Multifactor Experimental Designs with more than 2 factors

Two Factor Linear Model (Sample Model)

\[Y_{ijk} = \bar{Y} + a_j + b_k + (ab)_{jk} + e_{ijk} \]

Score on Y for the \(i \)th individual in the \(j \)th treatment of factor A and the \(k \)th treatment of factor B.

Effect offset for level \(j \) of Factor A.

Effect offset for level \(k \) of Factor B.

Effect offset for combined effect of Factors in treatment \(jk \).

Error

Three Factor Linear Model (Sample Model)

\[Y_{ijkl} = \bar{Y} + a_j + b_k + c_l + (ab)_{jk} + (ac)_{jl} + (bc)_{kl} + (abc)_{jkl} + e_{ijkl} \]

Score on Y for the \(i \)th individual in the \(j \)th treatment of factor A, the \(k \)th treatment of factor B and the \(l \)th treatment of factor C.

Error
Three Factor Linear Model
(Sample Model)

\[Y_{ijkl} = \bar{Y} + a_j + b_k + c_l + (ab)_{jk} + (ac)_{jl} + (bc)_{kl} + (abc)_{jkl} + e_{ijkl} \]

Score on \(Y \) for the \(i \)th individual in the \(j \)th treatment of factor A, the \(k \)th treatment of factor B and the \(l \)th treatment of factor C = Grand Mean +

Main Effects of Factor A
Factor B
Factor C

Two-Way Interactions
A x B
A x C
B x C

Three-Way Interaction
A x B x C
Three Factor Linear Model
(Sample Model)

\[Y_{ijkl} = \bar{Y} + a_j + b_k + c_l + (ab)_{jk} + (ac)_{jl} + (bc)_{kl} + (abc)_{kl} + e_{ijkl} \]

Score on Y for the ith individual in the jth treatment of factor A, the kth treatment of factor B and the lth treatment of factor C

Tests of Effects for Three Factors

- Overall Effect of Factor A
 \[F_A = \frac{MS_A}{MS_{error}} \]

- Overall Effect of Factor B
 \[F_B = \frac{MS_B}{MS_{error}} \]

- Overall Effect of Factor C
 \[F_C = \frac{MS_C}{MS_{error}} \]

- Effects of Two-Way Combinations:
 \[F_{AB} = \frac{MS_{AB}}{MS_{error}} \]

- Effects of Three-Way Combinations:
 \[F_{ABC} = \frac{MS_{ABC}}{MS_{error}} \]
Tests of Effects for Three Factors

- Overall Effect of Factor A:
 \[F_A = \frac{MS_A}{MS_{error}} \]

- Overall Effect of Factor B:
 \[F_B = \frac{MS_B}{MS_{error}} \]

- Overall Effect of Factor C:
 \[F_C = \frac{MS_C}{MS_{error}} \]

- Effects of Two-Way Combinations:
 \[F_{AB} = \frac{MS_{AB}}{MS_{error}} \quad F_{AC} = \frac{MS_{AC}}{MS_{error}} \]

- Effects of Three-Way Combinations:
 \[F_{ABC} = \frac{MS_{ABC}}{MS_{error}} \]

Multifactor Experimental Designs

with 4 factors
Full Model

Reduced Model

The General Linear Test

\[F = \frac{\text{Reduction in Error}}{\text{# Added Parameters}} \]

\[
\frac{\text{Baseline Error}}{}
\]
The General Linear Test

\[F = \frac{SS_{\text{error}}(R) - SS_{\text{error}}(F)}{SS_{\text{error}}(F) / df_{\text{error}}(F)} \]

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS of Error</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>(p) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td></td>
<td>1183.438</td>
<td>22.646</td>
<td>1.155</td>
<td>0.290</td>
</tr>
<tr>
<td>C Total</td>
<td>15</td>
<td>2987.443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21123.92</td>
<td>52.13</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Reduced Model

\[F = \frac{SS_{\text{error}}(R) - SS_{\text{error}}(F)}{SS_{\text{error}}(F) / df_{\text{error}}(F)} \]

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS of Error</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>(p) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td></td>
<td>1183.438</td>
<td>22.646</td>
<td>1.155</td>
<td>0.290</td>
</tr>
<tr>
<td>C Total</td>
<td>15</td>
<td>2987.443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21123.92</td>
<td>52.13</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Summary

