

Parallel-curve assessment in JMP

JMP-Usergruppenmeeting 2023

Dr. Walter Hoyer SHS DX RD&I MA MAR SA

A typical hemostasis product INNOVANCE vWF Activity

Generation of clinical results Important for diagnosis and treatment monitoring

- Within a controlled chemical reaction, a raw value is generated for a given sample.
- Comparison of raw value of unknown patient sample with a sequence of raw values of a reference material ("calibrator") with known concentration

3 Restricted © Siemens Healthineers, 2022

SIEMER

Calibration Chain Certificate of Traceability

Abbildung 2: Berechnung der Unsicherheit des Sollwertes aus der Kalibrationskette. Sowohl das WHO Referenzmaterial als auch jede Kalibration der Kalibrationskette führen zu einer Vergrößerung der Unsicherheit des finalen Sollwertes.

4 Restricted © Siemens Healthineers, 2022

SIEMENS

Healthineer

Calibration by interpolation (forward calibration) Basic approach

- Create reference curve with parent standard
- Treat new standard as a sample
- Predilute standard into reference curve
- Determine concentration by interpolation
- Optionally predilute differently (to ensure relative dilutional linearity)
- **back-calculated results** should all agree, and average will be final value

Example: (0.0023 mg/L x 4 + 0.0094 mg/L)/2 = (0.0092 + 0.0094)/2 mg/L = 0.0093 mg/L

• CV can be used as an indirect check of "compatibility" (lack of matrix effects)

SIEMENS

Calibration by alignment Extending the idea of multiple interpolations

- Treat new candidate standard similar to parent standard (i.e. full dilution series)
- Fit curves to both data sets
- Investigate horizontal (multiplicative) shift at a larger number of raw values
- Concentration ratio can be observed as horizontal shift (on a log-concentration axis)

Advantage compared to forward calibration

- More information
- o Calibration across relevant signal range
- Possibility to evaluate the dilutional linearity

Disadvantage or lost opportunity

 "Pedestrian approach" does allow for statistical tests to assess equal asymptotes and equal slope, i.e. full parallelism of curves

Parallel shift (factor 3)

SIEMEN

True alignment – (non-)parallel-curve model Implementation in JMP Nonlinear Platform

Restricted © Siemens Healthineers, 2022

7

Screenshots to illustrate main steps (1) Implementation in JMP Nonlinear Platform

Restricted © Siemens Healthineers, 2022

8

Screenshots to illustrate main steps (2) Implementation in JMP Nonlinear Platform

Generalization to parallel-curve model (with or without weight)

Screenshots to illustrate main steps (3) Implementation in JMP Nonlinear Platform

10 Restricted © Siemens Healthineers, 2022

Summary

- Extension of Rodbard model from JMP Model Library
- Elegant statistical method compared to other forms of calibration
- Analysis of master and new calibrator material in **one** statistical model
- Parameter estimates obtained with confidence intervals
- Equivalence tests for equal slope (or equal asymptotes) can easily be incorporated

Idea can be extended

• Non-linear platform can be used for any complex prediction that can be parametrized

Thank you!

Contact: walter.hoyer@siemens-Healthineers.com

Siemens Healthineers

Siemens Healthcare Diagnostics Products GmbH Emil-von-Behring-Str. 76 35041 Marburg, Deutschland siemens-healthineers.com

BACKUP SLIDES

Parametrisierung für 4PL "Logit-log"-Modell Äquivalenz zu Rodbard-Parametrisierung

logit(p) = ln(p/(1-p)) hat Wertebereich von - ∞ bis ∞ für $p \in]0,1[$

Beispiel einer verallgemeinerten linearen Regression (Generalized Linear Model = GLM):

- Verlange logit(p) = a + bx (ebenfalls Wertebereich von $-\infty$ bis ∞)
- Da Konzentration bei 0 beginnt, setze x = ln(conc), also

$$ln[p/(1-p)] = a + b \times ln(conc)$$

Standard 2PL-Parametrisierung	Verallgemeinerung auf 4PL	alternative Rodbard- Parametrisierung
$p = \frac{1}{1 + \exp(-(a + b \times \ln(conc)))}$	$y = y_{min} + \frac{y_{max} - y_{min}}{1 + \exp(-(a + b \times \ln(conc)))}$	$y = y_{min} + \frac{y_{max} - y_{min}}{1 + \left(\frac{conc}{c_{50}}\right)^{-b}}$

Restricted © Siemens Healthineers, 2022

13

