

Design of Experiments Essentials (DOE^2)

Bass Masri, JMP® Asia Pacific

JMP[®] Statistical Discovery

JMP® is statistical discovery software from the SAS® Institute.

- JMP® provides scientists, engineers and analysts with a visual and interactive tool
 - to explore data,
 - design experiments,
 - improve processes,
 - solve problems quickly,
 - and share results...

Bass Masri

Don't count the days. Make the days count!

- A passion for analytics and statistics with more than 20 years of work experience in engineering, science and process improvement.
- Tertiary education includes a Bachelor Degree in Science and Masters in Applied Statistics from Macquarie University, Sydney Australia.

Agenda

Design of Experiments Essentials (DOE^2)

- Design of experiments is a structured approach for collecting data and making important discoveries.
- In this reactor case study, we demonstrate how a response can be efficiently optimized for five factors using a design of experiment.
- Today, we focus on why we use DoE, the process workflow, experimental designs and design diagnostics ...

Why use design of experiments?

Quality, Delivery, Cost. In that order!

- Design of experiments can be used to improve products and processes by identifying the factors that are important.
- Unlike studying one factor at a time, with a limited number of trials, you can learn a lot about a process.
- Ultimately you improve process performance through better decisions around: Quality, Delivery, Cost.

Process Workflow Everything is a process!

 This six-step framework provides the structure for designing an experiment, running the experimental trials and analyzing results.

Source: JMP[®] Help > Design of Experiments Guide

Design Diagnostics

Power and Sample Size ...

Design of Experiments

Learning Outcomes and Essential Terms

- Outcome: Design a controlled set of tests to model and explore the relationship between the process inputs and outputs.
- Terminology we will cover
 - factors
 - responses
 - treatments
 - runs
 - effects
 - interactions

Action Plan

Reactor Case Study

- Situation: You want to study the effects of five two-level factors: Feed Rate, Catalyst,
 Stir Rate, Temperature and Concentration on the response: Percent Reacted.
- Problem: A higher Percent Reacted ensures higher quality products. In a full factorial design, you perform an experimental run at every combination of the factor levels.
- Impact: The sample size for a full factorial study is $2^{K \text{ factors}}$, that is $2^5 \text{ factorial} = 2x2x2x2x2 = 32 \text{ runs}$. Budget for the design has been allocated and approved.
- Need: You need to determine what factors and 2-way interactions are significant and identify what are the optimal settings to maximize Percent Reacted.

Data Tables

Help > Sample Data > Design of Experiments / Reactor ...

Describe

Identify goal, response and factors

Full Factorial Design				
Responses				
Response Name	Goal	Lower Limi	t Upper Limit	Importance
Percent Reacted	Maximize	90	100	1
Factors	Factors			
Add N Factors	1			
Name R	Role	Values		
Feed Rate C	Continuous	10 15		
Catalyst C	Continuous	1 2		
Stir Rate C	Continuous	100 120		
Temperature C	Continuous	140 180		
Concentration C	Continuous	3 6		
2x2x2x2x2 Factori	al			
Output Options Run Order:		Randomiz		
Number of Runs	:	32		
Number of Center Points:		0		
Number of Replicates:		0		

Specify

Identify main and interaction effects for the model

Factors

Name Role Values
Feed Rate Continuous 10 15
Catalyst Continuous 1 2
Stir Rate Continuous 100 120
Temperature Continuous 140 180
Concentration Continuous 3 6

Model

Intercept Feed Rate Catalyst

Stir Rate

Temperature

Concentration

Feed Rate*Catalyst Feed Rate*Stir Rate

Catalyst*Stir Rate

Feed Rate*Temperature

Catalyst*Temperature

Stir Rate*Temperature

Feed Rate*Concentration

Catalyst*Concentration

Stir Rate*Concentration

Temperature*Concentration

Design

Generate a design and evaluate

Design Diagnostics				
D Efficiency	100			
G Efficiency	100			
A Efficiency	100			
Average Variance of Prediction	0.118056			
Design Creation Time (seconds)	0			