- The General Linear Test is used to compare two regression models.
- The F statistic is calculated as the difference between the sum of squares for the reduced model and the full model, divided by their respective degrees of freedom and mean squares.
- The F statistic is then compared to the critical value from the F-distribution table to determine whether the difference between the models is statistically significant.
\[
F = \frac{SS_{error}(R) - SS_{error}(F)}{MS_{error}(F)}
\]

1275.15 -

\[
F = - - -
\]

\[
F = \frac{df_{error}(R) - df_{error}(F)}{MS_{error}(F)}
\]

1275.15 - 1169.5

\[
F = - - -
\]
Full Model

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>7</td>
<td>1722.7538</td>
<td>244.545</td>
<td>8.4506</td>
<td><0.001*</td>
</tr>
<tr>
<td>Error</td>
<td>15</td>
<td>1159.0050</td>
<td>8.122</td>
<td>8.122</td>
<td>0.0001*</td>
</tr>
<tr>
<td>C. Total</td>
<td>16</td>
<td>2881.7588</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F = \frac{SS_{model}(R) - SS_{model}(F)}{MS_{error}(F)} \]

\[F = \frac{1275.15 - 1169.5}{8.122} = 12.45 \]

\[F > F_{0.05, 7, 15} = 3.74 \]

Critical Region: Rejected

Reduced Model

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>7</td>
<td>1722.7538</td>
<td>244.545</td>
<td>8.4506</td>
<td><0.001*</td>
</tr>
<tr>
<td>Error</td>
<td>15</td>
<td>1159.0050</td>
<td>8.122</td>
<td>8.122</td>
<td>0.0001*</td>
</tr>
<tr>
<td>C. Total</td>
<td>16</td>
<td>2881.7588</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F = \frac{SS_{model}(R) - SS_{model}(F)}{MS_{error}(F)} \]

\[F = \frac{1275.15 - 1169.5}{8.122} = 12.45 \]

\[F > F_{0.05, 7, 15} = 3.74 \]

Critical Region: Rejected

Full Model

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>7</td>
<td>1722.7538</td>
<td>244.545</td>
<td>8.4506</td>
<td><0.001*</td>
</tr>
<tr>
<td>Error</td>
<td>15</td>
<td>1159.0050</td>
<td>8.122</td>
<td>8.122</td>
<td>0.0001*</td>
</tr>
<tr>
<td>C. Total</td>
<td>16</td>
<td>2881.7588</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F = \frac{SS_{error}(R) - SS_{error}(F)}{MS_{error}(F)} \]

\[F = \frac{1275.15 - 1169.5}{8.122} = 12.45 \]

\[F > F_{0.05, 7, 15} = 3.74 \]

Critical Region: Rejected

Reduced Model

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>7</td>
<td>1722.7538</td>
<td>244.545</td>
<td>8.4506</td>
<td><0.001*</td>
</tr>
<tr>
<td>Error</td>
<td>15</td>
<td>1159.0050</td>
<td>8.122</td>
<td>8.122</td>
<td>0.0001*</td>
</tr>
<tr>
<td>C. Total</td>
<td>16</td>
<td>2881.7588</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F = \frac{SS_{error}(R) - SS_{error}(F)}{MS_{error}(F)} \]

\[F = \frac{1275.15 - 1169.5}{8.122} = 12.45 \]

\[F > F_{0.05, 7, 15} = 3.74 \]

Critical Region: Rejected
Full Model

F = \frac{SS_{error}(R) - SS_{error}(F)}{MS_{error}(F)}

\[
F = \frac{1275.15 - 1169.5}{152 - 144} = \frac{105.65}{8.122} = \frac{8}{8.122} = 1.626
\]

Reduced Model

F = \frac{SS_{error}(R) - SS_{error}(F)}{MS_{error}(F)}

\[
F = \frac{1275.15 - 1169.5}{152 - 144} = \frac{105.65}{8.122} = \frac{8}{8.122} = 1.626
\]

\[\text{df}_{\text{numerator}} = 8\]
\[\text{df}_{\text{numerator}} = 144\]