 0.08
color[ Dark Med] -0.9704102 0.4097036 5.61
width -0.3546288 0.2006244 2.62
weight 0.00140648 0.0007535 3.48

Prob>ChiSq
0.2883
0.2267

<.0001*
0.7718
0.0179*
0.1053

0.0619

4 = Nominal Logistic Fit for spine

4 Effect Summary

Source LogWorth PValue
color 5.231 0.00001
width 2.084 0.00823
weight 0.802 [l P 0.15770

Remove Add Edit []FDR
Converged in Gradient, 6 iterations
P Iterations
' Whole Model Test
P Fit Details
4 Lack Of Fit

Source DF -LoglLikelihood ChiSquare

Lack Of Fit 314 103.95984  207.9197

Saturated 324 6.59167 Prob>Chisq

Fitted 10 110.55152 1.0000

4 Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept 0.79167551 4.6391211 0.03 0.8645
color[ Light Med] 3.20690164 0.8516716 14.18 0 *

color[ Medium] 0.0457823  0.44181 0.01 0.9175
color[ Dark Med] -1.423 0.5872558 5.87 0.0154*
width -0.1754557 0.2464195 0.51 0.4765
weight 0.00112175  0.000879 1.63
Intercept 19.9777592 6.7859439 8.67
color[ Light Med] 2.92389162 1.0306181 8.05
color Medium]  -0.1218696 0.5466042 0.05
color[ Dark Med] -0.6870832 0.6076171 1.28 0.2581
width -1.0484804 0.3771721 773 *
weight 0.00218204 0.0014117 2.39

For log odds of Both Good/ Both Worn/Broken, One Worn/
Broken/ Both Worn/Broken




Fitting GLMs in JMP Pro

The Generalized Regression Platform

JMP Pro personality of Fit Model

1.
2.
3.

Supports 20 distributions, including Nominal and Ordinal logistic.
Uses default link functions.

Includes 10 different variable selection methods including Lasso and
step based methods.

Supports censoring for some distributions.

< Model Summary

Respanse satell
Distribution Z1 Poisson '
Estimation Method Maximum Likelihood Gen reg tells you which

Validation Method None / . .
Mean Model Link Log links it used.

Zero Inflation Model Link Identity



Fitting GLMs in JMP Pro

4> Model Specification
Select Columns

*6 Columns

A satell

ik color

4 spine

A width

A weight

A weightstd

Genreg

Pick Role Variables

Asatell

antinnal
optionat

Personality: | Generalized Regression

Distribution: | ppisson

| Help | | Run |

Recall | [ Keep dialog open

Validation | optional

By | optio

I
nat

Construct Model
Add
Cross

Nest

Macros ¥

Attributes =
Transform =

[ No Intercept

2
i
=]
=
o
i

Effects

Remove

color
spine
width
weight

e



Choosing a Distribution



Evaluating Models

You probably know a few things about your response.

Is it always positive?

Is it alwaysintegervalued?

Is the variance constant oris it proportionaltothe mean?

|s the responsea proportion?

LA

Is it even numeric?

Using what we know about the response, we can usually narrow it down to
a couple of distributions.



Evaluating Models
Positive Responses

If your response is always positive and you want to insure positive
predictions, that narrows it down a little....

Ex: Most physical measurements, time, ...

Consider strictly positive distributions, probably with a log link.
Some natural choices:

1.  Gamma and Exponential

2. Lognormal

3. Weibull
And if we know we have count data...



Evaluating Models
Count Data

Is it a binomial?

Are we counting independent events for a given number of trials?
Ex: Number of heads out of 10 coin flips?

...0r isit Beta-Binomial?
Are we counting correlated events for a given number of trials?
The correlation causes the response to be more variable.

Ex: Number of shots made out of 10 attempts in a basketball game.

*The beta-binomial is available in Distribution and Genreg



Evaluating Models

Binomial vs Beta-Binomial

200 simulated observations from each distribution

4 = y1 - Binomial(n=12, p=.4)

— 4 v Summary Statistics Bi nom ia |
} Ej I Mean 4735

Std Dev 17174174 E (y) — np

Std Err Mean 0.1214398
Upper 95% Mean 4.9744739
Lower 95% Mean  4.4955261 Var(y) = np ( 1 _— p)
N 200

01 2 3 4 5 6 7 8 9 10N

4 = y2 - Beta Binomial(n=12, p=.4, delta=.2) Beta _ Bl nom | 3 |

4 » Summary Statistics

& Mean 4565 E(y) — np(l _ p)

Std Dev 2.9477485

il S varg) = m(l-p)[1+ (- D3]
N 200

-1 01 2 3 45 6 7 8 910111213




Building Models
Count Data

What if we're not counting binary outcomes?
Ex: Number of defects on a product
Number of cars that pass through an intersectionin a day

Then we probably need to use the Poisson distribution.
The Poissonis unique in that E(y) = var(y) = 4

And if we need to accommodate overdispersion (extra variance)?
Choose the Negative-Binomial where E(y) = 2 var(y) = g/



Building Models

Three flavors of the Poisson

£ =|Random Poisson(5) 4 =|Random Gamma Poisson(5,2) 4 =|Random Zero Inflated Poisson(5,.2)
Poisson(A) Need extravariation? Need extra zeros?
E(y)=A Gamma Poisson(4, o) ZI-Poisson(4, )
Var(y)= A E(y)=4 E(y)=(1-m)A
Var(y)= Ao Var(y)= A(1 —m) (1 + Am)

Also known as the
Negative Binomial.