Collect

Run trial using design settings

Reactor 32 Runs - JMP Pro								_		×
Eile Edit Tables Bows Cols										
	₹ ? ⊕ ⊕			□ □ ≥ ≥ ≥						
■Reactor 32 Runs	4 💮							Percent		
Locked File C:\Program	•	Pattern	Feed Rate	Catalyst	Stir Rate	Temperature	Concentration	Reacted		
Design 2x2x2x2x2 Fact	1	++-+-	15	2	100	180	3	٥	3	^
Reference Adapted fro Note Data from a react	2	++++	15	2	120	180	6	8	12	
► Screening	3	-++	10	2	120	140	3		4	
▶ Model	4	-++	10	2	100	140	6	7	0	
▶ DOE Dialog	5	-+++	10	2	120	180	6	8	11	
▶ Reduced Model	6	-+	10	2	100	140	3	(3	
	7	+++	15	2	100	140	6	(5	
	8	+-+	10	1	120	140	6	5	9	
	9		10	1	100	140	3	(1	
	10	++-++	15	2	100	180	6	7	7	
	11	+-++-	15	1	120	180	3	(0	
	12	-++-	10	2	120	180	3	9	15	
Columns (7/7)	13	++-	15	1	100	180	3	(1	
▲ Pattern @	14	++-	10	1	120	180	3	(6	
✓ Feed Rate * ✓ Catalyst *	15	-++-+	10	2	120	140	6	6	7	
	16	+++-+	15	2	120	140	6	(5	
■ Stir Rate *	17	+++	15	1	100	180	6	4	15	
■ Temperature * ■ Concentration *	18	+++-	15	2	120	180	3	ġ	8	
▲ Percent Reacted *	19	+-	10	1	100	180	3	(9	
= referit Reacted +	20	++	15	1	100	140	6	(3	
	21	-+-++	10	2	100	180	6	7	8	
	22	++	10	1	100	180	6	4	4	
- - -	23	++	15	2	100	140	3	(1	
	24	+-+-+	15	1	120	140	6		5	
	25	++	10	1	120	180	6	4	19	
	26	+++	15	2	120	140	3	(1	
	27	+-+	15	1	120	140	3		6	
	28	+	10	1	120	140	3		3	
	29	+	10	1	100	140	6		6	
Rows	30	-+-+-	10	2	100	180	3	9	14	
All rows 32 ^	31	+	15	1	100	140	3		3	
Selected 0		+-+++	15	1	120	180			12	
Excluded 0 v										>
									2	□ ▼

Model Specification	on			
Model Specification Select Columns 7 Columns Pattern Feed Rate Catalyst Stir Rate Temperature Concentration Percent Reacted	Pick Role Variables Percent Reacted Emphasis: Effect Screening Construct Model Effects Degree 2 Feed Rate Attributes Catalyst Transform Personality: Standard Least Sql Emphasis: Effect Screening Attributes Catalyst Stir Rate			
	Temperature Concentration Feed Rate*Catalyst Feed Rate*Stir Rate Catalyst*Stir Rate Feed Rate*Temperature Catalyst*Temperature Stir Rate*Temperature Feed Rate*Concentration Catalyst*Concentration Stir Rate*Concentration Temperature*Concentration			

Fit

Determine the model that best fits experimental data

Predict

Use the model to optimize response

Findings and Summary

Next Steps

- We learnt about experimental designs and the general steps for how to conduct an experiment, including:
 - 1. Describe response and factors.
 - 2. Identify effects and specify model.
 - 3. Generate and evaluate the design.
 - 4. Conduct experiment and measure response.
 - 5. Fit model, identify optimal settings and predict performance.

Keen to try?

Download Trial Version

- Keen to give it a go? Try the Design of Experiments Essentials Journal,
 Sample Data and read the DOE Guide.
- Don't have JMP®? Download a 30-day free trial version from https://www.jmp.com/en_au/download-jmp-free-trial.html

Learning JMP Useful Resources

Statistical Thinking

Seven module on line statistics course ..

The Design of Experiments Intro Kit

Complete with individual certificate ...

Chemistry World Royal society of chemistry ...

About JMP® Australia and New Zealand

Contact Details

> About JMP

JMP is a division of SAS that produces interactive statistical discovery software.

> John Sall

SAS Co-Founder and Executive Vice President John Sall is the creator and chief architect of JMP software.

> JMP Blogs

Hear from the extended JMP family: R&D, marketing, training, technical support and sales, as well as guest bloggers.

JMP Australia & New Zealand

300 Burns Bay Road, Lane Cove, NSW 2066, Australia

Phone: +61 2 9428 0442 Contact: jmpanz@sas.com

- > Contact Us
- > International Offices
- > Careers with JMP

- More about SAS
- > JMP Partners

Customer Success

Customer success stories by application

Design of Experiments

> AIM Autosport and DMH Racing

AIM Motorsport and DMH Racing use JMP to fine-tune open wheel race cars.

> Almac

Almac uses JMP design of experiments to bring new drugs to market faster.

American Society of Testing and Materials

The American Society of Testing and Materials uses JMP to design roadwheel tests.

Amperex Technology Ltd

Integrated JMP analytics enable engineers to reduce process variation and optimize production.

Anatune

Chemists use DOE to design customized robotic solutions for chemical analysis.

> ASM International

ASM utilizes statistical methods companywide to be more effective and efficient.

> Atotech

Engineers use DOE to respond to the demands of a fast-paced industry.

> Johnson Matthey Biocatalysts

A forward-thinking statistical monitoring program helps ensure smooth and accurate regulatory filings.

> Johnson Matthey Fine Chemicals

At Johnson Matthey, JMP is the 'active ingredient' in process optimization

Xirin Holdings Company, Limited

Analysts use multivariate analyses to identify properties that make beverages more palatable to the young consumers.

> Lockheed Martin

Lockheed Martin engineers take a statistical approach to aircraft departure noise.

> London DNA Foundry

Synthetic biologists improve experimentation with DOE and robotic automation.

Lynred

Engineers use JMP Pro to optimize quality and reliability.

> Menarini

Formulation development technicians implement continuous improvement within the regulatory framework.

Thanks for joining us ...

Statistical Software | JMP Software from SAS