SIEMENS Healthineers $\because \cdot$

Parallel-curve assessment in JMP

JMP-Usergruppenmeeting 2023

Dr. Walter Hoyer
SHS DX RD\&I MA MAR SA

A typical hemostasis product
 INNOVANCE vWF Activity

Generation of clinical results

Important for diagnosis and treatment monitoring

Working principle of many assays:

- Within a controlled chemical reaction, a raw value is generated for a given sample.
- Comparison of raw value of unknown patient sample with a sequence of raw values of a reference material (,calibrator") with known concentration

Calibration Chain

Certificate of Traceability

Abbildung 2: Berechnung der Unsicherheit des Sollwertes aus der Kalibrationskette. Sowohl das WHO Referenzmaterial als auch jede Kalibration der Kalibrationskette führen zu einer Vergrößerung der Unsicherheit des finalen Sollwertes.

Accurate calibrations are important!

Calibration by interpolation (forward calibration) Basic approach

- Create reference curve with parent standard
- Treat new standard as a sample
- Predilute standard into reference curve
- Determine concentration by interpolation
- Optionally predilute differently (to ensure relative dilutional linearity)
- back-calculated results should all agree, and average will be final value

Example: $(0.0023 \mathrm{mg} / \mathrm{L} \times 4+0.0094 \mathrm{mg} / \mathrm{L}) / 2$ $=(0.0092+0.0094) / 2 \mathrm{mg} / \mathrm{L}=0.0093 \mathrm{mg} / \mathrm{L}$

- CV can be used as an indirect check of "compatibility" (lack of matrix effects)

Calibration by alignment
 Extending the idea of multiple interpolations

- Treat new candidate standard similar to parent standard (i.e. full dilution series)
- Fit curves to both data sets
- Investigate horizontal (multiplicative) shift at a larger number of raw values
- Concentration ratio can be observed as horizontal shift (on a log-concentration axis)

Advantage compared to forward calibration

- More information
- Calibration across relevant signal range
- Possibility to evaluate the dilutional linearity

Disadvantage or lost opportunity

- "Pedestrian approach" does allow for statistical tests to assess equal asymptotes and equal slope, i.e. full parallelism of curves

True alignment - (non-)parallel-curve model Implementation in JMP Nonlinear Platform

Screenshots to illustrate main steps (1)

Implementation in JMP Nonlinear Platform

Rodbard model in non-linear platform

Select a Model
Sigmoid Shape,polarogr...y state voltammetı Weibull model (4P) CES Production Function (4P and 2 X) Rodbard model (4P) Michaelis Menten Model (2P) Formula $\frac{(\mathrm{a}-\mathrm{d})}{\left(1+\left(\frac{\mathrm{X}}{\mathrm{c}}\right)^{\mathrm{b}}\right)}$ Show Graph Make Formula +d

\triangle Solution							
SSE		DFE	MS		RMSE		Upper CL
0.0000081567		1	4.7981e-7		0.0006927		
Parameter		Estimate		ApproxStdErr		Lower CL	
a		0.0032387421		0.00033554		0.0025204	0.00394411
b		1.5513977569		0.01836675		1.5124578	1.59063368
c		2.2730816486		0.03180968		2.20889213	2.34406035
d		0.2832964397		0.00265329		0.27788854	0.28916654
Solved By: Analytic Gauss-Newton							
Δ Correlation of Estimates							
	a	b		c	d		
a	1.0000	0.6968	-0.4	197	-0.5363		
b	0.6968	1.0000	-0.8	716	-0.9140		
c	-0.4197	-0.8716		000	0.9768		
d	-0.5363	-0.9140		768	1.0000		

Screenshots to illustrate main steps (2)

Implementation in JMP Nonlinear Platform

Generalization to parallel-curve model (with or without weight)

Parameters
New Parameter...
$a=0$
$b=2.174$
$c=1$
$d=0.2174$
fc $=1$

Screenshots to illustrate main steps (3)

Implementation in JMP Nonlinear Platform

Summary

- Extension of Rodbard model from JMP Model Library
- Elegant statistical method compared to other forms of calibration
- Analysis of master and new calibrator material in one statistical model
- Parameter estimates obtained with confidence intervals
- Equivalence tests for equal slope (or equal asymptotes) can easily be incorporated

Idea can be extended

- Non-linear platform can be used for any complex prediction that can be parametrized

Thank you!

Contact:

walter.hoyer@siemens-Healthineers.com

Siemens Healthineers

Siemens Healthcare Diagnostics Products GmbH
Emil-von-Behring-Str. 76
35041 Marburg, Deutschland
siemens-healthineers.com

BACKUP SLIDES

Parametrisierung für 4PL „Logit-log"-Modell

Äquivalenz zu Rodbard-Parametrisierung

$\operatorname{logit}(p)=\ln (p /(1-p))$ hat Wertebereich von $-\infty$ bis ∞ für $p \in] 0,1[$
Beispiel einer verallgemeinerten linearen Regression (Generalized Linear Model = GLM):

- Verlange $\operatorname{logit}(p)=a+b x$ (ebenfalls Wertebereich von $-\infty$ bis ∞)
- Da Konzentration bei 0 beginnt, setze $x=\ln ($ conc $)$, also

$$
\ln [p /(1-p)]=a+b \times \ln (\text { conc })
$$

Standard 2PL-Parametrisierung	Verallgemeinerung auf 4PL	alternative Rodbard- Parametrisierung
$p=\frac{1}{1+\exp (-(a+b \times \ln (\text { conc })))}$	$\mathrm{y}=y_{\min }+\frac{y_{\max }-y_{\min }}{1+\exp (-(a+b \times \ln (\operatorname{conc})))}$	$y=y_{\min }+\frac{y_{\max }-y_{\min }}{1+\left(\frac{\operatorname{conc}}{c_{50}}\right)^{-b}}$