GSas



Evaluating Models

Coefficient of Determination
From working with least-squares models, we all know and love R?

B >y —9)? SSE

=1 -—

Yy —¥)? SST

R:=1

For GLMs, this quantity isn’t terribly useful since we're no longer working
with square loss.

What is R? measuring?

How well a model fits compared to the mean, which we can extend to
GLMs.



Evaluating Models
Generalized R-square

For generalized linear models,

Where L, = likelihood for an intercept only model
Ly, = likelihood for our fitted model.

If our model isn’t very good, Ly, = Ly and Ré will be close to zero.



Evaluating Models
Be Careful!

For our predictors, we narrowed it down to the gamma or lognormal.
For our gamma model, Ré = .85.

For the lognormal, Rg = .95.

Is the lognormal model better? Maybe.
...but maybe the intercept-only lognormal model just fits very poorly.

We can use the R-squareto compare models within a distribution.
To compare between distributions, we should use an information criteria.



Evaluating Models

Information Criteria

The AIC and BIC are both popularinformation criteria that we use to
compare models.

AIC = 2p — 2log(L)
AlCc =2p — 21og(L) + 2:_(#;? small sample correction

BIC =log(n) * p — 2log(L)
where p is the number of parms fit, L is the likelihood, and n is sample size.

These measures balance model fit with model complexity.
Smaller values are better.



Evaluating Models

Information Criteria

The AIC and BIC estimate the Kullback-Leibler divergence, which is the
distance from the fitted model to the truth.

So we can use them to compare models within the same distribution and
across different distributions.

4 Model Comparison

Response Validation Nonzero

Distribution Estimation Method Method Parameters AlCc - R-Square
Gamma Forward Selection AlCc 10 4753.0342 04991035
Gamma Maximum Likelihood None 12 47567408 0.4996813
Normal Forward Selection AlCc 8 47934213 05121484
Normal Standard Least Sguares None 12 4796.713 05177484



Evaluating Models
AlCc and BIC

The AlCc and BIC are great all-purpose tools for
- ..comparing 2 or more models
- ..thatdon’thaveto be nested

. ..thatdon’teven have to be from the same response distribution

But we haveto have a likelihood and degrees of freedom, which can be a
limitation.

Ex: The degrees of freedom for a tree isn’t well defined.

Rule of thumb: AIC tends to overfit and BIC tends to underfit.



Choosing the Response Distribution

Using our intuition, we can narrow it down to a few distributions and then
use the AlCc or BIC to guide us.

If we have count data...usually we think of the Poisson.

 Events out of trials? -> binomial or beta-binomial

- Do we need to accountfor overdispersion? ->negative binomial

- Do we have extra zeros? -> zero-inflated distribution

« Only observe a couple of distinct values? -> consider switching to logistic



Choosing the Response Distribution

And if we have a continuous response...
- Do we have negative values? -> normal
s it bound to (0,1)? -> beta

Does variance increase with the mean? ->gamma, Weibull, lognormal

s it time to event/censored? -> probably Weibull or lognormal

A pretty good catch-all?->normal

| E% Example: Normal and Cauchy Densities - J.

Do we expect to have outliers? ->Cauchy =

.00
-------------



| love
regression!

Back to Our Basketball Data

Now let’s try building some models

Date
1996-11-01
1996-11-02
1996-11-05
1996-11-07
1996-11-09
1996-11-11
1996-11-12
1996-11-14
1996-11-17
1996-11-20
1996-11-21
1996-11-24
1996-11-26
1996-11-27
1996-11-29
1996-12-04
1996-12-08
1996-12-15
1996-12-21
1996-12-25
1996-12-28
1996-12-30
1997-01-02

Days Off Collapsed
4+

-~ O A N O NN 4O = - =N

S ob W b
+ + +

N - N W

day
Friday
Saturday
Tuesday
Thursday
Saturday
Monday
Tuesday
Thursday
Sunday
Wednesday
Thursday
Sunday
Tuesday
Wednesday
Friday
Wednesday
Sunday
Sunday
Saturday
Wednesday
Saturday
Monday
Thursday

month

November
November
November
November
November
November
November
November
November
November
November
November
November
November
November
December
December
December
December
December
December
December
January

year

1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1997

Age
22-268
22-269
22-272
22-274
22-276
22-278
22-279
22-281
22-284
22-287
22-288
22-291
22-293
22-294
22-296
22-301
22-305
22-312
22-318
22-322
22-325
22-327
22-330



Wrap-up



Wrap Up

« GLMs are an important piece of our modeling toolbox.
- The platforms in JMP make them easy to fit and use.
« How should | choose the response distribution?

- Narrow it down to a handful of meaningful options

« Compare AlCcor BIC values to pick the “best”.
- When all else fails, the Normaland Gamma are a good start.

- And remember: it’s the distribution of the response given the predictors.

Gsas



Wrap-up
More Resources
Search the JMP Community for past blog posts and talks

A good intro to GLMs

- "Foundations of Linear and Generalized Linear Models" by Agresti (Wiley,
2015)

Lots of information about the AIC and BIC.

« “Model Selection and Multimodel Inference” by Burnham and Anderson
(Springer, 2003)

« As well as Ken Burnham’s webpage



https://community.jmp.com/
https://sites.warnercnr.colostate.edu/kenburnham/model-selection-issues/

Thanks!
Clay.Barker@sas.com

Sas.com
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